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Abstract 
The problems of design of state observers for exact (non-
asymptotic) reconstruction of the state with finite observation 
window are surveyed. The general optimal exact observer 
theory in function Hilbert spaces is recalled. The new 
discrete exact observer is presented. The importance of 
consideration of both output and input disturbances for 
optimal observation is pointed. 
 
1 Introduction 
In the classic control theory and its applications a common 
practice in the estimation of inaccessible for measurement 
state vector of a linear system was the use of Luenberger type 
observers. D.G.Luenberger in his PhD dissertation (1963) and 
next in [1] proposed the pole placement technique for 
calculation of the observer gain matrix. The structure of such 
observer was derived directly from the differential form of 
Kalman Filter (1959) [2], [3]. The design technique for 
optimal gain matrices in KF was based on stochastic 
properties of disturbances and least-squares approach. In both 
types of observers their structures were given by an ordinary 
linear differential equations. Hence under assumption that real 
initial state is unknown the solution of estimation problem 
could give only an estimate which tends to real state 
asymptotically. Current measurement sample of input and 
output vectors enables fast recursive calculation of current 
state estimate.  
The power of modern computers makes application of the 
other on-line observation algorithms possible. They 
reconstruct the value of the current state vector exactly but 
under condition that the calculations are based on finite time 
history of measurement samples of input and output. 
In 1996 Gilchrist [4] proposed an exact state observer based 
on so called n-observability condition. The exact state x�Rn 
was calculated from a knowledge of the system’s output at 
n  discrete measurement points which form discrete history 
output window and from the system’s continuous input 
measurements which form continuous input history window. 
The structure of the observer was derived directly from 
system output equation.  
In 1985 Wonham [11] discussed an integral observer which 
originated directly from definition of observability and used 
continuous measurements of system input and output. This 

observer has least-squares properties of state reconstruction 
error but if disturbances only in output measurements occur.  

In the 1992 Medvedev and Toivonen [5] proposed another 
version of the above continuous state observer with the use of 
discrete measurement of the output and start to call such type 
of the observer ‘finite memory deadbeat observer’ and used 
them in different application [6]. The structure of such 
discrete output deadbeat observer guarantees the minimum of 
reconstruction error (in LS sense) but also if disturbances only 
in output measurements occur. 
Some other least squares version of ‘finite memory deadbeat 
observer was presented in [7]. 
The exactness in reconstruction of the state is valid only under 
assumption of perfect input-output measurements i.e. no 
input-output noise or disturbances occur. In the practical case 
of noisy measurements the use of above-mentioned observers 
gives also reconstruction error. In these versions of observers 
it was assumed that the input function (control) is perfectly 
known and for calculation there is no need for its 
measurement. The last assumption however in practical 
application is not always proper because the input signal 
produced by actuator differs from computer control signal.  
All the above versions of exact state observers are only 
special subclasses, which may by derived from general exact 
and optimal observer theory. This theory was formulated and 
presented by Byrski and Fuksa in 1984. In [8], [9] the 
problems of general structure and optimality of the exact 
continuous state observers were solved. This theory also 
originates from definition of observability and uses functional 
analysis technique similar to presented in [10]. The authors 
proposed a deterministic approach to disturbances and to 
exact and optimal state observation for which the relations 
were formulated generally in function Hilbert spaces U, Y. 
Such type of the observer must have the structure of two 
linear continuous functionals. It is because based on two 
continuous pieces of functions u and y given on finite time 
interval, the observer should provide the real unknown 
number (vector) x�Rn. On the other hand by the Riesz 
Representation Theorem every linear continuous functional in 
Hilbert space can be expressed as inner product. Hence the 
structure of the observer has to be given by two inner 
products: one product of continuous output function y�Y and 
special observation (filtering) function G1(�)�Y and the 
second one with the input function u�U and special 
observation (filtering) function G2(�)�U on interval  [0,T]. 
After the first observation interval [0,T] the observer 



reconstructs the exact value of x(t) for �t�T. Choosing 
different input-output Hilbert spaces one can obtain different 
formula for finite state exact observer. As the second problem 
- the optimal structure of the above observer was derived. 
This optimal structure was based on optimal shape of 
functions G1(.), G2(.), which should be chosen in such a way 
that they fulfill observability requirements and minimize the 
norm of the observer in chosen Hilbert spaces Y and U. 
In this norm the weight factor � is connected with the norm of 
G1 and represents the norm of output disturbances and the 
weight factor � is connected with the norm of G2 and 
represents the norm of input disturbances. For different �, � 
different optimal observers are derived. The optimal observer 
with minimal norm guarantees minimal state reconstruction 
error for the worst case (from unit balls) disturbances of y and 
u measurements.  
The very special case (if absence of input measurement noises 
is assumed) is represented by the weight factor � equal to 
zero, �=0. For this case the optimal integral observer gives 
continuous version of observer as in [11] or as in discrete 
deadbaet observer. 
As it was pointed before in different approaches to optimal 
observation problem many authors assume that system input 
function (control) is known and it dos not have to be 
measured. Hence one can calculate that part of the system 
output, which depends on these inputs and not from initial 
conditions, and subtract it from observed data. This approach 
especially in industrial applications is not always proper. 
Theoretically the control signal is known but it represents only 
the information, which is sending to actuator and control 
valve (for instance the number of impulses). What is the real 
e.g. flow of heating steam, which is the real process input 
signal, one can check only by measurement. This 
measurement can be also affected by disturbances. Hence 
measurement errors concern both output and input signals. 
This fact motivates the need of more general statement of 
optimization problem for observer structure than e.g. in [11]. 
The optimal observer should guaranteed exact state 
observation under perfect input-output measurements and the 
minimal reconstruction error under noisy input-output 
measurements. 
In [8] and [9] it was assumed that the disturbances will have 
bounded norm (belong to the unit balls). If the spaces Y and 
U are chosen as L2 [0,T] the inner products are represented by 
an integral operator. Hence in all authors publications the 
name ‘integral observers’ was used to underline its contrary 
type to differential structure of Kalman Filter or Luenberger 
observer. The extended results of the on-line exact 
observation and application were presented in [12]–[14]. In 
paper [12], the integral observers with Expanding and Moving 
Observation Window (sliding window) and their differential 
versions were given. In paper [13] a generalization to 
disturbances from an ellipsoid was derived and in [14] the 
application to stabilization system of distillation column was 
presented. The problem of current and fast calculation of 
integrals does not belong to observation theory and is just 
numerical problem. 
The most important properties of the integral state observers 
are:  
�� Continuous measurements of input and output of the 

system, 

�� admission of noisy measurements in both u(t) and y(t) 
signals, 

�� integral description of the on-line observer (in L2[0,T]), 
�� the optimal formulas of the observer are obtained by 

minimization of its norm and depend on input-output 
disturbance norm,  

�� independence on state initial conditions, 
�� fixed finite continuous observation time interval  [0,T]. 
 
The most important properties of deadbeat observers are:  
�� Continuous function of input and discrete measurement of 

output of the system, 
�� the input is not measure or measurement is perfect,  
�� the description of the observer is by the use of sum, 
�� the observer is not optimal in general case,  
�� independence on state initial conditions, 
�� fixed finite number of output measurements.  
 
It will be easy to see that ‘finite memory deadbeat observer‘ is 
special case of general integral observer with delta 
distribution as the function of G1 and G2 which optimal 
properties result from the assumption of only output noisy 
measurements. 

In this paper also the version of discrete exact and optimal 
observer is presented, which optimal properties result from 
the assumption of input and output noisy measurements [16]. 

2 Exact observation of the state 
2.1 The integral observer for x0 of ODE 

Consider the LTI observable system given by ODE 

)t(xC)t(y
)t(uB)t(xA)t(x

�

���                          (1) 

where x(t)�Rn , u(t) �Rr and  y(t) �Rm  for �t � 0. Matrices  

A, B, C are of compatible dimensions, m<n and the initial 
state x(0) is unknown. Assume that we measure the control u 
and the output y on the interval [0,T] where T is the fixed 
observation time. Our purpose is to determine the state x(0).  
The output of system for t�[0,T] has the form  
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We will derive exemplary integral observer, which originates 
directly from observability definition as in [11]. For x(0) 
calculation one should multiply both side of the equation (2) by 
transposition ]'Ce[ At  and next integrate equation over interval 
[0,T]. If system is observable the real Gram matrix M is 
nonsingular for any T. 
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The exact state is reconstructed by the integral observer, 
which is given by two inner products in L2[0,T] function 
spaces with matrices 1G and 2G . 

2.2 The integral observer for x(T) of ODE 

Consider the LTI observable system as in (1). Assume that we 
measure continuously the control u and the output y on the 
interval [0,T] where T is the fixed observation time. Our 
purpose is to determine the state x(T) which is more 
convenient for on-line control than x(0). The output of system 
(1) for t�[0,T] has the form  
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We will derive the same type of exemplary integral observer. 
For x(T) calculation one should multiply both side of the 

equation (4) by Ce )tT(A
�
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'
 and integrate it on [0, T]. 

For observable system the real Gram matrix M is nonsingular 
for any T. 
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The exact state x(T) is reconstructed by the integral observer, 
which is given by two inner products in L2[0,T] function 
spaces with matrices 1G and 2G . 
 

2.3 Finite memory deadbeat observer 

Assume that we measure the output y of (1) in interval [0,T] at 
finite number of discrete moment of time ii hTt �� , 
i=0,...,k. The control u is measured continuously in [0,T]. Our 
purpose is to determine the state x(T). If system is observable 
then there exist such k�n that real Gram matrix Mk is 
nonsingular  
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After substitution i∆thT ii ��� , k∆T � and integer part 
of division  �/s  = � ��/sFix  the final form is 
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The similarity of final formula for x(T) to results of Section  
2.2 is quite visible.  

2.4 The observation problem in heat process 

Consider the LTI system given by PDE. One-dimensional 
parabolic heat equation is assumed for description of heat 
transfer by conduction in a homogeneous rod or thin wire of L 
length under assumption that the surface of the rod is 
insulated. By italic letter T(t,z) the temperature at the time t in 
the point z is denoted, 
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Constant k2 is called thermal diffusivity and z-denotes a 
spatial dimension. The initial condition T(0,z) is unknown 
                            T(0,z)=	(z),  for   0< z <L, 
and Dirichlet boundary conditions are given as a control 

T(t, 0) = 
1(t);  :T(t, L) = 0. 

Let us assume that initial condition is a finite sum of n 
sinusoids with unknown amplitudes xi. The reconstruction of 
infinite dimensional initial state was transformed to 
reconstruction of finite dimensional vector of unknown 
parameters x�Rn. 
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For temperature measurement in some point the ideal sensor 
located in point �, 0<�<L is used. It gives the equation for the 
system output:  y(t,�) = T(t,�). For the Dirichlet boundary 
conditions: u(t)=T(t,0) = 
1(t)  T(t,L)=0, for t>0 (the right 
hand side end is held at temperature zero) the solution of (7) is 
given by 
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This equation can be written briefly in the form: 

T T T( , ) ( , ) ( , )t z t z t zu� �0                    (10) 

where T0(t,z) depends on initial condition and Tu(t,z) on the 
boundary control u. Substituting initial condition (8) to T0(t,z) 
only the sum of finite number of elements occurs, 
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Formula Tu(t,z)  will be a sum of infinite series 
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The solution to optimal observer of x is given in [15]. 

It is characteristic that in all the examples of Sections 2.1-2.4 
that general description of linear system with unknown 
parameter x and known output y and control u has a form of 
sum of two operators  

u2Hx1Hy �� . 
The exact observer has a form of two inner products  

U2Y1 uGyGx ��  

In the next sections we will briefly recall the main formulas 
describing general, integral optimal observers theory in 
Hilbert spaces [8], [9]. 

3  Statement of the general observer problem 
Consider a linear time invariant LTI system whose output is 
given in a general operator form as the sum 

u2Hx1Hy ��                               (11) 

where the output y and control u belong to Hilbert function 
spaces Y and  U,  respectively  and  the unknown  parameter  
x � X = Rn . The maps are linear and continuous and the map 
H1 is defined as:  
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The measurements of function y and u on interval  [0,T] are 
given. The observer for system (11) should reconstruct x � X 
=Rn  hence, in general it should be determined by n-
dimensional linear continuous functionals on Y and U. By the 
Riesz Theorem every linear continuous  functional  in Hilbert 
spaces can be expressed as inner product. Hence the observer 
is assumed to have the general form  

U2Y1 uGyGx ��                   (12) 

where the maps G1 :Y� X,  G2 :U� X  are  linear, 
continuous and the operator H1�Yn : 
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In order to obtain the necessary and sufficient conditions for 
the relation (12) to be an observer for system (11) we 
substitute (11) to (12) and use the adjoint operator to H2 
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*
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Hence for equality of left and right hand side we have the 
following conditions for G1 ,G2 : 
�  observability condition    -      ker H1  =  0,    
�  identity matrix constrain for G1 –  

         nnI
�
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�  the formula for G2:    ;2H 12 GG ��
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Condition (13) takes the form of a matrix inner product in Yn  
and represents the constraint for G1 . 

There is an infinite number of exact observer pairs (G1,G2) 
which fulfill formula (12), (14) and constraint (13). 

4 The general form of optimal observer 
Assume we have an LTI observable system (11) and the 
observer (12) of the unknown parameter x.  In the space S of 
all observer pairs (G1 ,G2 ),  S = Yn � Un   we define the norm 
of the observer 
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which represents also the performance index of observation. 
The norm of the observer contains two parts connected with 
output and input measurements. Hence the value of the 
observer norm gives upper estimation of observation error 
under assumption that measurement noises occur, are 
bounded, are normalized to unit ball 1z,1z 21 ��  and are 
most dangerous. 
The error estimation for �=�=1 has the form: 

2
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Hence the norm of the observer can represent performance 
index of observation which should be minimized.  
The constraint (3) and the performance index J give the 
Lagrangian functional where vectors �i � Rn  are Lagrange 
multipliers and e'i  are  transpositions of the basis vectors in 
Rn.  
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Hence conditions of optimality for the operators G1 and G2  is 
given by 
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The final compact solution for �=�=1 is given by formula 
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Although the reconstructed state is the vector of finite 
dimension the general final formulae can be applied also to 
systems with delays and distributed parameters. The 
application of this theory to the systems described by ordinary 
differential equations ODE will be now shown.  



5 The optimal integral observer applied to x(T) for 
ODE in space L2[0,T] 

Let a linear system be given 
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where x(t)�Rn , u(t) �Rr and  y(t) �Rm  for �t 	 0, m<n. 
Matrices A, B, C are of compatible dimensions. 

Assume that we measure the control u and the output y on the 
interval [0,T] where T is the fixed observation time. Our 
purpose is to determine the state x(T). We assume:  
state space X = Rn, output space Y=(L2(0,T))m, control space 
U = (L2(0,T))r. The output of system (17) has the form (4).  

The optimal observer equation is 
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matrices G1,2 are functions of two parameters - the fixed 
observation time T and the time 
�[0,T].  In the sequel we 
will omit the first argument in writing. The constraint (13) has 
a form 
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where I is an n� n identity matrix, and relation (14) is 
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The squared norm of the observer is: 
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Optimal matrices are [8] 
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and fundamental i-th matrices for i=1,...n, 
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and Hamiltonian Matrix 
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For weight factors �=1, �=0 from the above formula one can 
obtain the same observer derived by another way in Section 
2.2. As it was said before its discrete version (deadbeat 
observer (6)) one can obtain by the use of suitable delta 
distribution as G1 and G2 functions and  �=1, �=0.       The 
solution of the optimization task for �=�=1 has simpler form 
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The real Gram matrix M-1  is of the form: 
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and two elements  of  the  fundamental  matrix  �(�)  are  
obtained from: 
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Matrices (22) for the given observation time T can be 
calculated off-line in interval [0,T] and then applied on-line in 
optimal filtering moving window [12]. The norm (21) of the 
observer is the function of observation time T. 

6 The importance of weight factors α, β 

The importance of consideration of weight factors �, � in 
(15), (21) and their influence to optimal solution is visible 
even in very simple example of first order system.  
In this case the optimal state observer can be interpreted as 
integral state filter for optimal noise filtration. 
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The norm of the observer is the function of �: 
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It means that for assumed norm of input disturbance - �, the 
estimation of maximum error is given by 
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)z,z( 21

�����                (29) 

However if we use such an observer and the real norm 
(power) of input disturbance will be ���̂ , then different 
estimation formula for error should be used with (28): 

� �� ����
T

0

2o
2

2o
1)z,z(

dt)]t(G[ˆ)]t(G[2max
21

= 

)T(sh/)ˆ(Ta2/)Tctgh()]ˆ(a2[ 22 ������������  



In the Table one can see the values of the above formula. 

            �^  
��  

0 1 5 10 20 

0 0.052 0.707 1.578 2.231 3.155 
1 0.164 0.688 1.503 2.119 2.992 
5 0.578 0.817 1.414 1.915 2.646 
10 0.900 1.038 1.465 1.866 2.481 
20 1.310 1.385 1.654 1.938 2.408 

Especially the first row is important for our considerations. It 
shows the values of errors which gives the observer from 
Section 2.2 or 2.3 ( 0ˆ,0 ���� ) working in the case when 

the real input disturbance with norm 20,10,5,1ˆ0 ���  will 
happen. Column’s minimal values (on diagonal) are the same 
as obtained from (29).  

7 The discrete version of exact and optimal observer 
in RN Hilbert space [16] 

In this Section the general formula (16) will be used for 
derivation of exact and optimal observer for SISO discrete 
system. The suitable spaces will be: Y=RN+1, U=RR+1. X=Rn.  
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The vectors y and u are N+1 samples of scalar y(t) and u(t) in 
interval [0,T]. The final state x(N) is unknown. 
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Assumption of ZOH use and u(j�)=const gives 
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where   
�
�

�
�

0

As
D BdseB .   The discrete observer is 

uGyG)N(x 21 ���                    (31) 
The norm of the observer  
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is minimized by the optimal matrices (16) which give the 
exact discrete observer G1[n�(N+1)], G2[n�(N+1)]: 

� � 1T
1

1
1

1T
1

o
1 FHHFHG �

�

�

� ;         2
o
1

o
2 HGG �� , 

Many tests in [16] were done for comparison of optimal 
discrete observer general formula (31) with �=�=1 and 
deadbeat observer (6) with �=1, �=0 (i.e. no disturbances in 
measurement of u is assumed) and the norm of the observer 
(6) is of the form 

� � �
�

�
�

n

1i
Y

i
1

i
1

T
2

T
1 g,g1G,G . 

In the presents of disturbances in control u the observer (31) 
gives better results then observer (6). 

8 Conclusions 
In the paper the survey of exact observers in Hilbert spaces is 
presented. The new version of discrete optimal observer (31) 
is presented. It was proved that information about the input 
and output disturbances (or noise) are very important for 
optimal designing of exact state observers and minimization 
of observation error. The estimation of the input disturbance 
norm (in L2[0,T] sense) and use the general observer formulae 
(16) enables designing of observers which guarantee minimal 
observation error and are better than observers of type (3), 
(5), (6). 
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