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observation, Indistinguishability, Unknown Input Obsenw  zation of the conditions for simultaneous observabilitgys-
tem theoretic terms, and not only as algebraic conditions. W
Abstract show that simultaneous observation conditions are ecgrival
to an easy to grasp detectability condition, that genezsldze-
The problem of simultaneously observing two or more LTI sysectability for a single system. Moreover, it is shown tha t
tems is considered. Obvious necessary conditions areederigimultaneous observation problem is intimately relatetheo
using distinguishability concepts. In this way the exiseenf problem of unknown input observation, a classical obsewat
a common observer for two systems is related to the existefgeblem. In fact the simultaneous observation\ogystems is
of an unknown input observer for the parallel system, formggduced to the problem of constructing a simultaneous wbser
by the difference of the systems. These conditions are afep a family of N — 1 systems, but witlunknown inputs. For
shown to be sufcient for constructing a common observer, ahd> 2 there is no a general solution for such a problem.

a structure for such observers is proposed. The use of aa:i;pelgét A (A) be the set of eigenvalues df andC—, andC; the
] ’ 0

normal form alloyvs to easily check |f'the conditions are;*sa’uopen left and the closed right halfplanes of the complexalan
£ed and to effectively construct a family of common Obsewerl%spectively

Similar conditions are derived for the case of more than two

plants. In this case it is shown that the solution of the siasul o )
neous observation problem fof plants can be reduced to the2 Préeliminaries
simultaneous observation problem &f — 1 plants, but with
unknown inputs. This latter problem is of a higher level of dif-
£culty but in a lower number systems, and has not been sol
yet (for N > 2).

The classical theory of observers is concerned with therreco
stauction of the state from the input and output of the system
‘T LTI systems it is a well-known fact that the necessary and
suffEcient condition for the existence of such a classical ob-
server is detectability. When the input is not completelyilava

1 Introduction able for measurement the existence conditions for an unknow
input observer (UIO) are more restrictive than detectgbikh

The problem of simultaneous observation of two or sevemal li o cossary and suf£cient condition has been termed stroag* de
ear plants is of interest when, for example, a robust Obserchtability by Hautus [2]

has to be designed that converges despite of failures in some
components in a system. Or when for a nonlinear system, teansider the LTI continuous time system
has several operating points, an (linear) observer has tiebe

signed. In contrast to the (dual) simultaneous control jgrob &= Ax+ Bu+Dw, x(0)=uxo

[7], that has received a lot of attention in the literaturecsiits Yiq y=0Cx . @
appearance around 1980, the simultaneous observation prob z=FEx

lem has only recently been studied [8, 4]. In these reference

the problem has been characterized using a MFD. wherez € R, u € R?, w ¢ R,y ¢ R™, andz € R” are the

state, the (known) input, the unknown input, the outputeest
The objective of this note is to give an state space characteihd the functional of the system, respectively.

zation of the solvability conditions for the problem. In dgi . ) i
so we obtain more general results than those in [8], since d|¢ typical observer design problem is to construétuac-

results are valid for systems that are not necessarily gtiec tion@ Observer (FO) for system (1) when there are only known
and/or stabilizable, for systems without inputs, and thedgo MPUtS (), i.e D = 0. If unknown inputs () exist, then anim-
tions obtained are shown to be necessary and suf£cient for Bp&tant problem is the design of a functional observer taat i
existence of any kind of common observers, and not only EFPust against the unknown signals, i.e. a so caligdown
linear ones. Moreover, an algorithm and a structure for sim{iPut functional observer (UIFO). A (U)FOis a dynamic sys-
taneous observers are proposed for the solution of thegarobl €M that, with the information of the input(t), and of the out-
Using an special normal form the solution of the problem cdiity (¢) (without information of the derivatives, and of the un-

be completely and easily obtained for the case of two systerf8OWn inputs if they exist) can reconstruct asymptoticétig
functionalz (t). We will consider in particular linear (UI)FO.



l.e. alinear (UI)FO for system (1) is a LTI £nite dimensionalnates, > takes the form (X¢,,)

system
A11 0 0 0 A1502
: Ag C A 0 0 AgsC
= F¢+ Gu+ Hy, 0) = 2101 22 2502
e { g: J§§+ KZ otOme @ i=| A4uCi 0 Ass 0 AsCy |t
’ ApCr DaAye DoAyz Ay AysCo
. _ DiAsy Di1Asy DiAss DiAss Ass
where¢ € R? is the state vectorF, G, J, H and K, are B, 0 0
constant matrices of appropriate dimensions. B, 0 0
+ | By |u+ 0 0 w ,
. L . By 0 Do
Defnition 1 System Q (2) is a linear FOfor system (1) with B- D, 0
D = 0if Yu, Vo and V¢ it is satisfed that G, 000 0 0
Y10 000 ¢ |7
Jim (2(t) — 2(t) = 0. B z=|E E, E3 Ey E;|uw,

and satisfes properties (i)-(vi). Denote as n; = dim (A;;),

System Q2 isa linear UIFOfor X (1) if Vu, Yw, Vxg and VEy (3) . 1o 5, q; =tk (D;)ym; =1k (C;), 5= 1,2
- y Y1 4y T VAl ] VAL — Tty &

is satisfed.

(i) MatricesCy, Cs, D1 and D5 arefull rank.

Existence conditions for such observers can be given iesyst o
theoretic terms (see [2]): (ii) Transmission zerosof ¥ are A (Agz) U A (Ass).

(iii) A (Asz) C C~ and A (Ass) € CF.
Defnition 2 System (1) is z-detectabl&if _
(iv) Thecouples(C1, A1) and (Cs, Ass) are observable. The

couples (A44, Do) and (Ass, D) are controllable.
lim y(t) =0= lim 2(¢) =0 4) ples (Au, D2) (Ass, D)

t—o0 t—o00
V) ¢ =Tk (Dy) =1k (C2) = ma.
for any initial state z, and for zero known and unknown inputs,

i.e u(t) = 0, and w(t) = 0. (vi) For every K the couple (Cy, As5 — D1 K) is observable,

System (1) is strong* z-detectabléf (4) is satisfed for zero i.e. system (Cz, Ass, D1) is perfectly observable.
known input, i.e. u(t) = 0, and irrespective of the unknown
input w and of theinitial state zo. Note that in the classical case, when there are only known in-

puts (D = 0), the normal form (5) reduces to

The relationship between (strong*) z-detectability ang ¢ix- A 0 0 B,
istence of a (UI)FO for system is clarifed by the following T=| AyC7 Ay 0 x4+ | By |u,
result: A31C; 0 Ass Bs (6)

y=|Cy 0 0 }x,

z = E1 E2 E3 ] xX .
Lemma 3 [2, 5] System X has an (unknown input) functional
observer ((UI)FO)if and only if it is (strong*) z-detectable In this caser, andxzs correspond to the unobservable states,
Moreover, if a (UI)FO exist, then thereisa linear one. and the system is detectablé x3; has dimension zero.

For systems in the normal form (5) (or (6) if there are no

. . .unknown inputs), the detectability properties can be gasil
If X is brought to a special form, then necessary and Sumc"’c‘ﬁecked and observers can be easily constructed:
conditions for existence of Observers can be very easitgdta ’ '

and their construction is very transparent.
Lemmab5 [5] System (1) is z-detectabléf and only if in the
special normal form?® (6) £5 = 0. A (reduced order) observer
Theorem 4 [6, 3, 5]. For system ¥ (1) supposethat rk (D) = isgivenby (7) (setting y2 = 0, and y1 = y).
¢,k (C) = m. Thereexist statez — Pz, output y — Qy and ~ System (1) is strong* z-detectabléd and only if in the special
input w — Ruw transformations such that, in the new coordi- normal form (5) E3 = 0, 4 = 0, and E5 = M Cs, for some

20r z-detectable in the terminology of De£nition 2.
1This name is not standard. SHere conditiond = 0 is also satisfed iy has one dimension zero.




matrix M. A (reduced order) observer with the stated proper-  will be to consider £rst very intuitive necessary conditiéms

tiesis given by the existence of a common observer, expressed in terms of in-
. distinguishability of trajectories, and then to show thegyt are
§1=An& +Aisyz + Bru+ Hi (Cr6r =) also sufcient.
§2 = A2 + Assy2 + A21yr + Bau, (7)
Z2=F1&1 + Ex&a + Mys .

] . ) Fact 7 Any observer Q (2) that is detectable is internally sta-
where Hy; issuchthat (417 + H11Ch) isHurwitz, ble, i.e. FisHurwitz.

Note that (x-)detectability is not necessary to construea
for z. Proof. Consider any plant with input = 0, andzy = 0.

Thenz (¢,0,0) = 0, y(¢) = 0, andz (t) = 0. Therefore the
Remark 6 For a z-detectable system in the normal form (6) a observer output (¢) — 0 for every observer initial state. From

full order Luenberger observer can be constructed as detectability and the observation that under these camditihe
observer is an autonomous system, tikehas to be Hurwitz.
) A+ HiCy 0 0 B -
E=| (A1 +Hy)Chp Ay O E+ | By | ut
(As1 +H3)Cy 0 Asz Bs "
H, Remark 8 The condition for the observer to be detectable can
—| H, |y, always be satisfed, without |oss of generality.
Hj
f=| B by Ej ]5’ Now consider two systems (9);, andX,. Suppose that they

, i i (‘cj;) have a common observer; and that applying some input func-
where [ issuchthat (Ay; + H1Cy) isHurwitz. Notethat this o, (1) to both of them they produce the same outp(t).
observer is internally stable only if 3 is detectable. However, nqer such conditions the observer has the same inputs inde-
it can always be reduced to an internally stable one. pendently of the system it is connected to, and it produces th

same output signal (¢) for the same initial condition. Since
3 Problem formulation Q is a common observer it must happen thét) — z; (t),
andz (t) — 2z (t), ast — oo. Thereforezy (t) — 21 (t).

Consider a family of linear time invariant systems Moreover, because of the linearity and the internal stgbili

Z; = Ay + Biug , 2 (0) = x40 of the observer this has to be also true if with the same in-

i vy = Cix; (9) putu(t) the outputs of systenis;, andX, are convergent, i.e.
zi=Ex;,i=1,---,N y1 (t) — w2 (t). We have then an obviously necessary con-

dition for systemsX;, and 3, to have a common functional

wherezx; € R™ is the statey; € R? the (known) inputy; €
R™ the output vectors, ang € R" is the vector of signals to be
estimated A4;, B;, C;, andE; are constant matrices of adequate

dimensions. Note that the dimensions of the state variaiales Condition 1 Whenever for thesameinputsu; (t) = us () and
be different. The dimensions of the input and output vectosgmeinitial conditions z1¢, 20 the outputs of systems X, and
will be considered constant, although they can be diffef@nt X2 converge, i.e. ;1 (t) — y2 (t), then the functional outputs
different systems. In that case (dummy) inputs and/or datp@ so converge, i.e. z; (t) — 2 (t).

can be added to some of the systems.

observer:

Thesimultaneous functional observation problem (SFOP) con- Remark 9 Note that with the same arguments as above an
sists in designing aingle functional observer, called @om- (apparently) stronger necessary condition can be obtained:
mon Functional Observer (CFO), such that up (t) — wa (t) and yy1 (t) — w2 (t) imply 21 (¢) — 22 (2).
However, it is to show that both conditions are equival ent.

Jimn (5(t, 0, uiryi) — #i(t70,w)) = 0. (10) = =

is satisted for everyu;, z0,&o, ¢ = 1,---,N. This implies There is another (obvious) necessary condition for simakta
that for any plant in the set of systems given by (9) the commegs observation
functional observef) estimates the functional asymptotically.

In particular it is of interest to construct a linear CFO as (2 . i
Condition 2 ¥; is z;-detectable, for 7 = 1, 2.

4 State space characterization of simultaneous

observation of two systems It will be shown (in three steps) that these two (obvious)dion
tions are not only necessary but also sufEcient for the exgste

In this section the simplest case, when only two plants havedf a common observer, and a method to construct a common
be simultaneously observed, will be analyzed. The approdtihear) observer will be derived.



4.1 First step with Ayy = Ay +F11C1, Agy = Agy+Fy1, Ay = Ay +Fyy,

) o . "y . Ay = (A + Fu) C1 4 DKoy, Asy = Dy (Asy + Kip) +
This step consists in reinterpreting condition 1 as a c@wit , ~ 4. — 4 Koo Aeo — A Koo Ape — A

S th llel ¢ d 45y its | . 5101, Ag2 = Ago + Koo, As2 = Az + K2, A4z = Ay3 +
on Y, the paralle system orme. By, , andX,: |tj§ mput.ls Kag, Ass = Aus + DaKoy, Asy = Asg + Kis, Asy = Asy +
u(t) = w (t) = up (t), its state ise = [z{ 23], and its Ky, Ays = (Aus + Fus) Co + DoKos, Azs = Ass + Fia,
output and functional are the difference of the outputs) = A5 = Aoy + Foo, A5 = A1 + Fio, Ass = Ass + F50Cs +
y1 (1) — y2 (1), and of the functionals (t) = 21 (1) — 22 (t), D;K;5, and wherel;;, and K;; are block matrices of” and

respectively, i.e. K, respectively. Note that £ has an UIFO for then, because
. A 0 B of lemma 5,F3 = 0, £, = 0, andE5; = MC,. And so
i = { ;1 } = 01 A ] T+ { Bl ] u, these are also satisfed fbrk . Note that sincé A1, C1) is
Yy y=u —2y2 ~ [ —(272 " ? observable, then so '(5/111, Cl>. Therefore, system
r=z1—2m=| B —-E |z, : 7 i
e ! ? (11) &1 = An& + Aisyz + Biu+ Hiy (Ci& — 1)
Note thatX, is the difference system: if the transfer matrix §2 = Ago&s + Assys + Ao1y1 + Bou,
of ¥; is G (s), i = 1,2, then the transfer matrix af, is z=Ei& + Eaby + My,

G1 (s) — G2 (s). Itis easy to see that condition 1 is equivale
to the following property of2,: Whenever for some (¢), and
some initial staterg, y (t) — 0 thenz(¢t) — 0. From the
results in section 2 one has immediately

rvi/hereHn is such tha(/Ll + H1101> is Hurwitz, is an UIFO

for Xk r. Necessity: Note thatY: can be obtained fromt x ¢
by output injection, and/or state feedback. So if the pnevio
arguments are applied initiating withx r, then the necessity

Lemma 10 Consider systems %1, ¥, and %, Consider for P2 fOIOWS:

¥, theinput « as an unknown one. Then the following condi-  The case for known inputs follows easily from the previous re
tions are equivalent: sult by noting that in that case the blocks 4 and 5 in the normal
form do not existm

1. Conaition 1. Note, however, that systems, andY xr do not necessarily

2. ¥, isstrong* z-detectable. share the same (UI)FO. It is easy to see, from the previous ar-
) . guments, that sufEcient conditions dhand K for systems,

3. ¥, hasan unknown input functional observer (UIF@)r gnq Yk r to share an UIFO is that (whex is in the normal

Ze form): Foy =0, Fy; =0, Fjo = 0,andA;; —|—(F11 + Hn) o
is Hurwitz.
4.2 Second step
|4.3 Third step

The following result is a generalization for (U)FO of wel
known results for state observers, and is therefore irtiages

o , ) Now we are in position to construct a simultaneous observer
in itself. For a systent. (1) consider the family of systems

for systems:;, andX; when conditions 1, and 2 are satis£ed.

&= (A+ DK+ FC)z+ Bu+ Dw If condition 2 is satisEed, then, by Lemma 3 a functional ob-
Ykp:iq y=Cz ) server can be constructed for each andX,. Note that this
z=FEx condition is symmetric with respect ; andX,, and so it is

di_rrelevant if in the coming arguments one takes either oret. L
us takeX;, and construct a full order obsen&s ¢ of the form
(cfr. remark 6)

obtained from by arbitrary output injection, and/or state fee
back (through the unknown input).

Lemma 1l System hasan (UI)FO for z if and only if system #1 = A1d1 + Bruy + Fo (41 — 1)
Yk hasalso an (UI)FO for z for arbitrary K, and F. Qip:{ 41 =Chian (12)
Z1 = F121,

Proof. Consider £rst the case with unknown inputs (UIFO
Suffciency: First suppose thall is given in its normal form
(5), then, using the same transformatiofig; » can be written Now assume that condition 1 is satisfed. Then an UIFO exists
exactly as (5), but with matrixl replaced byA = A+ DK + for ¥, and for¥, x r, for arbitrary K, andF'. Consider an UIF

)f'or some matrixty.

FC, observer designed for systeR),, i.e. system¥,xr, when
T .
An 0 0 0 AusCy K =0,andF = [F} 0], the UIFOQy, that is internally
i i stable. Now connect both observels,, and(2,, as shown in
i AnG Az 0 0 AzC £gure 1, and denote it &5,
A= Ag}Cl 0 A33 0 A3~502 s 9 ’ -

Ay DsAys DoAss Ay Ays Now it will be shown that if the plant is eitheE;, or X,
A5y DyAsy DyAss DiAsy  Ass the observer), is a common one. Suppose £rst that the



Algorithm 13 If systems 3; and X5 have a common (func-

Plant 1 or 2 tional) observer, then a linear one can be designed in the fol-
2() 2(t) lowing manner:
il UIFO
1. Design for X, afull order functional observer Q (this
Plant 1 Model is possibly not internally stable).
2. Design for system £, an UIFO §25. This can be done
using Lemma 5.

Output Injection

3. Connect both systems as shown in £gure 1.

Figure 1: Block diagram of the structure of a common observef* |f {217 isnot internally stable, reduce it by eliminating its
not detectable part.

plant is systemX;. Due to the properties ofl; both  pemark 14 Note that theorem 12, besides of being intuitive
limg o0 (21 (£) — 21 () = 0, an?hrnt—wo (91 (1) =91 (1)) = and natural, generalizes the known results (see [4, 8]) in dif-
0. And so the input td2x, i-€. (§1 (1) — y1 (t)), CONVErges 10 ferent directions: (i) Previous results require the systems to be
zero. Sincely is internally asymptotically stable, its outpUtyetactable and stabilizable. This is not necessary in theorem
converges to zero. Therefore, the estimation () converges 15 This shows some lack of duality between the simultane-
to z; (¢), showing that. works properly. Now suppose thaty s ghservation and stabilization problems, since for the latter
the plant is>,. Observe2, ; will not (usually) converge, and o, getectability and stabilizability are necessary conditions!
its estimation of the functional is given b (¢). However, (i) Previous resultsare only valid for systemswith inputs. The-
the system composed by plant and the obseivgris exactly  orem 12 s valid for both systems with and without inputs. (iii)
systemX,,o. Sincefly is an UIFO for¥,, the output of this congition 2 above is automatically satisted if the systems are
last system converges 9 (t) — 2 (t). It follows thatz (f)  getectable, and therefore it does not appear in the previous re-
converges ta, (t),_showing that in this case,. also estimates sults. Condition 1 was only known under the additional re-
correctly the functional. striction that one of the systems is stable [8, Cor. 2. Note that

Wheny, is detectablé?, ; is internally stable, and so §2... If  itsproof isincomplete, since only suffciency is demonstrated.].
¥, is not detectable, thef, is not internally stable, but can be(iV) The design of a common observer is reduced to the solution
reduced to an internally stable observer. Therefore, ¢iomdi Of two known problems: the design of a FO, and the design of
1 and 2 are sufEcient for the existence of a common obsenat.UIFO, for which there are algorithms to construct a solu-

Moreover, they give a very intuitively appealing structared tion. Moreover, the degrees of freedom in the design are clear.
design method for such an observer. One has then the Note furthermore, that the structure of the proposed common

observer is compatible with the general form of a linear ob-
server for a plant given in [1] for the observation of the state.
(v) It is shown that the existence of a CFO is equivalent to the
existence of a linear CFO.

Theorem 12 The following statements are equivalent:

1. Systems X1 and X5 have a (internally stable) common

(functional) observer .
Remark 15 If systems ¥; and X5 have an internally stable

(a) there exists a (functional) observer for one of the linear CFO 2 then Lemma 10 can be given an interesting in-
plants, and terpretation: if system X, is connected to 2, that has as inputs

(b) the parallel system %3, has an UIFO. (yi,u;), then its output 2 convergesto z; ast — oo. Thisis
true for i« = 1,2, and any initial conditions xq;, and &,. Be-

2. Systems X35 and X5 have a linear (internally stable) com-  cause of the linearity and stability of the CFO if 2 has asin-
mon (functional) observer puts (y1 — ya, u1 — uz), thenitsoutput Z convergesto z; — z
ast — oo. Nowif theinputsto systems ¥; and X, are selected

Proof. The equivalence of (2) and (3) has been proved in tigentical, i.e. u1 = uy, then  with inputs (y1 — y2,0), es-
previous paragraphs, except for the fact that the existencel!Mates asymptotically z; — z,. But this corresponds exactly

a FO has to be checked for one system and not for both(@fthe fact that system ¥, has an UIFO, and © with input
them. This last result follows immediately from the constru (¥1 — ¥2,0), isan UIFO for the parallel system %,,.

tion of the common observer, sincedif has a FO and,, has

an UIFO, then®; has a FO. (3)= (1) is trivial. That (1)=- 5 Simultaneous observation of a (£nite) set of

(2) follows from the observation that Condition 1 has to kte sa systems

isEed no matter how the observer is constructed, i.e. if this

condition is not satised, then there is no common observer@dnsider now the set a¥ plants (9)%;,7 = 1,--- , N. Cor-

any kind.m responding to condition 1 and 2 we have then obviously nec-



essary conditions for these systems to posses a common fugtiescture for simultaneous observers are proposed. Mergov

tional observer.

Condition 3 Whenever for the same inputs u; (t) = wuy (¢)
and some initial conditions x o, o the outputs of systems 3,
and X, converge, i.e. y; (t) — yx (), then the functional out-
puts also converge, i.e. z; (t) — 2z (t), Vj, k € {1,2,--- ,N},

an "intuitive” characterization of these conditions is ajivin
terms of a detectability condition. It is also shown that the
simultaneous observation problem is intimately relateth&o
problem of unknown input observation, a classical obsamat
problem. For the simultaneous observation of several pthet
presentation is very brief, and generalizes the previcsislise

J# k.
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Note that the main issue in this case is the construction of a
common UIFO for N — 1 parallel systems.There is no yet an
effective method to design such a common UIFO. Once a com-
mon UIFO is known, then an procedure similar to Algorithm
13 can be used to construct a CFO for the family of plants. And
so the problem of the construction of a CFO for a familyN\of
plants is reduced to the construction afaammon Unknown In-

put functional observer for a family aV — 1 plants, a problem

of a higher level of difEculty but in a lower number of systems.

6 Conclusions

In this paper a state space characterization for simultzseb-
servability of several linear plants has been obtained.e@n
ization of previous results is obtained and an algorithm and
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