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Abstract

A notion of relative structure at infinityand the concept ofrel-
ative output rankwith respect to a subsystem are introduced.
We introduce theproblem of relative decoupling, showing that
this problem is solvable if and only if the relative output rank
ρ̃(z) coincides withdim z. The Relative Dynamic Extension
Algorithm (RDEA)is presented and a geometric interpretation
is also given, showing that it computes the relative structure
at infinity. We develop necessary and sufficient conditions for
testing if a given outputz of system is relatively flat with re-
spect toY . As a byproduct, we obtain conditions for the de-
coupling problem and for flatness of a class of Differential Al-
gebraic Equations (DAE’s). It is shown the the RDEA may be
used for constructing dynamic linearizing feedback laws and/or
the solution of the dynamic input-output decoupling problem
for implicit systems.

1 Introduction

The notion of subsystem was introduced in [13] using the infi-
nite dimensional differential geometric setting of [6], which is
also the approach of the present paper. Given a systemS with
outputy, the existence and uniqueness of theoutput subsystem
Y is studied there. The concept of relative flatness with respect
to a subsystem was also introduced in [13] and it is shown that
relative flatness with respect toY implies flatness of a class
of Differential-Algebraic Equations (DAEs) obtained by mak-
ing y ≡ 0. Sufficient conditions of relative flatness based on
Relative Derived Flagswere also presented there. However,
the following question remains open. Given a systemS with
subsystemY and outputz, how to test isz is a relatively flat
output with respect toY ? Closely related to this question is the
problem of relative decoupling of the outputz with respect to
subsystemY , i. e., to control each component ofz indepen-
dently of each other and independently of the outputy(t) (that
determines the trajectory of the output subsystem). As in the
case of flatness, one may ask if relative decoupling implies the
decoupling of the corresponding DAE.

In this paper it is shown that a systemS for which the relative

decoupling of the outputz is solvable with respect to susbsys-
temY possesses the structure of figure 1, where subsystemZ
is flat with flat outputz andS/(Y ∪ Z) is a generalization of
the zero dynamics for this problem1. Note that, according to
the definitions of [13],z is a relatively flat output with respect
to y if and only if Z is flat with flat outputz and the “zero
dynamics” S/(Y ∪ Z) is absent.
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Figure 1: Structure of of a systemS for which the outputz is rela-
tively decoupled with respect to subsystemY . The subsystemZ is flat
with flat outputz.

Decoupling of nonlinear DAE’s has been considered for in-
stance in [9]2. Feedback linearization and flatness of implicit
systems has been studied for instance by [8, 7, 13]. In this pa-
per we consider a semi-implicit DAE,i. e., a systemΓ of the
form

ẋ(t) = f(t, x(t)) + g(t, x(t))u(t) (1a)

y(t) = a(t, x(t)) + b(t, x(t))u(t) = 0 (1b)

z(t) = φ(x(t)) + ψ(x(t))u(t) (1c)

wherex(t) ∈ IRn is the pseudo-state of the system,u(t) ∈ IRm

is the pseudo-input3, z(t) ∈ IRp is the output andyi(t), i =
1, . . . , r are the constraints.

One can associate toΓ an explicit systemS with outputsy and
z given by

ẋ(t) = f(t, x(t)) + g(t, x(t))u(t) (2a)

y(t) = a(t, x(t)) + b(t, x(t))u(t) (2b)

z(t) = φ(x(t)) + ψ(x(t))u(t) (2c)

1NoteS/(Y ∪ Z) is only a notation suggesting a quotient, but it does not
have any precise meaning.

2In [9] the static decoupling for DAEs is considered. To solve this problem,
[9] introduces an algorithm that is closely related to the RDEA.

3Note thatu is not a differentially independent input forΓ, since the con-
straintsy ≡ 0 induce differential relations linking the components ofu. By
the same reasons,x is not a state ofΓ.



In this entire paper we consider the systemS with output4 y
the system defined by (2), in the framework of [6]. Theny(k)

stands for the functiond
k

dtk y defined onS, which may depend
t, x, u(0), u(1), . . ..

Definition 1 In the sequel we shall consider the following se-
quences of codistributions defined onS

Y−1 = span{dt, dx} (3a)

Yk = span
{
dt, dx, dy, . . . , dy(k)

}
, k ∈ IN (3b)

Y−1 = span{dt} (3c)

Yk = span
{
dt, dy, . . . , dy(k)

}
, k ∈ IN (3d)

Y−1 = {0} (3e)

Yk = span
{
dy, . . . , dy(k)

}
, k ∈ IN (3f)

Z−1 = {0} (3g)

Zk = span
{
dz, . . . , dz(k)

}
, k ∈ IN (3h)

♠

Let ξ ∈ S be a regular point of the codistributionsYk and
Yk for k = 0, . . . , n, wheren = dimx(t). According [4]
(see also [1, 12, 16]), the sequence of integers{σ0, . . . , σn},
whereσk = dimYk|ξ − Yk−1|ξ is called thealgebraic struc-
ture at infinity at ξ. It can be shown that the sequenceσk

is nondecreasing and converges fork∗ ≤ n to the integer
ρ(y) = σk∗ = max{σ0, . . . , σn}. One callsρ(y) by output
rank at ξ [5] andk∗ by theconvergence index5. The dynamic
input-output decoupling problem is solvable if and only ifρ(y)
coincides with the dimension of the outputy. By the results of
[10] (see also [12]), an outputy = h(t, x) of S is a flat output if
and only if span{dt, dx, du} ⊂ span

{
dt, dy, . . . , dy(n)

}
and

ρ(y) = dimu. Furthermore, [11] shows that the last condition
is equivalent ton +

∑k∗−1
i=1 σi = mk∗ andσ∗k = m, where

m = dimu andn = dimx.

Instrumental for nonlinear control synthesis is thedynamic ex-
tension algorithm. It computes the algebraic structure at in-
finity and it constructs solutions of the dynamic input-output
decoupling problem when such problem is solvable [4, 2]. Fur-
thermore, wheny is a flat output, this algorithm constructs an
endogenous dynamic feedback that is a solution of the feed-
back linearization problem [3]. In this paper, these results are
generalized for a class of DAEs called regular semi-implicit
systems.

By the results of [13, 16], one may identify the semi-implicit
systemΓ given by (1) with the subset ofS defined by

Γ = {ξ ∈ S | y(k) = 0, k ∈ IN} (4)

Definition 2 Let S be the explicit system defined by(2) and
consider the codistributions defined by(3). A pointξ ∈ S is
said to ber-regular if

4We regardy as an output instead of being a constraint.
5In [16] it is shown thatk∗ is thedifferential indexof the DAE (1).

(i) The codistributionsYk, Yk andYk, defined onS by (3)
are nonsingular aroundξ for k = 0, . . . , n.

(ii) Let k∗ be the convergence index of outputy of system
S. The codistributionsLk = Yk∗+k + Zk and Lk =
Yk∗+k + Zk are nonsingular aroundξ for k = 0, . . . , n
for every pointξ ∈ Γ.

The semi-implicit system given by(1) is said to be regular if
every pointξ of Γ ⊂ S, is r-regular, whereΓ ⊂ S is defined by
(4).

Definition 3 Let S be an explicit system with outputsy and
z given by(2). Assume that the codistributions defined by
(3) are nonsingular aroundξ ∈ S. Let ρ(y) be the out-
put rank ofS. The sequence of integers{σ̃0, . . . , σ̃n}, where
σ̃k = dimLk − dimLk−1 − ρ(y), computed aroundξ ∈ S is
called localrelative structure at infinity(of output z) atξ with
respect to the output subsystemY . The integer̃ρ(z) = σ̃n is
called relativeoutput rank6.

In this paper we show that the relative decoupling problem is
solvable if and only if̃ρ(z) = dim z. It is also shown that the
decoupling problem for the DAE given by (1) is solvable under
the same conditions (see Thm. 1).

Let m = dimu. We show thatz is a relatively flat output of
S if and only if cardz = ρ̃(z) = m − ρ(y) and furthermore
span{dx, du} ⊂ Ln. These conditions can be deduced directly
from the dimensions of the codistributionsLk andLk. In par-
ticular, z is a flat output of the implicit systemΓ given by (1)
under the same conditions (see Thm. 2).

2 Preliminaries and notation

The field of real numbers will be denoted byIR. The set of real
matrices ofn rows andm columns is denoted byIRn×m. The
matrix (or vector)MT stands for the transpose ofM . The set
of natural numbers0, 1, 2, . . . is denoted byIN and the subset
{1, . . . , k} ⊂ IN will be denoted bybke. Our approach will
follows the infinite dimensional geometric setting of [17, 6].
We will use the standard notations of differential geometry in
the finite and infinite dimensional case. The cardinal of a setZ
is denoted by cardZ.

For simplicity, we abuse notation, letting(z1, z2) stand for
the column vector(zT

1 , z
T
2 )T , wherez1 and z2 are also col-

umn vectors. Letx = (x1, . . . , xn) be a vector of functions
(or a collection of functions). Then{dx} stands for the set
{dx1, . . . , dxn}. In the same vein, ifxi = (xi

1, . . . , x
i
pi

) for
i = 1, 2, . . ., are sets of functions, then{dx1, dx2, . . .} stands
for the set{dx1

1, . . . , dx
1
p1
, dx2

1, . . . , dx
2
p2
, . . .}.

6Note that a first version of the RDEA has been introduced in [14], and
the connection of the RDEA with flatness of and decoupling of DAEs has also
been pointed out there. This paper improves these results and introduces the
relationship between the RDEA and relative flatness, and relative decoupling.



3 Relative Dynamic Extension Algorithm
(RDEA)

The following algorithm is instrumental for studying relative
flatness and relative decoupling:

Algorithm 1 (Relative Dynamic Extension Algorithm)
Preparation Process. Executek∗ steps of the dynamic ex-
tension algorithm [4, 12] for the explicit systemS with out-
put y, 7 obtaining the state representation(x̃−1, ũ−1), where

x−1 = xk∗−1, ũ−1 = (ω0, µ−1), ω0 = ω = ȳ
(k∗)
k∗ and

µ = ûk∗ , with state equations given by

˙̃x−1 = f−1(t, x̃−1) + ḡ−1(t, x̃−1)ω0 + (5a)

+ĝ−1(t, x̃−1)µ−1 (5b)

z(0) = a0(t, x̃−1) + b0(t, x̃−1)ω0 + (5c)

+c0(t, x̃−1)µ−1 (5d)

Then execute the steps k = 0, 1, 2, . . . :
Step k.
In the stepk − 1 we have constructed a state representation

˙̃xk−1 = fk−1(t, x̃k−1) + ḡk−1(t, x̃k−1)ωk + (6a)

+ĝk−1(t, x̃k−1)µk−1 (6b)

z(k) = ak(t, x̃k−1) + bk(t, x̃k−1)ωk + (6c)

+ck(t, x̃k−1)µk−1 (6d)

wherex̃k−1 = (x̃−1, ω0, ω1, . . . , ωk−1, z̄
(0)
0 , . . . , z̄

(k−1)
k−1 ). Let

σ̃k = rank ck(t, x̃k−1) and assume that this rank is locally
constant around some(t, x̃k−1). Up to a reordering of the
components ofz, we may assume that the firstσ̃k rows of
ck(t, x̃k−1) are locally independent. Then there exist a parti-
tionz = (z̄k, ẑk), wheredim z̄k = σ̃k and a regular static-state
feedback with new input(ωk, vk) defined by

µk−1 = ᾱk(t, x̃k−1) + α̂k(t, x̃k−1)ωk + βk(t, x̃k−1)vk

wherevk = (v̄k, v̂k) is such that8

z̄
(k)
k = v̄k

ẑ
(k)
k = ẑ

(k)
k (t, x̃k−1, ωk, v̄k)

(7)

Add the following dynamic extension

ω̇k = ωk+1

˙̄vk = µ̄k
(8)

and let µ̂k = v̂k. Hence, one has constructed a new state
representation(x̃k, ũk), with x̃k = (x̃k−1, ωk, z̄

(k)
k ), ũk =

(ωk+1, µk), µk = (z̄(k+1)
k , µ̂k) and outputz(k) given by:

˙̃xk = fk(t, x̃k) + ḡk(t, x̃k)ωk+1 + ĝk(t, x̃k)µk (9a)

z(k) = φk(t, x̃k) (9b)

7In the last step one does not make the dynamic extension but only the static
state feedback.

8We stress thatβk(t, x̃k−1) is locally nonsingular.

Compute

z(k+1) = ak+1(t, x̃k) + bk+1(t, x̃k)ωk+1 + ck+1(t, x̃k)µk

(9c)

The following result summarizes the main geometric proper-
ties of theRelative Dynamic Extension Algorithmfor time-
varying nonlinear systems. We stress that the list of integers
{σ̃1, . . . , σ̃n}, wheren = dimx, is strongly related to theal-
gebraic structure at infinity(see [4]) and is calledrelative struc-
ture at infinity. The integer̃ρ(z) = σ̃n is calledrelative output
rankat a pointξ ∈ S.

Lemma 1 Let S be the system given by(1a) with classical
state representation(x, u) and classical outputy. LetVk ⊂ S
be the open and dense set of regular points of the codistribu-
tionsYi, Yi, for i = 0, . . . , n and ofLj , Lj for j ∈ {0, . . . , k},
whereLk = Yk∗+k + Zk andLk = Yk∗+k + Zk for k =
−1, 0, 1, 2, . . . (see(3)). Assume that the output rank of the
explicit systemS is given byρ(y).

In the kth step of the relative dynamic extension algorithm,
one may construct aroundξ ∈ Vk, a new local classical
state representation(x̃k, ũk) of the systemS with statex̃k =
(x̃−1, ω, . . . , ω

(k), z̄
(1)
1 , . . . , z̄

(k)
k ), input ũk = (ω(k+1), µk),

whereµk = (ż
(k+1)
k , µ̂k), and outputz(k) = φk(t, x̃k) defined

in an open neighborhoodUk of ξ, such that

1. span{dx̃k} = Lk, k = −1, 0, 1, 2, . . ..

2. span{dx̃k, dũk} = Lk+1 + span{du} , k =
−1, 0, 1, 2, . . ..

3. It is always possible to choosez̄(k+1)
k+1 in a way that˙̄z(k)

k ⊂
z̄
(k+1)
k+1

4. When ˙̄z(k)
k ⊂ z̄

(k+1)
k+1 , it is always possible to choose

µ̂k+1 ⊂ µ̂k.

5. Let ξ ∈ Vn. The sequencẽσk = dim(Lk|ξ)) −
dim(Lk−1|ξ)−ρ(y) is nondecreasing, the sequenceρ̃k =
dim(Lk|ξ) − dim(Lk−1|ξ) − ρ(y) is nonincreasing, and
both sequences converge to the same integerρ̃(z), called
therelative output rank atξ, for somẽk∗ ≤ n = dimx.

6. LetSk ⊂ Vn be the open neighborhood of a givenξ ∈ Vn,
such that the dimensions ofLj , Lj j ∈ {0, . . . , k} are
constant insideSk. We haveSk = Sk̃∗ for k ≥ k̃∗.

7. Furthermore, Lk ∩ span{dx}|ν =

Lk̃∗−1 ∩ span{dx}
∣∣∣
ν

for everyν ∈ Sk̃∗ andk ≥ k̃∗.

8. For k ≥ k̃∗, one may choosēzk = z̄k̃∗ in Uk̃∗ . Further-

more,Lk+1 = Lk + span
{
ω(k+1), z̄

(k+1)
k

}
for k ≥ k̃∗.

9. Let Y = span
{
dt, dy(k)|k ∈ IN

}
. Then σ̃k =

dim Lk+Y
Lk−1+Y . In particular we have ρ̃(z) =

dim Ln+Y
Ln−1+Y = dim L

k̃∗+Y
L

k̃∗−1+Y
.



4 Relative decoupling

4.1 System decompositions

Definition 4 [13] (Output Subsystem) Given a systemS with
output y, a (local) output subsystem is a subsystem9 Y with
corresponding submersionπ : U ⊂ S → Y such that
π∗T ∗Y = span{dt, (dy(k) : k ∈ IN)}.

In [13, Theo. 4.3], given a classic state representation(x, u)
and a classic outputy of S, then the nonsingularity10 of codis-
tributions (3a) and (3c) fork = 0, . . . , n, wheren = dimx,
assures the existence and uniqueness11 of a local output sub-
systemY .

One may state the following notion of input-output subsystem.

Definition 5 Given a systemS with (local) state representa-
tion (x, u) and outputy. Consider the outputw = (y, u).
The input-output subsystemis the output subsystem12 W cor-
responding to the outputw.

The next definition generalizes this concept a notion of decom-
position of [13]

Definition 6 (i-decomposition and decomposition of systems)
Let S be a system and letF = {Si, i ∈ bhe} be a family of
subsystems with local coordinates respectively(t, xi), i ∈ bhe.
The systemS is said to be (locally) incompletetely decomposed,
or simply,i-decomposedbyF if there exist a (local) coordinate
system(t, x1, . . . , xh, xh+1) defined inU ⊂ S and a family
of Lie-Bäcklund submersions{πi : U → Si, i ∈ bhe} such
that the local expression ofπi in these coordinates is given by
πi(t, x1, . . . , xh, xh+1) = (t, xi), i = 1, . . . , h. The systemS
is (locally) decomposedby F if it is i-decomposed byF and
xh+1 = ∅.

4.2 Relative-decoupling with respect to a subsystem

Definition 7 (Relative decoupling problem) LetS be a system
with output(y, z), wherez = (z1, . . . , zp). LetY be the (local)
output subsystem corresponding to the outputy. A (local) state
representation(x, u), whereu = (u1, . . . , um) of S is said to
be (locally)relatively decoupledwith respect toY if systemS
is (locally) i-decomposed by the familyF = {Y, S1, . . . , Sp}
whereSi is the input-output subsystem corresponding to input
ui and outputzi, i = 1, . . . , p and the output rankρ(zi) of
subsystemSi is one.

Theorem 1 Given a systemS with (local) state representa-
tion (x, u) and output(y, z), the Relative Decoupling Problem
(RDP) is the question of finding an endogenous feedback,i. e.,
a new state representation(x̄, ū), in a way that the outputz is

9See section for the [13] for the definition of subsytem.
10In particular the existence ofY is generically assured.
11The uniqueness is implied by the existence.
12By [13, Theo. 4.3], this subsystem exists (generically) and is unique.

relatively decoupled with respect to output subsystemY . Then
the RDP is solvable around ar-regular pointξ ∈ S (see Def.
2) if and only if the relative output rank̃ρ(z) is equal to the
number of components ofz.

5 Relative flatness and relatively flat outputs

Definition 8 [13] A systemS is said to be (locally) relatively-
flat with respect to a subsystemSa if there exists a flat sub-
systemZ such thatS is (locally) decomposed by the family
F = {Sa, Z}. A flat outputz ofZ is said to be a relatively-flat
output ofS (with respect toSa).

Theorem 2 Let S be a system(2) with state representation
(x, u) and output(y, z) and assume thatξ ∈ S is a r-regular
point ofS (see definition 2). Assume that the systemS is well
formed,i. e., span{dt, dx, du} = span{dt, dx, dẋ}13. LetY
be the local output subsystem corresponding to the outputy14.
The following affirmations are equivalent:

(i) The systemS is relatively flat aroundξ with respect to
subsystemY and the outputz is a (local) relatively flat
output aroundξ.

(ii) Around ξ we haveρ̃(z) = cardz and span{dx} ⊂
Lk̃∗−1.

(iii) Aroundξ we havẽρ(z) = cardz andn−dimYk∗−1+∑k∗−1
i=0 σi − ρ̃(z)(k̃∗ + 1) +

∑k̃∗

j=0 σ̃j = 0.

6 DAEs

6.1 Relative decoupling and DAEs

LetS be a system defined by (2) with state representation(x, u)
and output(y, z). Let (x̂, û) = ((xa, xb), (ua, ub) be a state
representation adapted to the output subsystemY with (x̂, û)
related to(x, u) by relative static-state feedback (see [13]). As-
sume that the system (1) defines a regular DAE.

Then the following theorem holds (see [14] for a similar result)

Theorem 3 Let ι : Γ → S be the Lie-B̈acklund immersion
of proposition [13, Prop 6.1] (see also [16]). Let̃z = z ◦ ι,
x̃b = xb ◦ ι and ũb = ub ◦ ι. Then(x̃b, ũb) is a classic local
state representation forΓ, and z̃ is a classic output. Further-
more, the relative-structure at infinity of the outputz of S with
respect to output subsystemY coincides with the structure at
infinity of Γ with outputz considering the state representation
(x̃b, ũb). In particular the relative output rank̃ρ(z) of system
(2) coincides with the output rankρ(z) of the DAE(1).

13This is equivalent to say thatg(x) of (2) has independent columns [18].
Note that, if the system is not well formed one my apply the theorem 2 to
systemS with state(x, u) and inputu̇, which is well formed.

14The output subsystemY exists and is unique according [13, Thorem 4.3].



6.2 Relative flatness and DAEs

In [13, Prop. 7.1 and Theo. 7.2] it is shown that relative flat-
ness implies flatness of the corresponding DAE. The following
result is a direct consequence of those results and of theorem 2.

Corollary 1 If one of the equivalent conditions of theorem 2
holds for system(2), thenz is a local flat output of the regular
DAE (1).

7 Conclusions

The results of this paper may be useful for studying flatness
and the dynamic decoupling problem of implicit systems. It
is important to point out that our results shows effective ways
for computing the output rank and control laws for dynamic
feedback linearization and/or decoupling of an implicit system
Γ, without the need of transformingΓ into an explicit system.
In fact, note that the relative dynamic extension algorithm for
affine systems relies only on sums, multiplications and matrix
inversions. Given an outputz, one maytestif z is a flat output
for the implicit system using the results of this paper. Never-
theless, it must be stressed out that a method for constructing
flat outputs is not presented here. An extended version of this
paper is available in [15] and it will be submitted to the EJC.
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