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Keywords: Structure at infinity; nonlinear control systemsgecoupling of the output is solvable with respect to susbsys-
implicit systems; DAEs; differential geometric approach; diffitemY possesses the structure of figure 1, where subsy&stem

eties; decoupling; flatness; feedback linearization. is flat with flat outputz and.S/(Y U Z) is a generalization of
the zero dynamics for this problémNote that, according to
Abstract the definitions of [13] is a relatively flat output with respect

to y if and only if Z is flat with flat outputz and the Zero
A notion ofrelative structure at infinityand the concept agl- dynamic$ S/(Y U Z) is absent.
ative output rankwith respect to a subsystem are introduced.
We introduce theproblem of relative decouplinghowing that
this problem is solvable if and only if the relative output rank
p(z) coincides withdim z. The Relative Dynamic Extension
Algorithm (RDEA)is presented and a geometric interpretation
is also given, showing that it computes the relative structure
at infinity. We develop necessary and sufficient conditions for
testing if a given output of system is relatively flat with re-
spect toY. As a byproduct, we obtain conditions for the de-
coupling problem and for flatness of a class of Differential AFigure 1: Structure of of a systerfi for which the output: is rela-
gebraic Equations (DAE’s). It is shown the the RDEA may biévely decoupled with respect to subsysteniThe subsysteif is flat
used for constructing dynamic linearizing feedback laws andMh flat outputz.
the solution of the dynamic input-output decoupling proble
for implicit systems.

rﬁecoupling of nonlinear DAE’s has been considered for in-
stance in [9]. Feedback linearization and flatness of implicit
systems has been studied for instance by [8, 7, 13]. In this pa-

1 Introduction per we consider a semi-implicit DAE, e., a systenT” of the
form

The notion of subsystem was introduced in [13] using the infi-

nite dimensional differential geometric setting of [6], which is z(t) = f(t,z(t) + g(t, x(t))u(t) (1a)

also the approach of the present paper. Given a sySteuith y(t) = alt,z(t)) +blt,2(t)u(t) =0 (1b)

outputy, the existence and uniqueness of tlgput subsystem _
Y is studied there. The concept of relative flatness with respect ) = olx(t)) +u(x(t)u(t) (1c)
to a subsystem was also introduced in [13] and it is shown tRiierer(¢) € R™ is the pseudo-state of the systerty;) € IR™

relative flatness with respect & implies flatness of a classjs the pseudo-inpdt z(t) € IRP is the output andy;(t),i =
of Differential-Algebraic Equations (DAEs) obtained by maky ;. are the constraints.

ing y = 0. Sufficient conditions of relative flatness based on ) o _
Relative Derived Flagsvere also presented there. Howevef2N€ can associate fban explicit systenb' with outputsy and
the following question remains open. Given a systémwith = given by
subsystent” and outputz, how to test is: is a relatively flat

output with respect t&”? Closely related to this question is the #t) = ft2(t) + gt 2(®)u(?) (23)
problem of relative decoupling of the outputwith respect to y(t) = alt,z(t)) + b(t, x(t))u(t) (2b)
subsystent’, i. e, to control each component efindepen- z(t) = o(z(t) +¥(z(t))ut) (2¢c)

dently Qf each Othe.r and mdependently of the Oumm (tha.t INote S/(Y U Z) is only a notation suggesting a quotient, but it does not
determines the trajectory of the output subsystem). As in thge any precise meaning.
case of flatness, one may ask if relative decoupling implies the2in [9] the static decoupling for DAEs is considered. To solve this problem,

decoupling of the corresponding DAE. [9] introduces an algorithm that is closely related to the RDEA.
SNote thatu is not a differentially independent input fdY, since the con-
In this paper it is shown that a syste$ifor which the relative straintsy = 0 induce differential relations linking the componentswof By
the same reasons,is not a state of".



In this entire paper we consider the systénwith output y
the system defined by (2), in the framework of [6]. ThgR

stands for the functiorj%y defined onS, which may depend

toz,u®

Definition 1 In the sequel we shall consider the following se-

guences of codistributions defined 8n

Y_1 = span{dt,dz} (3a)
Ve = span{dt,dm,dy,...,dy(k)},k e N (3b)

Y_; = span{dt} (3c)
Yo = span{dt,dy,...,dy<k>}, ke N (3d)

Yo, = {0} (3e)
Y, = span{dy, s dy(k)} , ke N (3f)

Z- = {0} (39)
T = span{dz7...,dz(’f)}, ke N (3h)

Py

Let ¢ € S be a regular point of the codistributiot§, and
Ve for k = 0,...,n, wheren = dimz(¢t). According [4]
(see also [1, 12, 16]), the sequence of inteders, ..., o, },

whereo;, = dim Yy |¢ — Vi—1]¢ is called thealgebraic struc-
ture at infinityat £. It can be shown that the sequencg

is nondecreasing and converges fdr < n to the integer
p(y) = o= = max{og,...,0,}. One callsp(y) by output
rank at ¢ [5] and k* by theconvergence indéx The dynamic
input-output decoupling problem is solvable if and onlyi(if)

coincides with the dimension of the outputBy the results of
[10] (see also [12]), an outpyt= h(t, z) of S is a flat output if
and only if spar{dt, dz, du} C span{dt,dy,...,dy™ } and

(i) The codistribution&’y, Y and)y, defined ort by (3)
are nonsingular around for k = 0, ..., n.

(i) Letk* be the convergence index of outpubf system
S. The codistributionsly, = Yi«yx + Z and Ly,
Vi1 + Zy, are nonsingular around for k = 0,...,n
for every poing € T

The semi-implicit system given K3) is said to be regular if
every poing of I' C S, isr-regular, wherel” C S is defined by

(4).

Definition 3 Let S be an explicit system with outpugsand

z given by(2). Assume that the codistributions defined by
(3) are nonsingular around € S. Let p(y) be the out-
put rank ofS. The sequence of integefsy,...,o,}, where

o = dim L — dim L1 — p(y), computed around € S is
called localrelative structure at infinityof output z) a with
respect to the output subsystém The integerp(z) = &, is
calledrelativeoutput rank.

In this paper we show that the relative decoupling problem is
solvable if and only ifp(z) = dim 2. Itis also shown that the
decoupling problem for the DAE given by (1) is solvable under
the same conditions (see Thm. 1).

Letm = dimwu. We show that is a relatively flat output of

S if and only if cardz = p(z) = m — p(y) and furthermore
span{dz,du} C L,. These conditions can be deduced directly
from the dimensions of the codistributioig and L. In par-
ticular, z is a flat output of the implicit systefi given by (1)
under the same conditions (see Thm. 2).

p(y) = dim u. Furthermore, [11] shows that the last conditioQ Preliminaries and notation

is equivalent ton + Zf:fl o; = mk* ando} = m, where
m = dimwu andn = dim x.

The field of real numbers will be denoted . The set of real
matrices ofn rows andm columns is denoted biR™*"™. The

Instr_u merlntal fohr nolnlmear controrll synlthebS|s_ Is dymamic €X" matrix (or vector)M stands for the transpose df. The set
tension algorithm It computes the algebraic structure at g o g number§, 1,2, ... is denoted bylN and the subset

finity and it constructs solutions of the dynamic input-outp 1 k} c IN will be denoted by|k]. Our approach wil

decoupling problem when such problem is solvable [4, 2]. Fq‘ llows the infinite dimensional geometric setting of [17, 6].

thermore, whery is a flat output, this algorithm constructs aRy. il use the standard notations of differential geometry in

endog_enou_s dynamic feedback tha_t is a solution of the fe‘?ﬁé finite and infinite dimensional case. The cardinal of &set
back linearization problem [3]. In this paper, these results 3Lyenoted by card

generalized for a class of DAEs called regular semi-implicit

systems. For simplicity, we abuse notation, letting;, z2) stand for
the column vectorz{, zZ)T, wherez; and z, are also col-
Emn vectors. Letr = (z4,...,x,) be a vector of functions
(or a collection of functions). Thefidz} stands for the set
{dz1,...,dz,}. Inthe same vein, i’ = (xf,... 2} ) for
i=1,2,..., are sets of functions, thefiz!, dz?, ...} stands

for the set{dx1, ..., dx, , dz?,... da2,, ...},

By the results of [13, 16], one may identify the semi-implici
systeml" given by (1) with the subset &f defined by

P={¢es|y™=0ke N} )
Definition 2 Let S be the explicit system defined () and
consider the codistributions defined (8). A point{ € S is
said to ber-regular if

6Note that a first version of the RDEA has been introduced in [14], and
the connection of the RDEA with flatness of and decoupling of DAEs has also
been pointed out there. This paper improves these results and introduces the
relationship between the RDEA and relative flatness, and relative decoupling.

4We regardy as an output instead of being a constraint.
5In [16] it is shown that:* is thedifferential indexof the DAE (1).



3 Relative Dynamic Extension

(RDEA)

Algorithm

The following algorithm is instrumental for studying relative

flatness and relative decoupling:

Algorithm 1 (Relative Dynamic Extension Algorithm)

Preparation Process. Executek* steps of the dynamic ex-

tension algorithm [4, 12] for the explicit systef with out-

puty, * obtaining the state representatig#_,,u_;), where
~ _ _ =)

T_q The—1, U_1 (wo, ft—1), wo = w = ¥,.  and

1 = ug~, with state equations given by

To1 = [fo1(t,T21) +g-1(t,T_1)wo + (5a)
+g-1(t, 1)1 (5b)
2O = ag(t, T 1) + bo(t, T_1)wo + (5¢)
ot T )it (5d)

Then execute the steps k=0,1, 2, ...:
Step k.
In the stept — 1 we have constructed a state representation

Tho1 = foor(t,Teo1) + Grea (6 Th1)wr + (6a)
+Gr—1(t, Tr—1) -1 (6b)

20 = a(t,To1) + b (t, Ty 1)wn + (6c)

+ep(t, Ti—1) -1 (6d)

wherez, | = (i‘,l, WO, W1, .-y WE—1, 250), e, zl(c]i;l)) Let

or = rank cx(t,Tx—1) and assume that this rank is locally

constant around somg,z;_1). Up to a reordering of the
components of, we may assume that the firg} rows of

ck(t, Tr—1) are locally independent. Then there exist a parti-

tionz = (Zx, 2x), wheredim z;, = o and a regular static-state
feedback with new inputv, vi.) defined by

pr—1 = ai(t, Tu—1) + Qr(t, Th—1)wr + Br(t, Tu—1)vk
wherev,, = (U, 91 is such that

) — ,17

_(k
2y k

7

5;(€k) %ik)(t,fk—hwkﬂk) )
Add the following dynamic extension
Wp = Wiyl

. - 8

Vg = Mk ®

and let, = 0. Hence, one has constructed a new state

representation(zy, uy), with 7, = (%k,l,wk,z,(f)), Uk

(Wrts o)y e = (28570

~

, fix) and outputz(*) given by:

Ty
(k)

Jr(t, Zr) + gr(t, T )wry1 + Gr(t, T ) pr (92)
bx(t, Tk) (9b)

7In the last step one does not make the dynamic extension but only the static

state feedback.
8We stress thaBy, (¢, T _1 ) is locally nonsingular.

Compute

2D = g (8, Fk) + b (8, Ta)wrr 1 + cron (B Te) ik
(9¢)

The following result summarizes the main geometric proper-
ties of theRelative Dynamic Extension Algorithfor time-
varying nonlinear systems. We stress that the list of integers
{71,...,0,}, wheren = dim z, is strongly related to thal-
gebraic structure at infinitysee [4]) and is calletklative struc-

ture at infinity. The integef(z) = &, is calledrelative output
rank at a point¢ € S.

Lemma l Let S be the system given Hita) with classical
state representatiof, ) and classical outpuy. LetV;, C S

be the open and dense set of regular points of the codistribu-
tionsY;, V;, fori =0,...,nand ofC;, L; for j € {0,...,k},
where Ly = Yisyp + Zi and Ly, = Vi1 + Zy for k =
—1,0,1,2,... (see(3)). Assume that the output rank of the
explicit systent' is given byp(y).

In the kth step of the relative dynamic extension algorithm,
one may construct around < Vi, a new local classical
state representatio(z, @) of the systent with statez; =

L w®) Z;l), o Z,&k)), input i, = (W*Y, ),
whereg, = (7Y, ), and output:®) = ¢ (¢, 7,) defined
in an open neighborhood}, of £, such that

(:Ic,l,w, ..

1. span{diy} = Ly, k= -1,0,1,2,....

2. span{dzy, di }
-1,0,1,2,....

Lrv1 + span{du},k

3. Itis always possible to chooggfll) in a way that'é,(f) C
_(k+1)
Pl41

4. Whenz'?,(f) - é,gfgl), it is always possible to choose
fkt1 C fik.

5 Let¢ € V,. The sequenc&;, = dim(Lil¢)) —

dim(Lx—-1]¢) — p(y) is nondecreasing, the sequenge=
dim(Lyg|¢) — dim(Lk_1|¢) — p(y) is nonincreasing, and
both sequences converge to the same intggey, called
therelative output rank &, for somek* < n = dim z.

. LetS, c V,, be the open neighborhood of a giver V,,
such that the dimensions af;, L; j € {0,...,k} are

constant insides,. We haves), = S, for k > k*.

7. Furthermore, Li, nspan{dzx}|,

Li. N span{da:}‘u foreveryv € S;. andk > k*.

8. Fork > E*, one may choosg, = z;. in U;.. Further-

more,Lj1 = Lj + span{w(k“), 2,(9’““)} for k > k*.

9. Let Y = span{dt,dy®|k € IN}. Theng, =
dim 8% In ﬁparticular we have p(z) =
. Lot _ q: ix Y
dim ety = dim 7%1“71_‘_3;.



4 Relative decoupling relatively decoupled with respect to output subsystenThen
- the RDP is solvable aroundaregular pointé € S (see Def.
4.1 System decompositions 2) if and only if the relative output ranf(z) is equal to the

Definition 4 [13] (Output Subsystem) Given a systénwith umber of components of
outputy, a (local) output subsystem is a subsystémwith
corresponding submersion : U C S — Y such that 5 Re|ative flatness and relatively flat outputs
7*T*Y = span{dt, (dy® : k € IN)}.

Definition 8 [13] A systemS is said to be (locally) relatively-
In [13, Theo. 4.3], given a classic state representation;) flat with respect to a subsysteffy if there exists a flat sub-
and a classic output of S, then the nonsingularit§ of codis- SystemZ such thatS'is (locally) decomposed by the family
tributions (3a) and (3c) fok = 0,...,n, wheren = dimz, F = {Sa,Z}. Aflatoutput: of Z is said to be a relatively-flat
assures the existence and uniqueHesba local output sub- output ofS (with respect ta5,).
systemY’.

One may state the following notion of input-output subsysterhheorem 2 Let S be a systen{2) with state representation
(z,u) and output(y, z) and assume that € S is ar-regular
point of S (see definition 2). Assume that the system well
formed,i. e, span{dt,dx,du} = span{dt,dz,di}*°. LetY
be the local output subsystem corresponding to the outffut
The following affirmations are equivalent:

Definition 5 Given a systen$' with (local) state representa-
tion (z,u) and outputy. Consider the outputv = (y,u).
Theinput-output subsysteris the output subsystéfmil’ cor-
responding to the outpud.

The next definition generalizes this concept a notion of decom- () The systen¥'is relatively flat aroundt with respect to
position of [13] subsystenY” and the output is a (local) relatively flat

output arounck.

Definition 6 (i-decomposition and decomposition of systems) .. A d haves(s) — d d d
Let S be a system and lef = {S;,i € |h]} be a family of (IEN round¢ we havep(z) = cardz and span{dr} C

subsystems with local coordinates respectively;),i € |h]. k=1
The systeny is said to be (locally) incompletetely decomposed,
or simply,i-decomposethy F if there exist a (local) coordinate K1 IR o
system(t, x1,...,zp, x,41) defined inU C S and a family Yico i —pR)(K"+1)+3 5 0 =0.
of Lie-Backlund submersionér; : U — S;,i € |h]} such

that the local expression af; in these coordinates is given by6 DAES

Wi(t,l'l, . ,xh,thrl) = (t,xi),i =1,...,h. The Systen‘ﬂ

is (locally) decomposedy F if it is i-decomposed by and 6.1 Relative decoupling and DAEs

Th4+1 = 0.

(iii) Around¢ we havep(z) = cardz andn —dim Yy« 1 +

Let S be a system defined by (2) with state representdtion)

and output(y, z). Let (Z,u) = ((zq,xp), (uq,up) be a state

representation adapted to the output subsystewith (z, @)

Definition 7 (Relative decoupling problem) Létbe a system related to(z, u) by relative static-state feedback (see [13]). As-

with output(y, 2), wherez = (z1,.. ., z,). LetY be the (local) sume that the system (1) defines a regular DAE.

output subsystem corresponding to the outpuA (Io_cal) ;tate Then the following theorem holds (see [14] for a similar result)

representatior(z, u), whereu = (uy,...,u,,) of S is said to

be (locally)relatively decoupledvith respect tat” if systemS

is (locally) i-decomposed by the famify = {Y¥, Si,...,S,} Theorem3Let: : I' — S be the Lie-Bcklund immersion

wheresS; is the input-output subsystem corresponding to inpaf proposition [13, Prop 6.1] (see also [16]). Lét= z o,

u; and outputz;,i = 1,...,p and the output rank(z;) of Z, = z o andu, = uy o t. Then(zy, uy) is a classic local

subsystens; is one. state representation fdr, andz is a classic output. Further-
more, the relative-structure at infinity of the outpubf S with

Theorem 1 Given a systens with (local) state representa- '8SPECt t0 output subsystemcoincides with the structure at

tion (, u) and output(y, z), the Relative Decoupling Problem”lf'”fy of W|th_outputz consujenng the state representation

(RDP)is the question of finding an endogenous feedbiaek, (¥, Us)- In particular the relative output rank(=z) of system

a new state representatider, @), in a way that the output is  (2) coincides with the output rank(z) of the DAE(1).

4.2 Relative-decoupling with respect to a subsystem

9See section for the [13] for the definition of subsytem. 13This is equivalent to say that(z) of (2) has independent columns [18].
10|n particular the existence af is generically assured. Note that, if the system is not well formed one my apply the theorem 2 to
11The uniqueness is implied by the existence. systemS with state(z, u) and inputa, which is well formed.

12y [13, Theo. 4.3], this subsystem exists (generically) and is unique. 14The output subsystei exists and is unique according [13, Thorem 4.3].



6.2 Relative flatness and DAEs [7]1 S. Kawaji and E. Z. Taha. Feedback linearization of a
class of nonlinear descriptor systemsPloc. 33rd IEEE

In [13, Prop. 7.1 and Theo. 7.2] it is shown that relative flat-  ~gnf. Dec. Contrglvolume 4, pages 4035-4037, 1994.
ness implies flatness of the corresponding DAE. The following

result is a direct consequence of those results and of theorem[8] X. P. Liu. On linearization of nonlinear singular control
systems. InProc. American Control Conferencpages

Corollary 1 If one of the equivalent conditions of theorem 2~ 2284-2287, 1993.

holds for systen?), thenz is a local flat output of the regular

DAE (1). [9] Xiaoping Liu and Sergef:elikovslgl. Feedback control

of affine nonlinear singular control systemsiternat. J.
Control, 68(4):753—-774, 1997.

7 Conclusions
[10] P. Martin.  Contribuition a létude des sysimes

The results of this paper may be useful for studying flatness differentiellement plats PhD thesis,Ecole des Mines,
and the dynamic decoupling problem of implicit systems. It  Paris, 1992.

is important to point out that our results shows effective ways

for Computing the output rank and Contro| IaWS for dynam|H.1] P. S. Pel’eira da S“Va. F|atneSS Of nonlinear Control SyS'
feedback linearization and/or decoupling of an implicit system  tems and exterior differential systems. In F. Lamnabhi-
I, without the need of transformirig into an explicit system. Lagarrigue A. Isidori and W. Respondek, editolon-

In fact, note that the relative dynamic extension algorithm for ~ linear Control in the year 2000volume 259 ofiecture
affine systems relies only on sums, multiplications and matrix ~notes in control and Information Sciencgsages 205
inversions. Given an output one maytestif z is a flat output 228. Springer, London, 2000.

for the implicit system using the results of this paper. Neve([:i%] P. S. Pereira da Silva. Some geometric properties of the

. . ! Lo . BT/PT i i a8 Paulo, 2000.
paper is available in [15] and it will be submitted to the EJC. /PTC/O008, Universidade deas Paulo, 2000.  see

www.lac.usp.brtpaulo/.
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