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Keywords: n-dimensional rigid body, geometric ap-It is well-known that the attitude motion of a rigid body
proach, Hamiltonian formulation, observer, separatida represented by a set of two equations: (1) Euler’s dy-

principle namic equation, which describes the time evolution of
the angular velocity vector, and (2) the kinematic equa-
Abstract tion, which relates the time derivatives of the orientation

angles and rotation grouffO(3) to the angular veloc-
In this note it is shown how the-dimensional rigid ity vector. The important feature of the system is that
body equation naturally leads to Hamilton’s canonicdlis configuration space iSO(3), which is not the Eu-
equation and how this may be used for controller arglidean space but a manifold. Several parameterizations
observer designs by using the geometry of mechani&xist to represent th6O(3), including three-parameter
systems on manifolds avoiding the parameterization tfpresentations with singularity (e.g., Euler angles, Ro-
Lie groupSO(n). Based on this approach, it is possiblgrigues parameters) and the four-parameter representa-
to focus on the intrinsic property of the system and ton with an additional constraint without singularity
show closed-loop stability, a separation principle, whic{e.g., Euler parameters). Most research (for example,
has been conjectured but not yet been shown. [18], [10], [15], [19]) commonly involves the choice
of a preliminary parameterization of coordinates for the
configuration manifoldSO(3). In [7], by contrast, a
coordinate-free approach is proposed for a trajectory
The problem of controlling the motion of rigid bod-tracking problem via differential geometric techniques.
ies and mechanical linkages has been studied extgh-inis note we deal with the free rotation of-
sively in control, aerospace and robotics literature aRginensional rigid body about its center of mass on the
has applications ranging from pointing and slewing mgse group SO(n) in a coordinate-free framework by
neuvers of spacecraft to object ma_nipulation. A 'ar_Q‘j‘sing the geometry of mechanical systems on mani-
amount of research has been carried out on the rigiglys. Avoiding the parameterization of the configura-
body’s attitude control problem ([2], [3], [8]-[10], [18], tjon space, it is possible to focus on the intrinsic prop-
[19]). It has been shown that passivity-based contrQdy of the system. First, in section II, we give Hamil-
i.e. linear feedback of the position error and angulggn's canonical equation af-dimensional rigid bod-
velocity with scalar gains, globally asymptotically stajes Then, in section IlI, we consider a set-point control
bilizes the origin of the closed-loop system (see [17}roplem of driving an attitude to a steady-state target at-
[19]). However, angular velocity is not always meag,de, and an angular velocity observer is obtained as a
sured in practice. For instance, small satellites are nQ{neralization of the result in [15]. By taking errors of
equipped with gyros, angular velocity sensors, in recefife plant and observer states as a ratio, the error dynam-
trends because gyros are gene_rally expensive and argQf-5|so evolves on the same configuration s@én).
ten prone to degradation or failure. For such cases, @ remark that this is commonly observed in linear sys-
angular velocity observer of a rigid body from orientagems put not in nonlinear systems in general. Through
tion and torque measurements was proposed in [15], b5 note, it is seen that the approach taken enables us
the closed-loop stability was not proven. Alternatively, see the geometric structure of the observer. Finally,
the passivity-based, angular velocity-free set-point copy section IV, we solve the remaining problem, whether
troller has been proposed by [10], [18]. or not the observer-based controller still stabilizes the

origin of the closed-loop system (separation principle).

1 Introduction



In section V, we develop the above discussion into thibe kinetic energy becomes
global stabilization. 1
K(wp) = 5((wp,wp))-

2 Dynamics of the n-dimensional rigid Fyrthermore, introducing the following inner product
body ongl(n,R)

In this section we introduce some notation and review (A,B) = lTrachTB) A, B € gl(n,R)
some principal results on the kinematics and dynamics ’ 2 T e
of the free rotation of a-dimensional rigid body about and considering the moment of inertia

a fixed point, then derive Hamilton’s equation in canon-

ical coordinates for that system. Almost all statements D = DT = /po(XB)XBXBT dXp >0,
in this part are based on [1], [11], [14].

The problem under consideration is the free rotation (9 can be diagonalized by € SO(n), namely,Do =

ann-dimensional rigid body about its center of mas eq ; Therefqre, there is anew orthqnormal basis Qf
which we assume to be the originlt'. "Free” means , principal axis body coordinate, having the same ori-

that there are no external forces, and “rigid” mearf tation as the initial orientation that is determined by

that the distance between any two points of the bodlJe Mmass distribution of the rigid body. In what follows

is unchanged during the motion. Consider two coordf-c work in a principal axis body coordinate. A unique
nate systems: the body coordinate system and the sfy@MO'PhiSMJo = so(n) — so(n),s.t.((&,n)) =
0(€),n) is determined by

tial coordinate system. Throughout this note, quantiti )

expressed in the body coordinate system will be pre-j,(¢) = Doé + €Dy, Dy = diag(dy,--- ,d,) > 0.
scripted byB, while quantities expressed in the spa- o o )

tial coordinate system will be prescripted Isy Let Thus, the kinetic energy of the rigid body motion be-
Xs(Xp,t) € R™ denote the position of the particle ofcOMeS
the body in spatial coordinate at timtewhich was at

Xp € R™ attime zeroKs(Xp,0) = Xp); rigidity im-

plies thatX (X p,t) = ¢q(t) X 5, whereg(t) € SO(n),

the proper rotation group @&", then x n orthogonal Note that the Ad-invariant fornt., -) on so(n) induces
matrices with determinant 1.50(n) is a Lie group, @ left and right invariant Riemannian metrig -) on
and that its Lie algebra iso(n), the space of skew- G = SO(n). Then the metric defines a diffeomorphism
symmetricn x n matrices with brackd, n] = ¢én—n¢, TG — T*Gin a natural way;

K(wp) = %(JO(WB)MB>- @)

§,m € so(n). The bodz/ and )space velocity is (F vy €T,G o 1 = (g, ) € T2C.
0Xp(Xs,t Y -
Va(Xp,t) = =552 = a() 'iXp(Xs,t)  Define() := (™ : 1°G — TG. Using the equa-
0Xs(Xp,t) . tion (1), (2), Lagrangian becomes
Vs(Xs,t) = s Xpi) _ (t)q(t) " Xs(Xp,1),

where we definevp(t) = TeLy4)-1(4(t)0ws(t) = Lia.9) 2<J0(q 04" 4).
TiRy)-1(4(t)) € so(n), body and space angular vethus, the variable canonically conjugate tg is given
locity. Thenwp, wg are left and right translations of by the Legendre transformation
d by ¢! € SO(n), and expresg in body and space I
coordinates respectively (see Figure 1). Thus kinematic p = — = (¢Jo(¢"¢))’, or p' = qJo(¢7 ).
equation is 9

dq(t) Therefore, the Hamiltonian is

- q(t)wp(t) = ws(t)q(?). @ 1 .

H(a,p) = 5{a" ¥, Jg (" 1)) (3)

Next we consider the dynamic equation. Assume th\%e summarize:
the mass distribution of the body is described by a com- '
pactly supported density measyxg X 5) d"X 5. Thus,

T A Proposition 1 Hamilton’s canonical equation for the
the kinetic energy of the motion is given by

free rotation ofn-dimensional rigid body about its cen-
ter of mass is

K(X5) =5 [ mlXs)llon(t)XalF " Xs.

. . . . 8 _
Foré,n € so(n), introducing the new inner product i= ( ) = qJ5 (¢t

()
e = / po(X5) (EX5)T (nX ) d"X 5,
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Using left and right translation (see Figure 1), we gé¢he control law
from (4) the rigid body equations for body and spatial

coordinates

K= %(wB,JO(wB»

EB : (5)

K= %<ws7Js(ws)>
dg
dt
dJs(ws)

dt
WhereJO(wB) = T]qulpﬂ, Js(ws) = T]Rq—lpﬁ S

=ws q

(6)

:07

THe = —kod — ky(qga" ¢ — qa), 8)

with k,,, k, > 0 asymptotically stabilizes the system.
Remark 1 Simple calculations show that the control

law (8) can be rewritten in body and space coordinates,
respectively. That is,

so(n) denote the angular momentum in body and spatial

coordinate, respectively, ant(£s) = Ady(Jo(§))
Dsés —&s” D € so(n)0 Dg = qDog" 0 J5" (¢s) =

Ady(J5 () = Esés — &' EsO Es = qEoqT, s =
Ady¢ = ¢éq¢", Ey > 0.

(Canonical systerxy)
T,50(n)
(4:9)

(Body systemx )
SO(n) x so(n)
(¢;wB) = (¢,4"49)

(¢, Jo(wp))=(q,4"P")

(Space systeriis)
SO(n) x so(n)
(¢,49") = (¢, ws)
(¢,p*q") =(q, Js(ws))

Figure 1: Three coordinate systems.

3 Controller and observer design

3.1 Stabilizing controller design

dq
2 qw
dt qwB
R/
»BC 70(5(;3) = [Jo(ws),wB] + TBC ©)
T80 = —kywp —kp (44" ¢ — ¢" qa)
in body coordinates. Also
4 _,
at sS4
by L dJ,
sc s(ws) — (10)
dt
Tsc = —kyws — ky (qaa" — daq")

in space coordinates.

Proof The closed-loop stability analysis uses the fol-
lowing Lyapunov function candidate

Vi=H(q,p)+ kpU(q)
f

(@ ", I (d"P)) + kol —afa. T — qfq)
(11)

N[ =

where the first term represents the kinetic energy and the
second term represents the potential energy. We have

U(q)
dq

v=2(q—q4,v), veTSO(n)

then, the derivative along the trajectories can be com-
puted as

7= 27
1 dq q

0H .
We consider the set-point control problem of driving the = aTjﬁ "THC + kpa*q 4

attitude (¢, p) to a steady-state target attitude;, 0).
The following theorem is well-known.

Theorem 1 ([10],[17]) For the rigid body control sys-
tem

=0 ")
e p* Iy Hq"p) + TrC

={(q, —koqd — kp(qga” q — qa)) + 2ky{(q — qa, @)
= —ku(d, @) — kpla"d, qa” g+ q" qa — 21)
= _kv<Qa Q> g 07

since (¢, A) = ITracg¢TA) = 0 forall A = AT,

¢ = —¢7 € so(n). Thus, LaSalle’s Invariance Principle
can be employed to complete the asymptotic stability
proof. O



3.2 Observer design Consider the Lyapunov function candidate

We deal with the problem of obtaining the angular ve- 1
locity w (or angular momentuny(w), conjugate mo- Va :§<p
mentump) of ann-dimensional rigid body from orien- T T
tationg and torque measurement®nly. This observer + I —aq, T—aq").

design generalizes that of [15] fardimensional rigid ) o . .
body in the Hamiltonian formulation. Then, the time derivative df; along the trajectories of

the error system become
Theorem 2 Then-dimensional rigid body observer for
Hamiltonian control system (7) is

§ T oaT T st
¢ —p*q", phet - phh) (14)

; o d(pPq” — pPq”
Vo = (p*q" — p*¢”, ¥>

) dt

% =GJy (q"F " q) +u ol (I - g d(qciT)>
YHo: W,y (12) P ) A’ dt o

— I (@ P ") +om =—(p*q" = p'q" 1, J5 " (0d" — dg"h))

here —20,(4q" — 1,75  (p*q" — p*4") — Lu(aq” — 4q™))
= —1,(J5 (P'q" —*q").qq" + Gq" —2I)

u=1,(G"q—q"q) =l(qq" —4q")q —20,0,(I —4q",qq" — 4q")
vr =7uq" G+ Lp* (g — q" ) = —lulpllag” — Gg"|* < 0

+1pJ5 ' (9q" — 49" q , ,
Because equation (12) is not autonomous, LaSalle's
andly, I, > 0. Invariance Principle cannot be applied. Instead, the

) asymptotic stability follows from Barbalat's lemma
Remark 2 The observers for body and spatial coordl(See e.g. [13])0

nates system become

dé
d% =quwp t+u Remark 3 If we write z = ¢¢” € SO(n) and¢ =
A o ng(pﬁqT — p%¢T) € so(n), the observer error equa-
a [¢"p*, o] +uB tions with/, = [, = 0 become
Ypo: o _—
Up =4 q7Bq ¢ de
+L[q"%, ¢"g—¢"q] @ e
+1pq aJg (@ e~ q"d)d" @ —0,
wherews = J5 (g7 4%q) . 479 = §TaJo(@p)qTd,
and which corresponds to the rigid body equation in
dé space coordinates. The stabilization of error dynam-
. (g7 05qq™ )G+ u ics is accomplished, first, adding the potential force
thﬁ - ~1,Jg " (z—2T), and next, the dissipationl, (2% —I).
Sso 4 d'dT) _ vg We note that the mechanism of stabilization of the error
dt dynamics is quite similar to that of Theorem 1 and that
vs =Ts +1pJs (qq" —dqa”) it is possible to see this picture because we avoid param-

eterizations oS5O (n) using geometric mechanics.
wherews = Jg'(p*q"), p*¢T = Js(@s), respec- (n) g9

tively. .
4 Observer-based controller: separation
Proof The observer error evolution is governed by the  principle

following equations ) ) o )
In this last section, it is shown that a separation

d(qq™) — I T — 6TV adT principle-like property also holds for the nonlinear sys-
a8 (P*q™ = p*a")aq tem considered in this note, that is, it is possible in the
Yep —1o(qdT — 4qT) q4T .stabili.zing'control law (8), (9), (10) to replagéq” by
daT — ) its estimationp?g” .
i p P2 = 1,75 (00" — 4g7).

(13)  Theorem 3 Consider the closed-loop system described



by

—=aJy "(¢"p")
dqg . A
J qJy (g ﬂqTQ)‘*‘U

Yeoto dpt (15)
B I g+
dt
dp* R
=P )

and that with the control law
7= —kyqJy (" P " q) — kp (904" 0 — qa), (16)

where k,, k,, l,, I, > 0. Then the equilibrium

(Q7 (j?puvﬁﬁ) = (Qd7 q, Ovpu) = (qd7 qd, 07 0) of the Sys-
tem (15) is asymptotically stable.

Proof First let us prove that the estimated states ex-
ponentially converge to the real states. We augment the

Lyapunov function (14) used in Section 3.2 as:

—4q")).
(17)

1
Woe =V — 1° (P'q" —p*q", J5'(qq

Rewriting n = pfq” — p%¢", n = q¢” — §q7, then the
above becomes
1 pw 1T 1 eEs Iz
Woe = =Tr
e[ ] [ebe T s
n 1Tr p [ I —eBEs %
8 I — (qu —eFEg QZp I — (}qT

In addition, by using Schur complement, we get

I}

3
5‘/27

l 1
O<e<, | —2L— = Vo< Wi <
2)\max(E02) 2 2 %

(18)

we consider the neighborhood of equilibrium

11— qq" 2(1 —cosf) <2
ly — EAmax(Eo)* > 0.

17 < (19)
(20)

Then, the above becomes

WQE < _lp (lv - 5/\max(E0)2) HUHQ -

N | =

€ )\min

£ Amin(Es)
4 )\max EO)

=

(T (1), m)

fwl?

1 _
+ el 5 () il —

—~

<~y (1 = e (Bo)?) [n]]* = 5 cos]|T5

AM‘H

Es)
Eo)

£ AIl’lll’l —
= Smin 2075 )

2

Amm<P>{||J;1<u>||2+Hf—qq 12}
—Amin (P) min{8\min(Eo)?, 1/1,} V2

Amin (P) min{8Amin(Fo)?,1/1,}Wae <0

1
+ 5eloll I (@)linll + ~

/\

//\

2
3
where

1
s€cosf

~te(n+

Zplv > 5{lp>\max(E0)2 Scosﬁ (l +

min(Es)
(l * 2/\(E)>
min (E
2)\rr1a)E(ES(J))> lp(l” - 8/\max(EO)z)

. 2
miu (ES) > }
2Amax(Eo)

(21)

)

for P > 0. We summarize that if we choosesmall
enough that conditions (18), (21) are satisfied, then the
observer error converges to zero exponentially.

Finally, to complete the proof, choose

PN+ 1 III—qull2 <2

(22)

1
V2(0) = §||pﬁqT

The time derivative ofV,. along the trajectories of the then the observer error is exponentially stable. Consider

closed-loop system is
o= Vo — e { (i T3 ) + (o T )
+ (. g ) }
= —luly ) = o { oI5 ), I5 )

+2075 (), (T3 () = Lom)ad™ )+, J5 ()

where Jg'(n) = Esn + nEs0Es = ¢Eoq" +
aEod" = J5'(¢"p")Es — EsJg'(¢"p*) = EI.
Moreover,

2 min (E0)(€, 1) < (J5"(€): 1) < 2Amax(Eo)(€, )
[T —ql* <3= I —qll <llg—dq"|
(7 — q||2 < 2(1 —cos ) < 2= cosb||£]|2 < (€,&q)

the following Lyapunov function candidate

2)\min (Po)

V:
3 s

Vi + Wae,

and evaluate its derivative fatc o:

“in(Po){20J5 1 (0H7) , I3 (507 )

T FIP +I1 — ad" )

= Amin(P){ 15 DI + 1195 (54071
+ 11 —qd"[*} <0

Then, by LaSalle’s Invariance Principle, it follows that
the equilibrium of the closed-loop systebi-,o is
asymptotically stabled

Vs <

+ 195" (g

e(Jgt (), J5 (m)agq")



5 Global stability [7] Bullo, F. and R.M. Murray, Tracking for fully actu-

) _ ated mechanical systems: a geometric framework,
According to Milnor’s theorem [12],[16], smooth vec- Automatica 35, 17-34, 1999.

tor fields on7’SO(n) cannot be globally asymptotically
stable, and the argument thus far is local. However, [B] Byrnes, C.I. and A. Isidori, On the attitude stabi-
n = 3, with the analogy of [15], it can be shown thata lization of arigid spacecraffutomatica27, 87-95,

slight modification of the last terms of; ¢, vy in (8), 1991.
12):
(12) [9] Crouch, P.E., Spacecraft attitude control and stabi-
T,_ 4T lization: Applications of geometric control theory
dd" 4 — 4 44
—Fkpq — (Tracdqa’q) # 1) to rigid body models|EEE Trans. Automat. Conr.
v 1+ Traceqqa”) 29-4, 321-331, 1984
—kpany (Traceqa” q) = —1) ’ ’ '
szSjl(qu —4q")g . [10] Lizarralde, F. and J.T. Wen., Attitude control with-
1 Tracdgq’) (Traceqq”) # —1) out angular velocity measurement: a passivity ap-
LI (X é TracdaiT) = —1 proach,|IEEE Trans. Automat. Confr41-3, 468-
pJs (n3)4 ( €qq”) ) 472, 1996.
achieves globally asym%’toﬂgj‘”g’ftab"'ty in Theorem 1[’11] Marsden, J.E. and T.S. Ratimtroduction to Me-
2 and 3, where:* = {j;Z 0 *gl} € s0(3) andny, chanics and SymmetryTexts in Applied Mathe-
ny are the normalized eigenvector with eigenvalue 1 of matics 17, Springer-Verlag, 1994, Second Edition
a4’ q, qi™, respectively. 1999.
) [12] Milnor, J.W., Topology from the Differentiable
6 Conclusions Viewpoint University Press of Virginia, 1965.

This note was devoted to the attitude control problem3] Popov, V.M., Hyperstability of Control Systems
and design of an angular velocity observer for the mo- Springer-Verlag, New York, 1973.
tion of n-dimensional rigid body in the Hamiltonian for-
mulation. Avoiding parameterizations 60 (n), itwas [14] Ratiu, T., The motion of the free-dimensional
possible to reveal the geometric structure of the stabiliz- 9id body,Indiana U. Math. J.29, 609-627, 1980.
ing controller and the angular velocity observer, and
demonstrate that the observer-based controller, the ¢
troller (8) with the observer (12), still stabilized the ori-
gin of the closed-loop system (separation principle).
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