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Abstract

In this note it is shown how then-dimensional rigid
body equation naturally leads to Hamilton’s canonical
equation and how this may be used for controller and
observer designs by using the geometry of mechanical
systems on manifolds avoiding the parameterization of
Lie groupSO(n). Based on this approach, it is possible
to focus on the intrinsic property of the system and to
show closed-loop stability, a separation principle, which
has been conjectured but not yet been shown.

1 Introduction

The problem of controlling the motion of rigid bod-
ies and mechanical linkages has been studied exten-
sively in control, aerospace and robotics literature and
has applications ranging from pointing and slewing ma-
neuvers of spacecraft to object manipulation. A large
amount of research has been carried out on the rigid
body’s attitude control problem ([2], [3], [8]-[10], [18],
[19]). It has been shown that passivity-based control,
i.e. linear feedback of the position error and angular
velocity with scalar gains, globally asymptotically sta-
bilizes the origin of the closed-loop system (see [17],
[19]). However, angular velocity is not always mea-
sured in practice. For instance, small satellites are not
equipped with gyros, angular velocity sensors, in recent
trends because gyros are generally expensive and are of-
ten prone to degradation or failure. For such cases, an
angular velocity observer of a rigid body from orienta-
tion and torque measurements was proposed in [15], but
the closed-loop stability was not proven. Alternatively,
the passivity-based, angular velocity-free set-point con-
troller has been proposed by [10], [18].

It is well-known that the attitude motion of a rigid body
is represented by a set of two equations: (1) Euler’s dy-
namic equation, which describes the time evolution of
the angular velocity vector, and (2) the kinematic equa-
tion, which relates the time derivatives of the orientation
angles and rotation groupSO(3) to the angular veloc-
ity vector. The important feature of the system is that
its configuration space isSO(3), which is not the Eu-
clidean space but a manifold. Several parameterizations
exist to represent theSO(3), including three-parameter
representations with singularity (e.g., Euler angles, Ro-
drigues parameters) and the four-parameter representa-
tion with an additional constraint without singularity
(e.g., Euler parameters). Most research (for example,
[18], [10], [15], [19]) commonly involves the choice
of a preliminary parameterization of coordinates for the
configuration manifoldSO(3). In [7], by contrast, a
coordinate-free approach is proposed for a trajectory
tracking problem via differential geometric techniques.

In this note we deal with the free rotation ofn-
dimensional rigid body about its center of mass on the
Lie group SO(n) in a coordinate-free framework by
using the geometry of mechanical systems on mani-
folds. Avoiding the parameterization of the configura-
tion space, it is possible to focus on the intrinsic prop-
erty of the system. First, in section II, we give Hamil-
ton’s canonical equation ofn-dimensional rigid bod-
ies. Then, in section III, we consider a set-point control
problem of driving an attitude to a steady-state target at-
titude, and an angular velocity observer is obtained as a
generalization of the result in [15]. By taking errors of
the plant and observer states as a ratio, the error dynam-
ics also evolves on the same configuration spaceSO(n).
We remark that this is commonly observed in linear sys-
tems but not in nonlinear systems in general. Through
this note, it is seen that the approach taken enables us
to see the geometric structure of the observer. Finally,
in section IV, we solve the remaining problem, whether
or not the observer-based controller still stabilizes the
origin of the closed-loop system (separation principle).



In section V, we develop the above discussion into the
global stabilization.

2 Dynamics of the n-dimensional rigid
body

In this section we introduce some notation and review
some principal results on the kinematics and dynamics
of the free rotation of an-dimensional rigid body about
a fixed point, then derive Hamilton’s equation in canon-
ical coordinates for that system. Almost all statements
in this part are based on [1], [11], [14].

The problem under consideration is the free rotation of
an n-dimensional rigid body about its center of mass,
which we assume to be the origin inRn. ”Free” means
that there are no external forces, and ”rigid” means
that the distance between any two points of the body
is unchanged during the motion. Consider two coordi-
nate systems: the body coordinate system and the spa-
tial coordinate system. Throughout this note, quantities
expressed in the body coordinate system will be pre-
scripted byB, while quantities expressed in the spa-
tial coordinate system will be prescripted byS. Let
XS(XB , t) ∈ Rn denote the position of the particle of
the body in spatial coordinate at timet which was at
XB ∈ Rn at time zero (XS(XB , 0) = XB); rigidity im-
plies thatXS(XB , t) = q(t)XB , whereq(t) ∈ SO(n),
the proper rotation group ofRn, then × n orthogonal
matrices with determinant 1.SO(n) is a Lie group,
and that its Lie algebra isso(n), the space of skew-
symmetricn×n matrices with bracket[ξ, η] = ξη−ηξ,
ξ, η ∈ so(n). The body and space velocity is

VB(XB , t) = −∂XB(XS , t)
∂t

= q(t)−1q̇XB(XS , t)

VS(XS , t) =
∂XS(XB , t)

∂t
= q̇(t)q(t)−1XS(XB , t),

where we defineωB(t) = TeLq(t)−1(q̇(t))，ωS(t) =
TIRq(t)−1(q̇(t)) ∈ so(n), body and space angular ve-
locity. ThenωB , ωS are left and right translations of
q̇ by q−1 ∈ SO(n), and expresṡq in body and space
coordinates respectively (see Figure 1). Thus kinematic
equation is

dq(t)
dt

= q(t)ωB(t) = ωS(t)q(t). (1)

Next we consider the dynamic equation. Assume that
the mass distribution of the body is described by a com-
pactly supported density measureρ0(XB) dnXB . Thus,
the kinetic energy of the motion is given by

K(XB) =
1
2

∫

B
ρ0(XB)‖ωB(t)XB‖2 dnXB .

For ξ, η ∈ so(n), introducing the new inner product

〈〈ξ, η〉〉 =
∫

ρ0(XB) (ξXB)T (ηXB) dnXB ,

the kinetic energy becomes

K(ωB) =
1
2
〈〈ωB , ωB〉〉.

Furthermore, introducing the following inner product
ongl(n,R)

〈A,B〉 =
1
2

Trace(AT B), A, B ∈ gl(n,R),

and considering the moment of inertia

D = DT =
∫

ρ0(XB)XBXB
T dnXB > 0,

D can be diagonalized byq ∈ SO(n), namely,D0 =
qDq−1. Therefore, there is a new orthonormal basis of
Rn, principal axis body coordinate, having the same ori-
entation as the initial orientation that is determined by
the mass distribution of the rigid body. In what follows
we work in a principal axis body coordinate. A unique
isomorphismJ0 : so(n) → so(n), s.t. 〈〈ξ, η〉〉 =
〈J0(ξ), η〉 is determined by

J0(ξ) = D0ξ + ξD0, D0 = diag(d1, · · · , dn) > 0.

Thus, the kinetic energy of the rigid body motion be-
comes

K(ωB) =
1
2
〈J0(ωB), ωB〉. (2)

Note that the Ad-invariant form〈·, ·〉 on so(n) induces
a left and right invariant Riemannian metric〈·, ·〉 on
G = SO(n). Then the metric defines a diffeomorphism
TG → T ∗G in a natural way;

(·)[ : νg ∈ TgG 7→ ν[
g = 〈νg, ·〉 ∈ T ∗g G.

Define(·)] := (·)[−1
: T ∗G → TG. Using the equa-

tion (1), (2), Lagrangian becomes

L(q, q̇) =
1
2
〈J0(qT q̇), qT q̇〉,

thus, the variablep canonically conjugate toq is given
by the Legendre transformation

p =
∂L

∂q̇
= (qJ0(qT q̇))[, or p] = qJ0(qT q̇).

Therefore, the Hamiltonian is

H(q, p) =
1
2
〈qT p], J−1

0 (qT p])〉. (3)

We summarize:

Proposition 1 Hamilton’s canonical equation for the
free rotation ofn-dimensional rigid body about its cen-
ter of mass is

ΣH :





H(q, p) = 1
2 〈J−1

0 (qT p]), qT p]〉
q̇ =

(∂H

∂p]

)]

= q J−1
0 (qT p])

ṗ] = −
(∂H

∂q

)]

= p] J−1
0 (qT p]).

(4)



Using left and right translation (see Figure 1), we get
from (4) the rigid body equations for body and spatial
coordinates

ΣB :





K =
1
2
〈ωB , J0(ωB)〉

dq

dt
= q ωB

dJ0(ωB)
dt

= [ J0(ωB), ωB ],

(5)

ΣS :





K =
1
2
〈ωS , JS(ωS)〉

dq

dt
= ωS q

dJS(ωS)
dt

= 0 ,

(6)

whereJ0(ωB) = TILq−1p], JS(ωS) = TIRq−1p] ∈
so(n) denote the angular momentum in body and spatial
coordinate, respectively, andJS(ξS) = Adq(J0(ξ)) =
DSξS − ξS

T DS ∈ so(n)，DS = qD0q
T，J−1

S (ξS) =
Adq(J−1

0 (ξ)) = ESξS − ξS
T ES，ES = qE0q

T , ξS =
Adqξ = qξqT , E0 > 0.

TqSO(n)
(q, q̇)
(q, p])

(Canonical system:ΣH )

(q, ωB) = (q, qT q̇)
(q, J0(ωB))=(q, qT p])

(Body system:ΣB)

SO(n)× so(n)

λ ◦ ρ−1

ρ ◦ λ−1

SO(n)× so(n)
(q, q̇qT ) = (q, ωS)

(Space system:ΣS)

λ

λ−1

ρ

ρ−1

T ∗q SO(n)
(q, p)

(q, p]qT )=(q, JS(ωS))

Figure 1: Three coordinate systems.

3 Controller and observer design

3.1 Stabilizing controller design

We consider the set-point control problem of driving the
attitude (q, p) to a steady-state target attitude(qd, 0).
The following theorem is well-known.

Theorem 1 ([10],[17]) For the rigid body control sys-
tem

ΣHC :





dq

dt
= q J−1

0 (qT p])

dp]

dt
= p] J−1

0 (qT p]) + τHC

(7)

the control law

τHC = −kv q̇ − kp(qqd
T q − qd), (8)

with kp, kv > 0 asymptotically stabilizes the system.

Remark 1 Simple calculations show that the control
law (8) can be rewritten in body and space coordinates,
respectively. That is,

ΣBC :





dq

dt
= q ωB

dJ0(ωB)
dt

= [J0(ωB), ωB ] + τBC

τBC = −kv ωB − kp (qd
T q − qT qd)

(9)

in body coordinates. Also

ΣSC :





dq

dt
= ωS q

dJS(ωS)
dt

= τSC

τSC = −kv ωS − kp (qqd
T − qdq

T )

(10)

in space coordinates.

Proof The closed-loop stability analysis uses the fol-
lowing Lyapunov function candidate

V1 = H(q, p) + kpU(q)

= 1
2 〈qT p], J−1

0 (qT p])〉+ kp〈I − qT
d q , I − qT

d q〉
(11)

where the first term represents the kinetic energy and the
second term represents the potential energy. We have

∂U(q)
∂q

· v = 2〈q − qd , v〉, v ∈ TqSO(n)

then, the derivative along the trajectories can be com-
puted as

V̇1 =
∂H

∂q
· q̇ +

∂H

∂p]
· ṗ] + kp

∂U

∂q
· q̇

=
∂H

∂p]
· τHC + kp

∂U

∂q
· q̇

= 〈q̇ , −kv q̇ − kp(qqd
T q − qd)〉+ 2kp〈q − qd , q̇〉

= −kv〈q̇ , q̇〉 − kp〈qT q̇ , qd
T q + qT qd − 2I〉

= −kv〈q̇ , q̇〉 6 0,

since〈ξ,A〉 = 1
2Trace(ξT A) = 0 for all A = AT ,

ξ = −ξT ∈ so(n). Thus, LaSalle’s Invariance Principle
can be employed to complete the asymptotic stability
proof. 2



3.2 Observer design

We deal with the problem of obtaining the angular ve-
locity ω (or angular momentumJ(ω), conjugate mo-
mentump) of ann-dimensional rigid body from orien-
tationq and torque measurementsτ only. This observer
design generalizes that of [15] forn-dimensional rigid
body in the Hamiltonian formulation.

Theorem 2 Then-dimensional rigid body observer for
Hamiltonian control system (7) is

ΣHO :





dq̂

dt
= q̂ J−1

0 (qT p̂] q̂T q) + u

dp̂]

dt
p̂] J−1

0 (qT p̂] q̂T q) + vH

(12)

where

u = lv q̂ (q̂T q − qT q̂) = lv(qq̂T − q̂qT ) q̂

vH = τHqT q̂ + lvp̂] (q̂T q − qT q̂)

+ lpJ
−1
S (qq̂T − q̂qT ) q̂

andlp, lv > 0.

Remark 2 The observers for body and spatial coordi-
nates system become

ΣBO :





dq̂

dt
= q̂ ω̂B + u

d(q̂T p̂])
dt

= [ q̂T p̂], ω̂B ] + vB

vB = q̂T qτBqT q̂

+ lv[ q̂T p̂], q̂T q − qT q̂ ]

+ lpq̂
T q J−1

0 (q̂T q − qT q̂) qT q̂

whereω̂B = J−1
0 (qT p̂] q̂T q) , q̂T p̂] = q̂T qJ0(ω̂B)qT q̂,

and

ΣSO :





dq̂

dt
= (q̂qT ω̂Sqq̂T )q̂ + u

d(p̂]q̂T )
dt

= vS

vS = τS + lpJ
−1
S (qq̂T − q̂qT )

where ω̂S = J−1
S (p̂]q̂T ) , p̂]q̂T = JS(ω̂S), respec-

tively.

Proof The observer error evolution is governed by the
following equations

ΣSE :





d(qq̂T )
dt

= J−1
S (p]qT − p̂]q̂T )qq̂T

− lv(qq̂T − q̂qT ) qq̂T

d(p]qT − p̂]q̂T )
dt

= −lpJ
−1
S (qq̂T − q̂qT ).

(13)

Consider the Lyapunov function candidateV2

V2 =
1
2
〈
p]qT − p̂]q̂T , p]qT − p̂]q̂T

〉

+ lp〈I − qq̂T , I − qq̂T 〉.
(14)

Then, the time derivative ofV2 along the trajectories of
the error system become

V̇2 =
〈
p]qT − p̂]q̂T ,

d(p]qT − p̂]q̂T )
dt

〉

− 2lp
〈
I − qq̂T ,

d(qq̂T )
dt

〉

= −〈
p]qT − p̂]q̂T , lpJ

−1
S (qq̂T − q̂qT )

〉

− 2lp
〈
q̂qT − I, J−1

S (p]qT − p̂]q̂T )− lv(qq̂T − q̂qT )
〉

= −lp
〈
J−1

S (p]qT − p̂]q̂T ), qq̂T + q̂qT − 2I
〉

− 2lvlp
〈
I − q̂qT , qq̂T − q̂qT

〉

= −lvlp‖qq̂T − q̂qT ‖2 6 0

Because equation (12) is not autonomous, LaSalle’s
Invariance Principle cannot be applied. Instead, the
asymptotic stability follows from Barbalat’s lemma
(see, e.g. [13]).2

Remark 3 If we write x = qq̂T ∈ SO(n) and ξ =
J−1

S (p]qT − p̂]q̂T ) ∈ so(n), the observer error equa-
tions withlp = lv = 0 become





dx

dt
= ξ x

d(JS(ξ))
dt

= 0,

which corresponds to the rigid body equation in
space coordinates. The stabilization of error dynam-
ics is accomplished, first, adding the potential force
−lpJ

−1
S (x−xT ), and next, the dissipation−lv(x2−I).

We note that the mechanism of stabilization of the error
dynamics is quite similar to that of Theorem 1 and that
it is possible to see this picture because we avoid param-
eterizations ofSO(n) using geometric mechanics.

4 Observer-based controller: separation
principle

In this last section, it is shown that a separation
principle-like property also holds for the nonlinear sys-
tem considered in this note, that is, it is possible in the
stabilizing control law (8), (9), (10) to replacep]qT by
its estimation̂p]q̂T .

Theorem 3 Consider the closed-loop system described



by

ΣC+O :





dq

dt
= q J−1

0 (qT p])

dq̂

dt
= q̂ J−1

0 (qT p̂] q̂T q) + u

dp]

dt
= p] J−1

0 (qT p]) + τ ′

dp̂]

dt
= p̂] J−1

0 (qT p̂] q̂T q) + v,

(15)

and that with the control law

τ ′ = −kv q J−1
0 (qT p̂] q̂T q)− kp (qqd

T q − qd), (16)

where kp, kv, lp, lv > 0. Then the equilibrium
(q, q̂, p], p̂]) = (qd, q, 0, p]) = (qd, qd, 0, 0) of the sys-
tem (15) is asymptotically stable.

Proof First，let us prove that the estimated states ex-
ponentially converge to the real states. We augment the
Lyapunov function (14) used in Section 3.2 as:

W2ε = V2 − 1
4
ε
〈
p]qT − p̂]q̂T , J−1

S (qq̂T − q̂qT )
〉
.

(17)

Rewritingµ = p]qT − p̂]q̂T , η = qq̂T − q̂qT , then the
above becomes

W2ε =
1
8

Tr

{[
µ

I − qq̂T

]T[
I εES

εES 2lp

][
µ

I − qq̂T

]}

+
1
8

Tr

{[
µ

I − q̂qT

]T[
I −εES

−εES 2lp

][
µ

I − q̂qT

]}
.

In addition, by using Schur complement, we get

0 < ε <

√
lp

2λmax(E0
2)

=⇒ 1
2
V2 6 W2ε 6 3

2
V2,

(18)

The time derivative ofW2ε along the trajectories of the
closed-loop system is

Ẇ2ε = V̇2 − 1
4
ε
{〈

µ̇, J−1
S (η)

〉
+

〈
µ, J−1

S (η̇)
〉

+
〈
µ, J̇−1

S (η)
〉}

= −lvlp〈η, η〉 − 1
4
ε
{
−lp〈J−1

S (η), J−1
S (η)〉

+2〈J−1
S (µ), (J−1

S (µ)− lvη)qq̂T 〉+〈µ, J̇−1
S (η)〉

}
,

where J̇−1
S (η) = ĖSη + ηĖS，ĖS = q̇E0q

T +
qE0q̇

T = J−1
S (qT p])ES − ESJ−1

S (qT p]) = ĖT
S .

Moreover,




2λmin(E0)〈ξ, η〉 6 〈J−1
S (ξ), η〉 6 2λmax(E0)〈ξ, η〉

‖I − q‖2 6 3 =⇒ ‖I − q‖ 6 ‖q − qT ‖
‖I − q‖2 6 2(1− cos θ) 6 2 =⇒ cos θ‖ξ‖2 6 〈ξ, ξq〉

we consider the neighborhood of equilibrium

‖I − qq̂T ‖2 6 2(1− cos θ) < 2 (19)

lv − ελmax(E0)2 > 0. (20)

Then, the above becomes

Ẇ2ε 6 −lp
(
lv − ελmax(E0)2

)‖η‖2 − 1
2
ε〈J−1

S (µ), J−1
S (µ)qq̂T 〉

+
1
2
εlv‖J−1

S (µ)‖‖η‖ − ε

4
λmin(ĖS)
λmax(E0)

〈J−1
S (µ), η〉

6 −lp
(
lv − ελmax(E0)2

)‖η‖2 − 1
2
ε cos θ‖J−1

S (µ)‖2

+
1
2
εlv‖J−1

S (µ)‖‖η‖+
ε

4
λmin(ĖS)
λmax(E0)

‖J−1
S (µ)‖‖η‖

6 −λmin(P )
{
‖J−1

S (µ)‖2 + ‖I − qq̂T ‖2
}

6 −λmin(P )min{8λmin(E0)2, 1/lp}V2

6 −2
3
λmin(P )min{8λmin(E0)2, 1/lp}W2ε 6 0

where

P =




1
2ε cos θ − 1

4ε

(
lv + λmin(ĖS)

2λmax(E0)

)

− 1
4ε

(
lv + λmin(ĖS)

2λmax(E0)

)
lp

(
lv − ελmax(E0)2

)


 ,

lplv > ε

{
lpλmax(E0)2 + 1

8 cos θ

(
lv + λmin(ĖS)

2λmax(E0)

)2}

(21)

for P > 0. We summarize that if we chooseε small
enough that conditions (18), (21) are satisfied, then the
observer error converges to zero exponentially.

Finally, to complete the proof, choose

V2(0) =
1
2
‖p]qT − p̂]q̂T ‖2 + lp‖I − qq̂T ‖2

∣∣∣
t=0

< 2lp,

(22)

then the observer error is exponentially stable. Consider
the following Lyapunov function candidate

V3 =
2λmin(Po)

kv
V1 + W2ε,

and evaluate its derivative forΣC+O:

V̇3 6 −λmin(Po)
{

2〈J−1
S (p]qT ) , J−1

S (p̂]q̂T ) 〉

+ ‖J−1
S (p]qT − p̂]q̂T )‖2 + ‖I − qq̂T ‖2

}

= −λmin(Po)
{
‖J−1

S (p]qT )‖2 + ‖J−1
S (p̂]q̂T )‖2

+ ‖I − qq̂T ‖2
}

6 0.

Then, by LaSalle’s Invariance Principle, it follows that
the equilibrium of the closed-loop systemΣC+O is
asymptotically stable.2



5 Global stability

According to Milnor’s theorem [12],[16], smooth vec-
tor fields onTSO(n) cannot be globally asymptotically
stable, and the argument thus far is local. However, if
n = 3, with the analogy of [15], it can be shown that a
slight modification of the last terms ofτHC , vH in (8),
(12):




−kpq

qd
T q − qT qd√

1 + Trace(qqd
T )

(Trace(qd
T q) 6= −1)

−kpqn
×
1 (Trace(qd

T q) = −1)




lpJ
−1
S (qq̂T − q̂qT )q̂√
1 + Trace(qq̂T )

(Trace(qq̂T ) 6= −1)

lpJ
−1
S (n×2 )q̂ (Trace(qq̂T ) = −1)

achieves globally asymptotically stability in Theorem 1,

2 and 3, wherex× =
[ 0 −x3 x2

x3 0 −x1
−x2 x1 0

]
∈ so(3) andn1,

n2 are the normalized eigenvector with eigenvalue 1 of
qd

T q, qq̂T , respectively.

6 Conclusions

This note was devoted to the attitude control problem
and design of an angular velocity observer for the mo-
tion ofn-dimensional rigid body in the Hamiltonian for-
mulation. Avoiding parameterizations ofSO(n), it was
possible to reveal the geometric structure of the stabiliz-
ing controller and the angular velocity observer, and to
demonstrate that the observer-based controller, the con-
troller (8) with the observer (12), still stabilized the ori-
gin of the closed-loop system (separation principle).
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