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Abstract 
 
This paper gives a formulation of 2-D adaptive parameter 
estimation (2-DAPE) problem in general case; when both of 
the 2-D space coordinates are possibly unbounded. A solution 
procedure is presented for this problem. In this solution 
procedure, the parameters of the underlying 2-D system are 
decomposed into two blocks, namely the horizontal and 
vertical blocks. The estimation of the horizontal block is 
made by means of a horizontal updating scheme, whereas the 
vertical block is to be estimated by means of a vertical 
updating scheme. The 2-D Lyapunov approach is employed 
to ensure the convergence of the presented 2-D estimation 
procedure. The computer simulation results are included to 
illustrate the effectiveness of the proposed procedure. 
 
1  Introduction 
 
Since the introduction of the first state-space model for 2-D 
systems almost three decades ago in [1], this area is yet 
undeveloped and offers a rich opportunity for research.  Many 
applications in image processing, 2-D filter design, iterative 
learning modeling and some industrial processes modeling 
and control are reported in [2-5]. The evolution of 2-D 
systems theories from the concepts and results in 1-D systems 
is well known. Correspondingly, such topics as modeling, 
stability, stabilization by the state and output feed-back, 
controllability and observability, pole placement and model 
matching, model following, optimal control problems, 
observer and state estimation, transfer function identification 
and robust control are studied in this category. However, 
many established results for conventional 1-D systems have 
not been extended to 2-D systems due to their analytical and 
structural complexity. Specifically, although the results on 
adaptive parameter estimation for linear 1-D systems have 
been well studied [6-8], there has been no known result on the 
2-D adaptive parameter estimation apart from some earlier 
discussions of this problem [9-12]. 
 
The aim of this paper is to extend the adaptive parameter 
estimation approach to 2-D systems when both of the 
independent variables of the underlying systems are 
unbounded. To the authors’ best knowledge this paper seems 
to be the first attempt in developing such adaptive parameter 

estimation procedure to cover the 2-D systems when both of 
their independent variables are unbounded. 
 
The paper is organized as follows. Section 2 formulates the 2-
DAPE problem. Section 3 reviews the previous investigations 
of the parameter estimation in 2-D case. In Section 4, the 
interest procedure of the paper is presented. In Section 5, 
stability (convergence) of the presented procedure is 
analyzed. In Section 6 we explain the implementation of the 
proposed algorithm. In Section 7 a simulation example is 
given. Conclusion is deferred to Section 8. 
 

2  Problem statement 
 
Consider a 2-D discrete time system expressed by regressor 
model: 

( , ) ( , ) , 0,1,...y i j z i j i j= θ =                     (1) 
 
where i and j  are non-negative integer-valued horizontal 
and vertical coordinates respectively, my ∈ℜ  and nz ∈ℜ  
are respectively the output and regressor vectors. The 

m n×θ∈ℜ  includes the parameters of the system, which is 
called the system parameters matrix. 
 
We define the 2-DAPE problem as follows: 
 
Assume θ  in (1) be constant but unknown, ( , )y i j  and 

( , )z i j  are measurable, by utilizing these measurements 

establish a 2-D estimator for θ , as ˆ( , )i jθ  so that: 

( )ˆlim ( , ) 0

/

i j

i and or j

θ − θ =
→∞

                            (2) 

 

3  The Previous investigations 
 
Few efforts are done to estimate the 2-D systems parameters 
[9-12], that is to estimate θ  in (1) utilizing the measurements 
of ( , )y i j  and ( , )z i j . One of the 2-D space coordinates 
(for example variable i ) was assumed to be bounded in all 
these estimation procedures, unlike the classical 2-D systems 
theories. For this reason, the general form of the all presented 
estimation algorithms was as follows: 
 

1
ˆ ˆ( 1, ) ( , ) ( , )i j i j i jθ + = θ + ∆                     (3.a) 

2
ˆ ˆ(0, 1) ( , ) ( )j M j jθ + = θ + ∆                      (3.b) 

                     0,1,..., 1 0,1,...i M j= − =  



where M  is a finite known number, which is the upper 

bound for i , and ˆ( , )i jθ is the obtained estimation for θ  at 

point ( , )i j . The 1( , )i j∆ and 2 ( )j∆  are the modifier 

terms, which were assigned in some suitable manners. 
 
Just as is inferred from (3.a), the estimation of θ  at point i  

form row j  is calculated utilizing the information of the 

previous point of the same row, that is the information at 

point ( 1, )i j− . But according to (3.b), the estimation at the 

beginning point of each row, ˆ(0, )jθ , is obtained from the 

information of the end-point of the previous row, that is the 

information at the point ( , 1)M j − . The difference between 

these algorithms is in the assignment manner of 1( , )i j∆  and 

2 ( )j∆ .  
 
Although, the appearance form of these algorithms is 2-D, but 
their nature is 1-D. To demonstrate this fact we define the 
variable k as follows:  

( 1) 0,1,..., 1 0,1,...k i M j i M j= + + = − =    (4) 
 
By this definition, (3.a) and (3.b) can be combined together. 
The result of this combination is the following 1-D algorithm:  

ˆ ˆ( 1) ( ) ( ) 0,1,...k k k kθ + = θ + ∆ =            (5) 

where ˆ( )kθ is the estimation of θ  at point ( , )i j  which is 

associated with k  according to (4), and ( )k∆  is as: 

1
1 1

( ) ( ( 1) , )
1 1

k k
k k M

M M

+ +   ∆ = ∆ − +   + +   
    (6.a) 

if     1 ( 1), 2( 1),3( 1),...k M M M+ ≠ + + +  

and: 

2
1

( ) ( 1)
1

k
k

M

+∆ = ∆ −
+

                      (6.b) 

            if      1 ( 1),2( 1),3( 1),...k M M M+ = + + +  
 

The 
1

1

k

M

+ 
 + 

denotes the integer part of 
1

1

k

M

+
+

. 

 
Obviously, none of the algorithms with structures that are 
given in (3.a) and (3.b), will not be usable when both of the 
independent variables i and j are unbounded. 
 
In the next section a comprehensive procedure will be 
presented for estimation the 2-D systems parameters. This 
procedure is truly 2-D that is neither of the variables i and j  

is bounded. Of course, the presented procedure will be usable 
when one of these variables is bounded. 
 
4  Solution procedure of the 2-DAPE problem 
 
4.1  The Generic 2-D adjustment law 
 
Consider (1), the following 2-D identification model is 
presented: 

ˆˆ ( , ) ( , ) ( , ) , 0,1,...y i j i j z i j i j= θ =         (7) 

where ˆ ( , ) m ni j ×θ ∈ℜ is an adjustable matrix and is 

considered as the estimation of θ  at point ( , )i j . 
 
The next step is the developing a 2-D adaptive law for 

adjusting θ̂( , )i j  until (2) can be established. For this 

purpose, we decompose the components of ˆ( , )i jθ  into two 

blocks, namely the horizontal and vertical blocks. Let 
ˆ ( , )h i jθ and ˆ ( , )v i jθ denote the horizontal and vertical 

blocks respectively. Based on the this decomposition the 

following 2-D generic law is proposed for adjusting the 
ˆ( , )i jθ : 

 

ˆ ˆ( 1, ) ( , ) ( , ) , 0,1,...ˆ ˆ( , 1) ( , ) ( , )

h h h

v v v
i j i j i j i j
i j i j i j

θ + = θ + ∆ =
θ + = θ + ∆

    (8) 

 

where ( , )h i j∆  and ( , )v i j∆ are respectively the horizontal 

and vertical 2-D modifier terms. 
 
The updating law (8) is similar to the Rosser state-space 

model [1] and according to that the horizontal and vertical 

blocks of ˆ( , )i jθ  are modified respectively along the 

horizontal ( )i  and vertical ( )j  directions. 
 

For running (8) the quantities ˆ (0, )h jθ  ( 0,1,...)j =  and 
ˆ ( ,0)v iθ  ( 0,1,...)i =  are needed, in addition to the modifier 

terms ( , )h i j∆  and ( , )v i j∆ . We call the quantities 
ˆ (0, )h jθ  ( 0,1,...)j =  and ˆ ( ,0)v iθ  ( 0,1,...)i =  the 

boundary conditions of the (8), which must be adjusted 

according to a suitable manner and submitted to (8). The 

adjustment of these boundary conditions is a 1-D adjusting 

problem, and we consider that as: 
 

0
ˆ ˆ(0, 1) (0, ) ( ) 0,1,...h h hj j j jθ + = θ + ∆ =     (9.h) 

0
ˆ ˆ( 1,0) ( ,0) ( ) 0,1,...v v vi i i iθ + = θ + ∆ =      (9.v) 

where 0 ( )h j∆  and 0 ( )v i∆ are appropriate 1-D modifier 

terms. 
 
Thus, the 2-D adjusting algorithm (8) needs the two minor 1-
D adjusting algorithms (9) for its boundary conditions, while 
in the 1-D case there is not the boundary conditions problem. 
This is a principal difference between the 1-D and 2-D 
adjustment algorithms. 
 
4.2  The 2-D adjusting algorithm based on the columnar 

decomposition 
 
The components of ˆ( , )i jθ  in (7) must be decomposed into 

the horizontal and vertical blocks, for constructing the 2-D 

adjusting algorithm (8), just as is explained in subsection 4-1. 

Hence similarly, the components of θ  in (1) are decomposed 

into the horizontal and vertical blocks, namely hθ  and 



vθ respectively. So that, the ˆ ( , )h i jθ  and ˆ ( , )v i jθ  will be 

respectively the estimations of hθ  and vθ  at the point 

( , )i j .There exist various methods for accomplishing this 

decomposition. Here a straightforward method, namely the 

columnar decomposition method, is considered. If another 

method is chosen, to the authors’ best knowledge seems the 

stability and asymptotic stability analysis of the obtained 2-D 

estimation algorithm will become very difficult and even 

impossible. 
 
Usually, (1) is arisen from 2-D state-space or 2-D ARMA 
equations. Therefore, without loss of generality, it is assumed 
that the regressor ( , )z i j  has more than one component. 
Hence θ  has at least two columns. Thus, the columns of θ  
and so the components of ( , )z i j  can be decomposed into 
the horizontal and vertical blocks. For this reason, (1) is 
rewritten as below form: 

( , )
( , ) , 0,1,...

( , )

h
h v

v

z i j
y i j i j

z i j

 
 = θ θ =     

      (10) 

 

where 1m nh ×θ ∈ℜ , 2m nv ×θ ∈ℜ  and 1nhz ∈ℜ , 2nvz ∈ℜ . 
 
The dimensions of this decomposition, that is the number 1n  

or 2n  is free, but their sum is n , because we have: 

( , )
, ( , )

( , )

h
h v

v

z i j
z i j

z i j

 
 θ = θ θ =      

             (11) 

We accomplish similar decomposition for identification 
model (7). Therefore (7) will be rewritten as: 

( , )ˆ ˆˆ ( , ) ( , ) ( , )
( , )

h
h v

v

z i j
y i j i j i j

z i j

 
 = θ θ      

     (12) 

where 1ˆ m nh ×θ ∈ℜ  and 2ˆ m nv ×θ ∈ℜ . 
 
Therefore, the 2-D adjusting algorithm (8) can be written as 
following compact form: 
 
ˆ ˆ ˆ ˆ( 1, ) ( , 1) ( , ) ( , ) ( , )

, 0,1,...

h v h vi j i j i j i j i j

i j

   θ + θ + = θ θ + ∆
   

=
� � (13) 

where          ( , ) ( , ) ( , )h vi j i j i j ∆ = ∆ ∆ �  
 
Here, we utilize the LMS method for determining the 2-D 
modifier term ( , )i j∆ . For this purpose, the error between 

the outputs of the system (10) and the identification model 
(12) will be considered:  

ˆ( , ) ( , ) ( , ) , 0,1,...e i j y i j y i j i j= − =             (14) 
 
The quadratic index ( , )g i j  is defined on ( , )e i j  as: 

1
( , ) ( , ) ( , ) , 0,1,...

2
Tg i j e i j Pe i j i j= =      (15) 

where m mP ×∈ℜ  is a symmetric positive definite matrix. 
 
According to the LMS method, ( , )i j∆  is chosen as follows: 

( , )
( , ) ( , )

ˆ( , )

g i j
i j i j

i j

 ∇∆ = µ − 
∇θ 

                     (16) 

where ( , )i jµ  is a positive scalar, namely the step size. 
 
It is easy to derive that: 

( , )
( , ) ( , )

ˆ( , )
Tg i j

Pe i j z i j
i j

∇ =
∇θ

              (17) 

 
Thus (13) will become: 

ˆ ˆ ˆ ˆ( 1, ) ( , 1) ( , ) ( , )

( , ) ( , ) ( , ) , 0,1,...

h v h v

T

i j i j i j i j

i j Pe i j z i j i j

   θ + θ + = θ θ
   

−µ =
� �

   (18) 

 
Considering the form of the 2-D algorithm (18), its boundary 
conditions adjustment manners, that is the 1-D algorithms (9), 
are offered as follows: 

ˆ ˆ(0, 1) (0, ) (0, ) (0, ) (0, )
Th h hj j j Pe j z jθ + = θ −µ   (19.h) 

ˆ ˆ( 1,0) ( ,0) ( ,0) ( ,0) ( ,0)
Tv v vi i i Pe i z iθ + = θ −µ      (19.v) 

, 0,1,...i j =  
 

5  Stability and asymptotic stability analysis of 
the presented procedure  

 
The estimation error at the point ( , )i j  is defined as follows: 

ˆ ˆ( , ) ( , ) , ( , ) ( , )

( , ) ( , ) ( , ) , 0,1,...

h h h v v v

h v
i j i j i j i j

i j i j i j i j

θ = θ − θ θ = θ − θ
 θ = θ θ =
 

    (20) 

 
Let the line kL  is defined as: 

{ }( , ) 0 ,0 , 0,1,...kL i j i j i j k k= ≤ ≤ + = =    (21) 
 
This line has 1k +  points; hence we define the mean square 
of the estimation error on line kL , which is denoted by 

( )e kθ , as follows: 

( , )

1
( ) ( , ) ( , )

1
k

T

i j L

e k Trace i j i j
kθ

∈

 = θ θ
 + ∑ ∑      (22) 

 
5.1  Stability and asymptotic stability of the boundary 

conditions adjusting algorithms 
 
Consider the 1-D algorithms (19.h) and (19.v), the concept of 
the stability of these algorithms is respectively as: 
 

lim (0, ) 0 , lim ( ,0) 0e j e i
j i

= =
→∞ →∞            (23) 

 
Also, the concept of their asymptotic stability is respectively 
as: 

lim (0, ) 0 , lim ( ,0) 0h vj i
j i

θ = θ =
→∞ →∞

        (24) 

 
Lemma 1. The 1-D algorithm (19.h) is stable, if the step size 

(0, )jµ  is chosen in the following interval: 



max

2
0 (0, ) 0,1,...

(0, ) (0, ) ( )T
j j

z j z j P
< µ < =

λ
 (25) 

where max ( )Pλ  denotes the maximum eigenvalue of the 

matrix P . 
 
For limitation in the paper length the proofs of the Lemmas 
and Theorems, which are based on the 2-D Lyapunov 
approach, are not given here and we will give them in the 
journal version of paper. 
 

Lemma 2.  If 1-D algorithm (19.h) is stable, and the 

regressor (0, )z j  is sufficiently general so that there exists 

the number 0
vn , such that the matrix 0 0( , )v vj nΨ , which is 

defined below, has full row rank for any beginning point j , 

then this algorithm will be asymptotically stable, too : 
 

0 0 0( , ) (0, ) (0, 1) (0, )v v vj n z j z j z j n Ψ = + + �  (26) 

 

Lemma 3. The 1-D algorithm (19.v) is stable, if the step size 
( ,0)iµ  is chosen in the following interval: 

max

2
0 ( ,0) 0,1,...

( ,0) ( ,0) ( )T
i i

z i z i P
< µ < =

λ
   (27) 

 

Lemma 4. If 1-D algorithm (19.v) is stable, and the regressor 

( ,0)z i  is sufficiently general so that there exist the number 

0
hn , such that the matrix 0 0( , )h hi nΨ  ,which is defined 

below, has full row rank for any beginning point i , then this 

algorithm will be asymptotically stable, too: 
 

0 0 0( , ) ( ,0) ( 1,0) ( ,0)h h hi n z i z i z i n Ψ = + +
 

�    (28) 

 
5.2  Stability and asymptotic stability of the 2-D algorithm 
 
The following stability definitions are presented about the 2-
D algorithm (18). 
 
Definition 1. The 2-D algorithm (18) is stable, if the error 
between the outputs of the system (10) and the identification 
model (12) vanishes in any manner we go away from the 
origin ( , ) (0,0)i j = , that is: 

lim ( , ) 0
/

e i j
i and or j

=
→∞  

 
Definition 2. The 2-D algorithm (18) is marginal 
asymptotically stable if: 

lim ( ) 0e k
k

θ =
→∞  

where ( )e kθ  is defined in (22). 
 
Definition 3. The 2-D algorithm (18) is asymptotically stable 
if: 

lim ( , ) 0
/
i j

i and or j
θ =

→∞  

 
Obviously, considering the above definitions, the 

asymptotically stability is strong than the marginal 
asymptotically stability. That is, the asymptotically stability 
implies the marginal asymptotically stability, but the reverse 
of this fact is not true in general case. 
 
Theorem 1. The 2-D algorithm (18) is stable if the following 
conditions hold: 
 
(a) The step size ( , )i jµ  is chosen in the following 

interval: 

max

2
0 ( , ) , 0,1,...

( , ) ( , ) ( )T
i j i j

z i j z i j P
< µ < =

λ
(29) 

 
(b) The 1-D algorithms (19.h) and (19.v) are 

asymptotically stable , so that the following relation 
is satisfied: 

{ }
0

(0, ) (0, ) ( ,0) ( ,0)
T Th h v v

k

Trace k k Trace k k
∞

=

   θ θ + θ θ < ∞
      ∑  

(30) 
 
Theorem 2. If the conditions of Theorem 1 hold, then the 2-D 
algorithm (18) is marginal asymptotically stable, too. 
 
Theorem 3. The 2-D algorithm (18) will be asymptotically 
stable, if the following conditions hold: 
 
(a) This algorithm is stable. 
(b) The regressor ( , )z i j  is sufficiently general, so that 

there exist the numbers hn  and vn , such that the 

matrices ( , , )h hi j nΨ  and ( , , )v vi j nΨ , which are 

given below, have full row rank for any beginning point 

( , )i j : 

( , , ) ( , ) ( 1, ) ( , )h h h h h hi j n z i j z i j z i n j Ψ = + +
 

� ��� (31.h) 

( , , ) ( , ) ( , 1) ( , )v v v v v vi j n z i j z i j z i j n Ψ = + +
 

� ��� (31.v) 

 

6 The algorithm implementation 
 
If one of the independent variables of the underlying 2-D 
system (for example the horizontal variable i ) is bounded, 
we can use the usual raster scan from left to right and from 
bottom to top for 2-D data scanning as shown in Fig. 1.  
 
Hence, in this case from (18) and (19) the algorithm 
implementation will be as follows. 
 

Step 1- choose the initial conditions ˆ (0,0)hθ  and ˆ (0,0)vθ . 
 
Step 2- for 0,1,...,i M=  do: 
 

ˆ ˆ( 1,0) ( ,0) ( ,0) ( ,0) ( ,0)
Th h hi i i Pe i z iθ + = θ −µ  

ˆ ˆ( 1,0) ( ,0) ( ,0) ( ,0) ( ,0)
Tv v vi i i Pe i z iθ + = θ −µ  

end 
 
Step 3- for 1,2,3,...j =  do: 
 

ˆ ˆ(0, ) (0, 1) (0, 1) (0, 1) (0, 1)
Th h hj j j Pe j z jθ = θ − −µ − − −  

 



        for 0,1,...,i M=  do: 

ˆ ˆ( 1, ) ( , ) ( , ) ( , ) ( , )
Th h hi j i j i j Pe i j z i jθ + = θ −µ  

ˆ ˆ( , ) ( , 1) ( , 1) ( , 1) ( , 1)
Tv v vi j i j i j Pe i j z i jθ = θ − −µ − − −  

 
      end 
end 

j

iM

�

2

1

0

 
Fig.1: The 2-D data scanning directions (variable i  is 

bounded) 
 

But, if both of the independent variables i  and j  are 

unbounded, the usual raster scan, which is shown in Fig. 1, is 
not usable. In this case, we use the diagonal data scanning as 
shown in Fig. 2. That is the 2-D data scanning on lines kL  

which are defined in (21). 
 
Thus, in this case from (18) and (19) the algorithm 
implementation will be as follows. 
 

Step 1- choose the initial conditions ˆ (0,0)hθ  and ˆ (0,0)vθ . 
 
Step 2- for 1k =  do: 
 

ˆ ˆ( ,0) ( 1,0) ( 1,0) ( 1,0) ( 1,0)
Th h hk k k Pe k z kθ = θ − −µ − − −

ˆ ˆ( ,0) ( 1,0) ( 1,0) ( 1,0) ( 1,0)
Tv v vk k k Pe k z kθ = θ − −µ − − −

ˆ ˆ(0, ) (0, 1) (0, 1) (0, 1) (0, 1)
Th h hk k k Pe k z kθ = θ − −µ − − −

ˆ ˆ(0, ) (0, 1) (0, 1) (0, 1) (0, 1)
Tv v vk k k Pe k z kθ = θ − −µ − − −  

 
end 
 
Step 3- for 2,3,...k =  do: 
 

ˆ ˆ( ,0) ( 1,0) ( 1,0) ( 1,0) ( 1,0)
Th h hk k k Pe k z kθ = θ − −µ − − −

ˆ ˆ( ,0) ( 1,0) ( 1,0) ( 1,0) ( 1,0)
Tv v vk k k Pe k z kθ = θ − −µ − − −  

 
        for 1,..., 1l k= −  do: 

ˆ ˆ( , ) ( 1, )
( 1, ) ( 1, ) ( 1, )

T

h h

h
k l l k l l
k l l Pe k l l z k l l

θ − = θ − −
−µ − − − − − −

 

 

ˆ ˆ( , ) ( , 1)
( , 1) ( , 1) ( , 1)

T

v v

v
k l l k l l
k l l Pe k l l z k l l

θ − = θ − −
−µ − − − − − −

 

       end 
 

ˆ ˆ(0, ) (0, 1) (0, 1) (0, 1) (0, 1)
Th h hk k k Pe k z kθ = θ − −µ − − −

ˆ ˆ(0, ) (0, 1) (0, 1) (0, 1) (0, 1)
Tv v vk k k Pe k z kθ = θ − −µ − − −  

end 

j

i

2

1

0 1 2

�

 
Fig.2: The 2-D data scanning directions (both variables i  

and j are unbounded) 

7  Simulation results 
 
In order to illustrate the performance of the proposed 2-DAPE 
procedure an example is considered. Suppose a 2-D system, 
which has five unknown parameters, is described by 
following ARMA model: 

( , ) ( , 1) ( 1, ) ( 1, 1)

( , ) ( 1, ) , 0,1,...

y i j ay i j by i j cy i j

du i j eu i j i j

= − + − + − −
+ + − =

 

 
The aim is to estimate the system parameters as two-
dimensionally, utilizing the measurements of the input signal 

( , )u i j  and the output signal ( , )y i j . 
 
The system model is converted to the regressor form (1), by 
the following definitions: 

[ ]
[ ]( , ) ( , 1) ( 1, ) ( 1, 1) ( , ) ( 1, )

T

a b c d e

z i j y i j y i j y i j u i j u i j

θ =

= − − − − −� � � �

 

 
We choose the following columnar decomposition: 

[ ] [ ]
[ ]

[ ]

,

( , ) ( , 1) ( 1, ) ( 1, 1)

( , ) ( , ) ( 1, )

h v

Th

Tv

a b c d e

z i j y i j y i j y i j

z i j u i j u i j

θ = θ =
= − − − −

= −
� �

�

 

The input signal and the boundary conditions of the system 
are chosen as: 

15 35

20 7

( , ) ( 1) sin( ) ( 1) cos( ) , 0,1,...

( 1, ) sin( ) , ( , 1) cos( ) , ( 1, 1) 0

jj ii

j i

u i j i j

y j y i y

ππ

π π
= − + − =

− = − = − − =
 

The true values of system parameters are assumed as follows: 
 

0.8 , 0.5 , 0.4 , 2 , 1a b c d e= = − = = = −  
 

Considering the Theorem 1, P  and ( , )i jµ  are selected as: 
1

1 , ( , ) , 0,1,...
( , ) ( , )T

P i j i j
z i j z i j

= µ = =  

It is assumed that the initial conditions of the adjusting 

algorithms, that is ˆ (0,0)hθ  and ˆ (0,0)vθ , are as zero. 
 



The obtained simulation results are shown in Figs. 3 and 4 for 
two among five parameters. Also, the Fig. 5 represents the 
mean square of the estimation error on the line kL . It is seen, 

that the obtained estimation for any parameter is converged to 
the true value of that parameter, in any manner we go away 
from the origin ( , ) (0,0)i j = . 

 
Fig. 3: The obtained estimation for b  

 

 
Fig. 4: The obtained estimation for d  

 

 
Fig. 5: The mean square of the estimation error on line kL  

 

8  Conclusions 
 
This paper has extended the adaptive parameter estimation 
procedure to 2-D systems. The 2-DAPE problem is 
formulated in a general case, when both of the 2-D space 
coordinates are possibly unbounded, and the corresponding 

solution is presented. The solution procedure is based on the 
identification model and the decomposition of columns of the 
matrix of system parameters into two blocks. 
 
If θ  in (1) has more than two columns, then the various 
methods will be possible to decompose its columns to the 
horizontal and vertical blocks. To the authors’ experiences, 
which are obtained from numerous simulations, in this case 
the optimum decomposition is achieved when the difference 
between the numbers of columns of the horizontal and 
vertical blocks is the minimum. Because with this option the 
convergence rate of the estimation is faster than others. 
 
One can combine the presented 2-D estimation procedure in 
the paper with any kind of the traditional 2-D controller in 
order to construct a 2-D adaptive self-tuning controller. 
 
Summarizing, the advantages of the presented procedure in 
comparison with those already presented in the literature ([9-
12]) are as follows: 
 
1- In the presented procedure both of the 2-D space 

coordinates are possibly unbounded, which is an 
important improvement in 2-D estimation category. 

2-  Since the presented estimation method is based on the 
identification model, if the parameters of the underlying 
2-D system to be variant then the parameters of the 
identification model, which are the estimations of system 
parameters, can adapt themselves with the system 
parameters variations and follow their variations. 
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