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Abstract

The problem of simultaneously observing two or more LTI sys-
tems is considered. Obvious necessary conditions are derived
using distinguishability concepts. In this way the existence of
a common observer for two systems is related to the existence
of an unknown input observer for the parallel system, formed
by the difference of the systems. These conditions are also
shown to be suf£cient for constructing a common observer, and
a structure for such observers is proposed. The use of a special
normal form allows to easily check if the conditions are satis-
£ed and to effectively construct a family of common observers.
Similar conditions are derived for the case of more than two
plants. In this case it is shown that the solution of the simulta-
neous observation problem forN plants can be reduced to the
simultaneous observation problem ofN − 1 plants, but with
unknown inputs. This latter problem is of a higher level of dif-
£culty but in a lower number systems, and has not been solved
yet (forN > 2).

1 Introduction

The problem of simultaneous observation of two or several lin-
ear plants is of interest when, for example, a robust observer
has to be designed that converges despite of failures in some
components in a system. Or when for a nonlinear system, that
has several operating points, an (linear) observer has to bede-
signed. In contrast to the (dual) simultaneous control problem
[7], that has received a lot of attention in the literature since its
appearance around 1980, the simultaneous observation prob-
lem has only recently been studied [8, 4]. In these references
the problem has been characterized using a MFD.

The objective of this note is to give an state space characteri-
zation of the solvability conditions for the problem. In doing
so we obtain more general results than those in [8], since our
results are valid for systems that are not necessarily detectable
and/or stabilizable, for systems without inputs, and the condi-
tions obtained are shown to be necessary and suf£cient for the
existence of any kind of common observers, and not only of
linear ones. Moreover, an algorithm and a structure for simul-
taneous observers are proposed for the solution of the problem.
Using an special normal form the solution of the problem can
be completely and easily obtained for the case of two systems.

A second objective is also to obtain an ”intuitive” characteri-
zation of the conditions for simultaneous observability insys-
tem theoretic terms, and not only as algebraic conditions. We
show that simultaneous observation conditions are equivalent
to an easy to grasp detectability condition, that generalizes de-
tectability for a single system. Moreover, it is shown that the
simultaneous observation problem is intimately related tothe
problem of unknown input observation, a classical observation
problem. In fact the simultaneous observation ofN systems is
reduced to the problem of constructing a simultaneous observer
for a family of N − 1 systems, but withunknown inputs. For
N > 2 there is no a general solution for such a problem.

Let λ (A) be the set of eigenvalues ofA, andC
−, andC

+

0 the
open left and the closed right halfplanes of the complex plane,
respectively.

2 Preliminaries

The classical theory of observers is concerned with the recon-
struction of the state from the input and output of the system.
For LTI systems it is a well-known fact that the necessary and
suf£cient condition for the existence of such a classical ob-
server is detectability. When the input is not completely avail-
able for measurement the existence conditions for an unknown
input observer (UIO) are more restrictive than detectability: a
necessary and suf£cient condition has been termed strong* de-
tectability by Hautus [2].

Consider the LTI continuous time system

Σ :







ẋ = Ax + Bu + Dw , x (0) = x0

y = Cx

z = Ex

, (1)

wherex ∈ R
n, u ∈ R

p, w ∈ R
q, y ∈ R

m, andz ∈ R
r are the

state, the (known) input, the unknown input, the output vectors,
and the functional of the system, respectively.

The typical observer design problem is to construct aFunc-
tional Observer (FO) for system (1) when there are only known
inputs (u), i.eD = 0. If unknown inputs (w) exist, then an im-
portant problem is the design of a functional observer that is
robust against the unknown signals, i.e. a so calledunknown
input functional observer (UIFO). A (UI)FO is a dynamic sys-
tem that, with the information of the inputu (t), and of the out-
puty (t) (without information of the derivatives, and of the un-
known inputs if they exist) can reconstruct asymptoticallythe
functionalz (t). We will consider in particular linear (UI)FO.



I.e. alinear (UI)FO for system (1) is a LTI £nite dimensional
system

Ω :

{

ξ̇ = Fξ + Gu + Hy , ξ (0) = ξ0

ẑ = Jξ + Ky ,
(2)

whereξ ∈ R
s is the state vector;F , G, J , H and K, are

constant matrices of appropriate dimensions.

De£nition 1 System Ω (2) is a linear FOfor system (1) with
D = 0 if ∀u, ∀x0 and ∀ξ0 it is satis£ed that

lim
t→∞

(ẑ(t) − z(t)) = 0 . (3)

System Ω is a linear UIFOfor Σ (1) if ∀u, ∀w, ∀x0 and ∀ξ0 (3)
is satis£ed.

Existence conditions for such observers can be given in system
theoretic terms (see [2]):

De£nition 2 System (1) is z-detectable1 if

lim
t→∞

y (t) = 0 =⇒ lim
t→∞

z (t) = 0 (4)

for any initial state x0, and for zero known and unknown inputs,
i.e. u(t) = 0, and w(t) = 0.
System (1) is strong* z-detectableif (4) is satis£ed for zero
known input, i.e. u(t) = 0, and irrespective of the unknown
input w and of the initial state x0.

The relationship between (strong*) z-detectability and the ex-
istence of a (UI)FO for systemΣ is clari£ed by the following
result:

Lemma 3 [2, 5] System Σ has an (unknown input) functional
observer ((UI)FO)if and only if it is (strong*) z-detectable.
Moreover, if a (UI)FO exist, then there is a linear one.

If Σ is brought to a special form, then necessary and suf£cient
conditions for existence of Observers can be very easily stated,
and their construction is very transparent.

Theorem 4 [6, 3, 5]. For system Σ (1) suppose that rk (D) =
q, rk (C) = m. There exist state x → Px, output y → Qy and
input w → Rw transformations such that, in the new coordi-

1This name is not standard.

nates, Σ takes the form (Σfn)

ẋ =













A11 0 0 0 A15C2

A21C1 A22 0 0 A25C2

A31C1 0 A33 0 A35C2

A41C1 D2A42 D2A43 A44 A45C2

D1A51 D1A52 D1A53 D1A54 A55
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0 0
0 0
0 0
0 D2

D1 0













w ,

y =

[

C1 0 0 0 0
0 0 0 0 C2

]

x ,

z =
[

E1 E2 E3 E4 E5

]

x ,
(5)

and satis£es properties (i)-(vi). Denote as ni = dim (Aii),
i = 1, · · · , 5, qj = rk (Dj), mj = rk (Cj), j = 1, 2.

(i) Matrices C1, C2, D1 and D2 are full rank.

(ii) Transmission zeros of Σ are λ (A22) ∪ λ (A33).

(iii) λ (A22) ⊂ C
− and λ (A33) ⊂ C

+

0 .

(iv) The couples (C1, A11) and (C2, A55) are observable. The
couples (A44,D2) and (A55,D1) are controllable.

(v) q1 = rk (D1) = rk (C2) = m2.

(vi) For every K the couple (C2, A55 − D1K) is observable,
i.e. system (C2, A55,D1) is perfectly observable.

Note that in the classical case, when there are only known in-
puts (D = 0), the normal form (5) reduces to

ẋ =





A11 0 0
A21C1 A22 0
A31C1 0 A33



x +





B1

B2

B3



 u ,

y =
[

C1 0 0
]

x ,

z =
[

E1 E2 E3

]

x .

(6)

In this casex2 andx3 correspond to the unobservable states,
and the system is detectable2 iff x3 has dimension zero.

For systems in the normal form (5) (or (6) if there are no
unknown inputs), the detectability properties can be easily
checked, and observers can be easily constructed:

Lemma 5 [5] System (1) is z-detectableif and only if in the
special normal form3 (6) E3 = 0. A (reduced order) observer
is given by (7) (setting y2 ≡ 0, and y1 = y).
System (1) is strong* z-detectableif and only if in the special
normal form (5) E3 = 0, E4 = 0, and E5 = MC2, for some

2Or x-detectable in the terminology of De£nition 2.
3Here conditionG = 0 is also satis£ed ifG has one dimension zero.



matrix M . A (reduced order) observer with the stated proper-
ties is given by

ξ̇1 = A11ξ1 + A15y2 + B1u + H11 (C1ξ1 − y1) ,

ξ̇2 = A22ξ2 + A25y2 + A21y1 + B2u ,

ẑ = E1ξ1 + E2ξ2 + My2 .

(7)

where H11 is such that (A11 + H11C1) is Hurwitz.

Note that (x-)detectability is not necessary to construct aFO
for z.

Remark 6 For a z-detectable system in the normal form (6) a
full order Luenberger observer can be constructed as

ξ̇ =





A11 + H1C1 0 0
(A21 + H2)C1 A22 0
(A31 + H3)C1 0 A33



 ξ +





B1

B2

B3



u+

−





H1

H2

H3



 y ,

ẑ =
[

E1 E2 E3

]

ξ ,
(8)

where H1 is such that (A11 + H1C1) is Hurwitz. Note that this
observer is internally stable only if Σ is detectable. However,
it can always be reduced to an internally stable one.

3 Problem formulation

Consider a family of linear time invariant systems

Σi :







ẋi = Aixi + Biui , xi (0) = xi0

yi = Cixi ,

zi = Eixi , i = 1, · · · , N

(9)

wherexi ∈ R
ni is the state,ui ∈ R

p the (known) input,yi ∈
R

m the output vectors, andzi ∈ R
r is the vector of signals to be

estimated.Ai, Bi, Ci, andEi are constant matrices of adequate
dimensions. Note that the dimensions of the state variablescan
be different. The dimensions of the input and output vectors
will be considered constant, although they can be differentfor
different systems. In that case (dummy) inputs and/or outputs
can be added to some of the systems.

Thesimultaneous functional observation problem (SFOP) con-
sists in designing asingle functional observer, called aCom-
mon Functional Observer (CFO), such that

lim
t→∞

(ẑ(t, ξ0, ui, yi) − zi(t, xi0, ui)) = 0 . (10)

is satis£ed for every∀ui, xi0, ξ0, i = 1, · · · , N . This implies
that for any plant in the set of systems given by (9) the common
functional observerΩ estimates the functional asymptotically.
In particular it is of interest to construct a linear CFO as (2).

4 State space characterization of simultaneous
observation of two systems

In this section the simplest case, when only two plants have to
be simultaneously observed, will be analyzed. The approach

will be to consider £rst very intuitive necessary conditionsfor
the existence of a common observer, expressed in terms of in-
distinguishability of trajectories, and then to show that they are
also suf£cient.

Fact 7 Any observer Ω (2) that is detectable is internally sta-
ble, i.e. F is Hurwitz.

Proof. Consider any plant with inputu = 0, andx0 = 0.
Thenx (t, 0, 0) = 0, y (t) = 0, andz (t) = 0. Therefore the
observer output̂z (t) → 0 for every observer initial state. From
detectability and the observation that under these conditions the
observer is an autonomous system, thenF has to be Hurwitz.

Remark 8 The condition for the observer to be detectable can
always be satis£ed, without loss of generality.

Now consider two systems (9)Σ1, andΣ2. Suppose that they
have a common observerΩ, and that applying some input func-
tion u (t) to both of them they produce the same outputy (t).
Under such conditions the observer has the same inputs inde-
pendently of the system it is connected to, and it produces the
same output signal̂z (t) for the same initial condition. Since
Ω is a common observer it must happen thatẑ (t) → z1 (t),
and ẑ (t) → z2 (t), as t → ∞. Thereforez2 (t) → z1 (t).
Moreover, because of the linearity and the internal stability
of the observer this has to be also true if with the same in-
putu (t) the outputs of systemsΣ1, andΣ2 are convergent, i.e.
y1 (t) → y2 (t). We have then an obviously necessary con-
dition for systemsΣ1, andΣ2 to have a common functional
observer:

Condition 1 Whenever for the same inputs u1 (t) = u2 (t) and
some initial conditions x10, x20 the outputs of systems Σ1, and
Σ2 converge, i.e. y1 (t) → y2 (t), then the functional outputs
also converge, i.e. z1 (t) → z2 (t).

Remark 9 Note that with the same arguments as above an
(apparently) stronger necessary condition can be obtained:
u1 (t) → u2 (t) and y1 (t) → y2 (t) imply z1 (t) → z2 (t).
However, it is easy to show that both conditions are equivalent.

There is another (obvious) necessary condition for simultane-
ous observation

Condition 2 Σi is zi-detectable, for i = 1, 2.

It will be shown (in three steps) that these two (obvious) condi-
tions are not only necessary but also suf£cient for the existence
of a common observer, and a method to construct a common
(linear) observer will be derived.



4.1 First step

This step consists in reinterpreting condition 1 as a condition
on Σp, the parallel system formed byΣ1, andΣ2: its input is

u (t) = u1 (t) = u2 (t), its state isx =
[

xT
1 , xT

2

]T
, and its

output and functional are the difference of the outputsy (t) =
y1 (t) − y2 (t), and of the functionalsz (t) = z1 (t) − z2 (t),
respectively, i.e.

Σp :















ẋ =

[

ẋ1

ẋ2

]

=

[

A1 0
0 A2

]

x +

[

B1

B2

]

u ,

y = y1 − y2 =
[

C1 −C2

]

x ,

z = z1 − z2 =
[

E1 −E2

]

x ,
(11)

Note thatΣp is the difference system: if the transfer matrix
of Σi is Gi (s), i = 1, 2, then the transfer matrix ofΣp is
G1 (s) − G2 (s). It is easy to see that condition 1 is equivalent
to the following property ofΣp: Whenever for someu (t), and
some initial statex0, y (t) → 0 then z (t) → 0. From the
results in section 2 one has immediately

Lemma 10 Consider systems Σ1, Σ2, and Σp. Consider for
Σp the input u as an unknown one. Then the following condi-
tions are equivalent:

1. Condition 1.

2. Σp is strong* z-detectable.

3. Σp has an unknown input functional observer (UIFO)for
z.

4.2 Second step

The following result is a generalization for (UI)FO of well
known results for state observers, and is therefore interesting
in itself. For a systemΣ (1) consider the family of systems

ΣKF :







ẋ = (A + DK + FC) x + Bu + Dw

y = Cx

z = Ex

,

obtained fromΣ by arbitrary output injection, and/or state feed-
back (through the unknown input).

Lemma 11 System Σ has an (UI)FO for z if and only if system
ΣKF has also an (UI)FO for z for arbitrary K, and F .

Proof. Consider £rst the case with unknown inputs (UIFO).
Suf£ciency: First suppose thatΣ is given in its normal form
(5), then, using the same transformations,ΣKF can be written
exactly as (5), but with matrixA replaced byÃ = A + DK +
FC,

Ã =













Ã11 0 0 0 Ã15C2

Ã21C1 A22 0 0 Ã25C2

Ã31C1 0 A33 0 Ã35C2

Ã41 D2Ã42 D2Ã43 Ã44 Ã45

Ã51 D1Ã52 D1Ã53 D1Ã54 Ã55













,

with Ã11 = A11+F11C1, Ã21 = A21+F21, Ã31 = A31+F31,
Ã41 = (A41 + F41) C1 + D2K21, Ã51 = D1 (A51 + K11) +
F51C1, Ã42 = A42 + K22, Ã52 = A52 + K12, Ã43 = A43 +
K23, Ã44 = A44 + D2K24, Ã53 = A53 + K13, Ã54 = A54 +
K14, Ã45 = (A45 + F42) C2 + D2K25, Ã35 = A35 + F32,
Ã25 = A25 + F22, Ã15 = A15 + F12, Ã55 = A55 + F52C2 +
D1K15, and whereFij , andKij are block matrices ofF and
K, respectively. Note that ifΣ has an UIFO forz then, because
of lemma 5,E3 = 0, E4 = 0, andE5 = MC2. And so
these are also satis£ed forΣKF . Note that since(A11, C1) is

observable, then so is
(

Ã11, C1

)

. Therefore, system

ξ̇1 = Ã11ξ1 + Ã15y2 + B1u + H11 (C1ξ1 − y1) ,

ξ̇2 = A22ξ2 + Ã25y2 + Ã21y1 + B2u ,

ẑ = E1ξ1 + E2ξ2 + My2 ,

whereH11 is such that
(

Ã11 + H11C1

)

is Hurwitz, is an UIFO

for ΣKF . Necessity: Note thatΣ can be obtained fromΣKF

by output injection, and/or state feedback. So if the previous
arguments are applied initiating withΣKF , then the necessity
part follows.

The case for known inputs follows easily from the previous re-
sult by noting that in that case the blocks 4 and 5 in the normal
form do not exist.

Note, however, that systemsΣ, andΣKF do not necessarily
share the same (UI)FO. It is easy to see, from the previous ar-
guments, that suf£cient conditions onF andK for systemsΣ,
andΣKF to share an UIFO is that (whenΣ is in the normal
form): F22 = 0, F21 = 0, F12 = 0, andA11 +(F11 + H11) C1

is Hurwitz.

4.3 Third step

Now we are in position to construct a simultaneous observer
for systemsΣ1, andΣ2 when conditions 1, and 2 are satis£ed.

If condition 2 is satis£ed, then, by Lemma 3 a functional ob-
server can be constructed for eachΣ1 andΣ2. Note that this
condition is symmetric with respect toΣ1 andΣ2, and so it is
irrelevant if in the coming arguments one takes either one. Let
us takeΣ1, and construct a full order observerΩ1f of the form
(cfr. remark 6)

Ω1f :











·

x̂1 = A1x̂1 + B1u1 + F0 (ŷ1 − y1) ,

ŷ1 = C1x̂1 ,

ẑ1 = E1x̂1 ,

(12)

for some matrixF0.

Now assume that condition 1 is satis£ed. Then an UIFO exists
for Σp and forΣpKF , for arbitraryK, andF . Consider an UIF
observer designed for systemΣp0, i.e. systemΣpKF , when

K = 0, andF =
[

FT
0 0

]T
, the UIFOΩ20, that is internally

stable. Now connect both observers,Ω1f , andΩ20 as shown in
£gure 1, and denote it asΩc.

Now it will be shown that if the plant is eitherΣ1, or Σ2

the observerΩc is a common one. Suppose £rst that the



u(t)

z(t)

Plant 1 Model

Output Injection

UIFO

Plant 1 or 2

z(t)

Figure 1: Block diagram of the structure of a common observer

plant is systemΣ1. Due to the properties ofΩ1f both
limt→∞ (ẑ1 (t) − z1 (t)) = 0, andlimt→∞ (ŷ1 (t) − y1 (t)) =
0. And so the input toΩ20, i.e. (ŷ1 (t) − y1 (t)), converges to
zero. SinceΩ20 is internally asymptotically stable, its output
converges to zero. Therefore, the estimation ofz (t) converges
to z1 (t), showing thatΩc works properly. Now suppose that
the plant isΣ2. ObserverΩ1f will not (usually) converge, and
its estimation of the functional is given by̆z1 (t). However,
the system composed by plant and the observerΩ1f is exactly
systemΣp0. SinceΩ20 is an UIFO forΣp0 the output of this
last system converges tŏz1 (t) − z2 (t). It follows that z (t)
converges toz2 (t), showing that in this caseΩc also estimates
correctly the functional.

WhenΣ1 is detectableΩ1f is internally stable, and so isΩc. If
Σ1 is not detectable, thenΩc is not internally stable, but can be
reduced to an internally stable observer. Therefore, conditions
1 and 2 are suf£cient for the existence of a common observer.
Moreover, they give a very intuitively appealing structureand
design method for such an observer. One has then the

Theorem 12 The following statements are equivalent:

1. Systems Σ1 and Σ2 have a (internally stable) common
(functional) observer

(a) there exists a (functional) observer for one of the
plants, and

(b) the parallel system Σp has an UIFO.

2. Systems Σ1 and Σ2 have a linear (internally stable) com-
mon (functional) observer

Proof. The equivalence of (2) and (3) has been proved in the
previous paragraphs, except for the fact that the existenceof
a FO has to be checked for one system and not for both of
them. This last result follows immediately from the construc-
tion of the common observer, since ifΣ1 has a FO andΣp has
an UIFO, thenΣ2 has a FO. (3)⇒ (1) is trivial. That (1)⇒
(2) follows from the observation that Condition 1 has to be sat-
is£ed no matter how the observer is constructed, i.e. if this
condition is not satis£ed, then there is no common observer of
any kind.

Algorithm 13 If systems Σ1 and Σ2 have a common (func-
tional) observer, then a linear one can be designed in the fol-
lowing manner:

1. Design for Σ1 a full order functional observer Ω1f (this
is possibly not internally stable).

2. Design for system Σp0 an UIFO Ω20. This can be done
using Lemma 5.

3. Connect both systems as shown in £gure 1.

4. If Ω1f is not internally stable, reduce it by eliminating its
not detectable part.

Remark 14 Note that theorem 12, besides of being intuitive
and natural, generalizes the known results (see [4, 8]) in dif-
ferent directions: (i) Previous results require the systems to be
detectable and stabilizable. This is not necessary in theorem
12. This shows some lack of duality between the simultane-
ous observation and stabilization problems, since for the latter
both detectability and stabilizability are necessary conditions!
(ii) Previous results are only valid for systems with inputs. The-
orem 12 is valid for both systems with and without inputs. (iii)
Condition 2 above is automatically satis£ed if the systems are
detectable, and therefore it does not appear in the previous re-
sults. Condition 1 was only known under the additional re-
striction that one of the systems is stable [8, Cor. 2. Note that
its proof is incomplete, since only suf£ciency is demonstrated.].
(iv) The design of a common observer is reduced to the solution
of two known problems: the design of a FO, and the design of
an UIFO, for which there are algorithms to construct a solu-
tion. Moreover, the degrees of freedom in the design are clear.
Note furthermore, that the structure of the proposed common
observer is compatible with the general form of a linear ob-
server for a plant given in [1] for the observation of the state.
(v) It is shown that the existence of a CFO is equivalent to the
existence of a linear CFO.

Remark 15 If systems Σ1 and Σ2 have an internally stable
linear CFO Ω then Lemma 10 can be given an interesting in-
terpretation: if system Σi is connected to Ω, that has as inputs
(yi, ui), then its output ẑ converges to zi as t → ∞. This is
true for i = 1, 2, and any initial conditions x0i, and ξ0. Be-
cause of the linearity and stability of the CFO if Ω has as in-
puts (y1 − y2, u1 − u2), then its output ẑ converges to z1 − z2

as t → ∞. Now if the inputs to systems Σ1 and Σ2 are selected
identical, i.e. u1 = u2, then Ω with inputs (y1 − y2, 0), es-
timates asymptotically z1 − z2. But this corresponds exactly
to the fact that system Σp has an UIFO, and Ω with input
(y1 − y2, 0), is an UIFO for the parallel system Σp.

5 Simultaneous observation of a (£nite) set of
systems

Consider now the set ofN plants (9)Σi, i = 1, · · · , N . Cor-
responding to condition 1 and 2 we have then obviously nec-



essary conditions for these systems to posses a common func-
tional observer.

Condition 3 Whenever for the same inputs uj (t) = uk (t)
and some initial conditions xj0, xk0 the outputs of systems Σj ,
and Σk converge, i.e. yj (t) → yk (t), then the functional out-
puts also converge, i.e. zj (t) → zk (t), ∀j, k ∈ {1, 2, · · · , N},
j 6= k.

De£ning the parallel systemΣpij as the one formed by parallel
connection of systemsi andj, one has from Condition 3 and
Lemma 10 that∀j, k ∈ {1, 2, · · · , N}, j 6= k, Σpjk has an
UIFO. Under the assumption that the family of plants have a
linear and internally stable CFOΩ an stronger necessary con-
dition can be deduced. For this take systemsΣi andΣj , for
any i, j ∈ {1, 2, · · · , N}, i 6= j. By the arguments in remark
15 it follows thatΩ with input (yi − yj , 0), is an UIFO for the
parallel systemΣpij . This shows the necessity of the following
condition, when a linear CFO exists:

Condition 4 The parallel systems Σpij have a common (lin-
ear) unknown input functional observer∀i, j ∈ {1, 2, · · · , N},
i 6= j.

Corresponding to condition 2 there is the following necessary
condition:

Condition 5 Σi is zi-detectable, for i = 1, 2, · · · , N .

Theorem 16 Systems Σi for i = 1 · · ·N (9) have a common
linear (functional) observer if and only if (1) there exists a
(functional) observer for one of the plants, and (2) the parallel
systems Σp1j , j = 2, · · · , N have a common UIFO.

Proof. Suf£ciency: By the same procedure as in the two sys-
tems case (see Step 3) one common observer for allN systems
can be constructed, if the hypothesis of the theorem are satis-
£ed. Note that the common observer has the same structure
given in Figure 1.
Necessity: Use the same arguments as the ones used to show
the necessity of Condition 4.

Note that the main issue in this case is the construction of a
common UIFO for N − 1 parallel systems.There is no yet an
effective method to design such a common UIFO. Once a com-
mon UIFO is known, then an procedure similar to Algorithm
13 can be used to construct a CFO for the family of plants. And
so the problem of the construction of a CFO for a family ofN

plants is reduced to the construction of acommon Unknown In-
put functional observer for a family ofN −1 plants, a problem
of a higher level of dif£culty but in a lower number of systems.

6 Conclusions

In this paper a state space characterization for simultaneous ob-
servability of several linear plants has been obtained. General-
ization of previous results is obtained and an algorithm anda

structure for simultaneous observers are proposed. Moreover,
an ”intuitive” characterization of these conditions is given in
terms of a detectability condition. It is also shown that the
simultaneous observation problem is intimately related tothe
problem of unknown input observation, a classical observation
problem. For the simultaneous observation of several plants the
presentation is very brief, and generalizes the previous results.
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