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Abstract: This paper presents a new on-line adaptive
identification of physical model parameters by adjusting
the parameters in the feedforward controller and feedback
PI controller for a motor drive system. The proposed
scheme is characterized by new set-up of a suitable refer-
ence model which generates signals needed to identify the
physical parameters of a two-mass motor system, such as
inertia moments of motor and load, shaft conductance,
viscous friction terms proportional to motor velocity and
squared velocity, and Coulomb friction. The adaptive al-
gorithm not only can give the model parameters but also
compensate for the unknown friction effects by adjusting
the feedforward controller. Stability is also investigated
via the ASPR property of the controlled system. The
effectiveness of the proposed scheme is examined in sim-
ulation and experiment of speed control of a two-mass
motor system.

1. Introduction

In motor velocity control, uncertain inertia moment
and nonlinear frictions sometimes degrade its control per-
formance [1]. Various robust control approaches have
been exploited previously [2]-[4], however, fine tuning of
the controller parameters is essentially needed in motor
drive systems to attain high tracking performance and
quick recovery response for stepwise torque disturbances
[5]. The closed-loop identification using only input and
output data (control torque input and motor velocity)
can hardly attain the identifiability in practical situa-
tions. Instead of such a direct identification scheme, an
indirect approach will be effective in the closed-loop iden-
tification of the physical model parameters.

Therefore, the aim of this paper is to present a new
scheme for adaptive identification of physical model pa-
rameters by adjusting the parameters in a feedforward
controller and feedback PI controller for motor veloc-
ity control. The proposed scheme is characterized by
new set-up of a suitable reference model which gener-
ates signals needed to identify the physical parameters in
two-mass motor system, such as inertia moments of mo-
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Figure 1: Two degree-of-freedom motor velocity control

tor and load, shaft conductance, viscous friction terms
proportional to motor velocity and squared velocity, and
Coulomb friction. Comparing with ordinary closed-loop
identification directly using the input-output data of mo-
tor drive system, the proposed feedforward approach can
have quick convergence and less effect of disturbances,
since the adaptive algorithm uses only signals generated
by the feedforward controller except the output track-
ing error. The convergence of the adaptation algorithm
is also investigated via the almost strictly positive real
(ASPR) property of the controlled system [6]. The ef-
fectiveness of the proposed approach is examined in nu-
merical simulation and experiment for velocity control of
two-mass induction motor with unknown inertia ratio.

2. Two-Degree-Freedom Velocity Control

Fig.1 illustrates a typical two degree-of-freedom motor
velocity control system for a two-mass motor. The PI
controller is employed to compensate for the closed-loop
response to stepwise torque disturbances. If the behavior
of the motor and load is described by an equivalent one-
mass system with 1/(TM +TL) and no nonlinear frictions
exist, the PI parameters Ke and Ti can be designed as
follows: Since Ke corresponds to the proportional gain of
the PI controller, then the closed-loop dynamics consist-
ing of the PI controller and the equivalent system can be
described by a second-order linear transfer function with
the denominator as

s2 +
TiDM + KeTi

Ti(TM + TL)
s +

Ke

Ti(TM + TL)
(1)

which is characterized by the natural frequency ωn =
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Figure 2: Schematic diagram of total control system

√
Ke/Ti(TM + TL) and the damping factor ζ = (Ke +

DM )
√

Ti/2
√

Ke(TM + TL). If the cutoff frequency ωc of
the loop transfer system is specified as

√
φ · ωn where φ

is chosen as 2, for instance, the PI controller parameters
can be given as Ke = ωcTM and Ti = φ/ ωc. Thus,
the damping factor of the closed-loop system is given by
ζ =

√
φ(ωcTM + DM )/(2ωcTM ), and then it becomes

approximately 0.7 if DM = 0 and φ = 2. However, if the
motor parameters TM and DM are uncertain, the tuning
of the PI controller parameters is needed. Moreover, if
the motor is subjected to unknown nonlinear frictions,
adaptive compensation is also needed to compensate for
the degraded performance [1].

3. Adaptive Identification of Physical
Parameters

Fig.2 illustrates the proposed scheme for adaptive
identification of physical model parameters and compen-
sator tuning in a feedforward manner in velocity control
of two-mass motor. The block surrounded by the bro-
ken line includes the PI controller with unity gain and
the two-mass motor with nonlinear friction. The fric-
tion terms include viscous friction proportional to veloc-
ity and squared velocity, and the Coulomb friction as
stated later. Conventionally these model parameters are
identified by using the input/output data {up(t), ωM (t)}
of the controlled system. However, the convergence of
the parameters is affected by disturbances, and adaptive
algorithms for rejecting the influences tend to be compli-
cated. In the proposed feedforward modeling approach,
the adaptive parameters Kd(t), Ku̇(t), Ku(t) and Kx(t),
and the PI gain Ke(t) are adjusted by forcing the output
error ey(t) to zero, where the output error is defined by

ey(t) = ym(t) − ωM(t) (2)

where ωM (t) is the motor velocity and ym(t) is the ref-
erence velocity. The proposed configuration is based on
the simple adaptive control(SAC) scheme [], however the
ordinary SAC scheme has taken care of no converged val-
ues of the adustable parameters. On the other hand,
the purpose of this paper is to give a new algorithm for
adaptively providing all the physical parameters in the
two-mass system from the adjustable parameters in the
feedforward paths, by sophisticatedly constructing the
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Figure 3: Controlled two-mass resonant system

reference model, as described later. The reference in-
put um(t) should satisfy the PE (Persistently Exciting)
property, and the input is generated in a consequent four-
mode manner consisting of acceleration, positive constant
velocity, deceleration, and negative constant velocity.

3.1 Two-mass motor system

Fig.3 show the motor drive system consisting of the
two-mass motor with nonlinear frictions and the PI con-
troller with unity gain which is employed to compensate
stepwise torque disturbances. The motor and load are
connected by a flexible shaft, and up(t) is input torque,
τc(t) torsional torque, d(t) stepwise disturbance torque,
ωM (t) motor velocity, ωL(t) load velocity. TM [s] and
TL[s] are time constants of motor and load respectively,
and TC [s] is a shaft constant. The friction effects are also
introduced such as viscous friction proportional to veloc-
ity and squared velocity and the Coulomb friction as il-
lustrated in Fig.3, where DM and DL are motor damping
constants of motor and load respectively, a and c denote
nonlinear friction constants. The units are normalized by
the maximum working velocity ωmax, hence TM [s] im-
plies the time in whcih the motor velocity changes from
zero to ωmax by the maximum working torque.

The purpose of the paper is to present an on-line
identification algorithm for giving the above all physical
model parameters {TM , TL, TC , DM . DL, a, c}.

The state space representation of the above motor
drive system is given by

ẋp(t) = Apxp(t) + Bpξ(t) + Aγpγ(ωM(t)) (3a)
yp(t) = Cp(t)xp(t) (3b)

where xp = [ωM(t), τC(t), ωL(t), xpi(t)]T , and

Ap =




−DM

TM
− 1

TM
0 1

TM
1

Tc
0 − 1

Tc
0

0 1
TL

−DL

TL
0

0 0 0 0


 , Bp =




1
TM

0
0
1
Ti




Cp = [1　 0　 0　 0] , Aγp =




− a
TM

− c
TM

0 0
0 0
0 0




where the stepwise disturbance term is omitted in the
above expression.

3.2 Construction of Reference Model

The major contribution of the paper is to clarify the
role and structure of the reference model in order to de-
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Figure 4: Reference model for two-mass motor

termine the physical model parameters in the closed-loop
control. As shown in Fig.4, the role of the reference model
is to generate the important signals which correspond to
the actual signals in the two-mass motor system, as well
as give the ordinary desired reference response. um(t) is
the reference input satisfying the PE property as men-
tioned before. The reference model consists of two roles:
One is the reference input generation part for supplying
the reference input uM(t), and the other is the reference
model with the input uM (t) for adjusting the model pa-
rameters. The total desired reference input-output prop-
erty from um(t) to ym(t) is given by

ym(t) =
1

(Ts + 1)4
um(t) (4)

where T is a time constant of the total reference model.
The state space expression of the reference model with

the input uM (t) is described by

ẋm(t) = Amxm(t) + BmuM(t) + Aγmγ(ym(t)) (5a)
ym(t) = Cmxm(t) (5b)

where xm = [xm1 xm2 xm3 xm4 xm5 xm6]T , and

Am =




0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
1
Ti

0 0 0 0 0
0 0 0 0 − 1

Ti
0

0 0 0 0 0 − 1
Ti




Bm =




0
0
1
0
0
0




, Aγm =




0 0
0 0
0 0
0 0

− 1
Ti

0
0 − 1

Ti




Cm = [1　 0　 0　 1　 0　 0]

γ(ym(t)) =
[ |ym(t)|ym(t)

tanh(α・ym(t))

]

From Fig.2, the control input is given as

ξ(t) = KT (t)r(t) (6)

r(t) = [ey xm1 xm2 xm3 xm4 uM u̇M xd1 xd2]T

K(t) = [Ke Kx1 Kx2 Kx3 Kx4 KuM Ku̇M Kd1 Kd2]T

3.3 Identification of Physical Model Parameters

The adjustable parameters in (6) are updated as fol-
lows:

K̇(t) = eyΓr(t), Γ = ΓT ≥ 0 (7)

where ey(t) = ym(t) − ωM (t).
By employing the controlled system (3) and the ref-

erence model (5) in the proposed scheme given in Fig.4,
we can give the following convergence property of the
adjustable parameter vector.
Property 1: Let the control law be given by (6) and the
parameter adaptation law be given by (7) in the con-
trolled system in the proposed structure in Fig.2. If the
control input can force the output error ey(t) to zero, the
adjusted parameters converge as

lim
t→∞ Kx1 = DM + DL

lim
t→∞ Kx2 = TM + TL − TCD2

L

lim
t→∞ Kx3 = −2TCTLDL + D3

LT 2
C

lim
t→∞ Kx4 = 0

lim
t→∞ KuM = −TCT 2

L − T 3
CD4

L + 3TLT 2
CD2

L

lim
t→∞ Ku̇M = 3T 2

CT 2
LDL − 4T 3

CTLD3
L − T 4

CD5
L

lim
t→∞ Kd1 = a, lim

t→∞Kd2 = c (8)

See Appendix 1. The property can be proved by
the aid of the command generator tracker (CGT) the-
ory which plays an important role in the simple adaptive
control [6]. See Appendix 1 as for its proof. By neglect-
ing higher orders of smaller parameters, we can solve (8)
with respect to the physical parameters to be obtained,
as

TL
∼= 3Kx3KuM

2Ku̇M

, TM
∼= Kx2 − TL, Tc

∼= − 4K2
u̇M

9K2
x3KuM

DL
∼= 3K2

x3

4Ku̇M

, DM
∼= Kx1 − DL (9)

Thus, the physical parameters can be calculated by (10)
in an on-line way, and then the proportional gain Ke(t)
of the PI controller is tuned as Ke(t) = ωCKx2(t) =
ωC(TM + TL).
Property 2: In the proposed control system in Fig.2, the
output errors are bounded in a finite region specified by

D(ex(t))

=


ex(t)

∣∣∣∣
−∞ < ex1(t) < ∞，

|ex2(t)| + |ex3(t)| + |ex4(t)| < β
θ1

θ2
β < |ex2(t)|，θ2

β < |ex3(t)|，θ2
β < |ex4(t)|




4. Discrete-Time Implementation

Fig.5 illustrates digital implementation of the
continuous-time algorithm proposed in the paper. The
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Figure 5: Digital implementation of the proposed closed-loop tuning

controlled system model discretized with a zero-order
holder does not satisfy the ASPR property since the rel-
ative degree of the discrete-time model is one. Hence,
a serial controller designed by H∞ design theory is in-
troduced to compensate the relative degree one [7]. In
the simplified implementation, by replacing the designed
transfer function from ξ̂1(k) to u′

p(k) by a phase-lead
compensator, we design the compensator as:

u′
p(k) = [1 + (1 − z−1)]ξ̂1(k) (10)

where the frequency responsw of (10) is almost same as
that of the compensator via H∞ design in the working
frequency range.

We take a δ-operation with lowpass filter to desctretize
the proposed continuous-time adaptive algorithm, where
δ = (z − 1)/T , T is a sampling interval. To reduce noise
effects, a lowpass filter 1/E(δ) is adopted to filter the
signals involving noise, as eyf (k) = (1/E(δ))ey(k) and
rf (k) = (1/E(δ))r(k). Thus, the adaptive algorithm can
be rewritten by using the flitered signals as

ξ̂1(k) = KT (k)rf (k) (11)
δKe(k) = eyf (k)γeeyf (k) − σKe(k)
δKx1(k) = eyf (k)γI1xm1f(k)
δKx2(k) = eyf (k)γI2xm2f(k)
δKx3(k) = eyf (k)γI3xm3f(k) − ρx3|eyf (k)|Kx3(k)
δKuM (k) = eyf (k)γIuM

uMf (k) − ρuM |eyf (k)|KuM (k)
δKu̇M (k) = eyf (k)γIu̇M u̇Mf (k) − ρu̇M |eyf (k)|Ku̇M (k)
δKd1(k) = eyf (k)γd1xd1f (k)
δKd2(k) = eyf (k)γd2xd2f (k)

where rf (k) = [eyf (k) xT
mf (k) uMf (k) u̇Mf (k) xT

df(k)]T ,

K(k) = [Ke(k) KT
x (k) KuM (k) Ku̇M (k) KT

d (k)]T , xmf

(k) = [xm1f(k) xm2f(k) xm3f (k) xm4f(k)]T , xdf (k) =
[xd1f (k) xd2f (k)]T , Kx(k) = [Kx1(k) Kx2(k) Kx3(k)
Kx4(k)]T , and Kd(k) = [Kd1(k) Kd2(k)]T .

We also apply the e1-adaptation law [8] for updating
the smaller parameters Kx3, KuM and Ku̇M . σ used in
the σ modification [9] is chosen as 0 < σ ≤ 1 and

Ke(k) = ωcKx2(k) if Ke(k) ≤ ωcKx2(k) (12)

Thus, Ke(k) converges to ωcKx2(k) = ωc(TM + TL) and
then the PI controller is auto-tuned.

5. Simulation and Experimental Results

The effectiveness of the proposed scheme for adap-
tive identification and compensation for friction is inves-
tigated in experiments using an induction motor. The
control purposes are the tracking ability to the refer-
ence velocity changes and the recovery performance to
torque disturbances. We examined the effectiveness of
the proposed algorithm in simulations and experiments
of velocity control, where we used two induction motors
connected by a flexible shaft, where one motor is a driv-
ing machine and the other is a load machine, and they
constitute a two-mass system. By attaching a weight to
driving motor or load motor, we can change an inertia ra-
tio (load inertia/drive inertia) as 1/3, 1, 3, as shown in
Fig.6. The motor velocity is measured by an incremen-
tal pulse encoder with resolution 1024[pulse/rev]. We
validated the obtained identified physical parameters by
comparison with the real parameter values which were
obtained via off-line identification using the M-sequence
method. The values are given as follows: TM = 0.23[s]，
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TC = 0.0016[s]，DM = DL = 0.05. Then, the experi-
mental setup is given as follows: The sampling interval
Ts = 0.001[s], the cut-off frequency is ωc = 30[rad/s], and
then the integration constant is set at Ti = 2/30[s]. On
the other hand, the time constant of reference model is
chosen T = 0.08[s]. On the setup, we consider three cases
with different inertia ratio R: (1) R = 1 : (TM = 0.23[s],
TL = 0.23[s]), (2) R = 3 : (TM = 0.23[s]), TL = 0.69[s],
(3) R = 1/3 : TM = 0.69[s], TL = 0.23[s].

Fig.7 shows simulation results of the adaptive iden-
tification and tuning algorithms. The reference output
ym(k) is changed in various speed modes consisting of
acceleration, constant velocity, decleration and zero ve-
locity. 100% stepwise torque disturbances are added at
395 [s] in constant velocity and at 896 [s] in zero velocity.
All the adjustable parameters are shown in Figs.7(b)(c).
From these estimated parameters in the case R = 1, we
can calculate the physical parameters from (9), which are
plotted in Fig.7(d). Other physical parameters can also
be identified similarly as in Figs.7(e)(f). All of the pa-
rameters converge their true values depicted by dotted
lines, even in the presence of disturbances.

Fig.8 shows the experimental results in velocity control
of an induction motor. As shown in Fig.8(a), the refer-
ence velocity is changed in four modes consisting accel-
eration, positive constant velocity, decleration, negative
constant velocity, in which the unity velocity is normal-
ized by the working velocity. By adding the weight to
the motor or load machine, we can change the inertia
ratios as R = 1, R = 3 and R = 1/3. The inertia and
damping constants of motor and load, and shaft con-
stant can be calculated from the adjustable parameters
as stated before. The dotted lines indicate the physical
parameters identified in an off-line identification using
the M-sequence. In the initial interval until 150 [s], only
larger parameters are updated and then all the param-
eters are updated after 150 [s]. It is seen from Figs, all
the physical parameters converge to the constants which
were obtained in off-line manners.8(b)∼(d).

6. Conclusions

This paper has presented the new adaptive scheme for
identifying the physical parameters of the motor drive
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Figure 7: Simulation results

system and compensating for friction effects in the feed-
forward manner. The proposed approach is character-
ized by the setup of the reference model which is derived
from the physical structure of motor drive systems and
generates the corresponding signals which are needed in
the parameter adjustment. The convergence and stabil-
ity have been investigated by assuming the ASPR prop-
erty of the input-output relation of the controlled system.
The serial compensation method has also been given to
compensate for the non-ASPR property. Finally the ex-
perimental studies have validated the effectiveness of the
proposed feedfoward type of the adaptive auto-tuning al-
gorithm in velocity control of twp-mass induction motor.
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Figure 8: Experimental results
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Appendix: Proof of Properties 1 and 2

Proof of Property 1:
From the CGT theory, the ideal control input ξ∗(t) can

be given for the controlled system (3) and the reference
model (5), as

x∗
p(t) = S11xm(t) + S12uM (t) + S13u̇M(t)

ξ∗(t) = S21xm(t) + S22uM (t) + S23u̇M (t) + Sγγ(ym(t))

From (3), (5) and the above expression, it follows that
ẋ∗

p(t) satisfies

ẋ∗
p(t) = S11ẋm + S12u̇M(t)
= S11Amxm(t) + S11BmuM (t)

+S11Aγmγ(ym(t)) + S12u̇M (t)
= Apx

∗
p(t) + Bpξ

∗(t) + Aγpγ(ym(t))
= [ApS11 + BpS21]xm(t) + [ApS12 + BpS22]uM(t)

+[ApS13 + BpS23]u̇M (t) + [BpSγ + Aγp]γ(ym(t))
(13)

Furhtermore, it leads from ym(t) ≡ ωM(t) that

ym(t) = Cpx
∗
p(t)

= CpS11xm(t) + CpS12uM(t) + CpS13u̇M(t)
= Cmxm(t) (14)

Then we have from (13) and (14) that

S11Am = ApS11 + BpS12, S11Bm = ApS12 + BpS22

S12 = ApS13 + BpS23, S11Aγm = BpSγ + Aγp

CpS11 = Cm, CpS12 = 0, CpS13 = 0

Then it follows that S21, S22, S23, Sγ are given by

S21 = [DM + DL TM + TL − D2
LTC

−DLTC(−D2
LTC + 2TL) 0 a c]

S22 = −TCT 2
L − TC(D4

LT 2
C − 3D2

LTCTL)
S23 = 3T 2

CT 2
LDL, Sγ = [a　 c]

then the ideal control input ξ∗(t) is

ξ∗(t) = S21xm(t) + S22uM (t) + S23u̇M (t) + Sγγ(ym(t))
= (DM + DL)xm1(t) + (TM + TL − D2

LTC)xm2(t)
+(−DLTC(−D2

LTC + 2TL))xm3(t) + 0・xm4(t)
+a・xm5(t) + c・xm6(t)
+(−TCT 2

L − TC(D4
LT 2

C − 3D2
LTCTL))uM (t)

+(3T 2
CT 2

LDL − 4T 3
CTLD3

L − T 4
CD5

L)u̇M(t)
+a|ym(t)|ym(t)| + ctanh(α・ym(t))

∼= (DM + DL)xm1(t) + (TM + TL)xm2(t)
+(−2TCTLDL)xm3(t) + (−TCT 2

L)uM (t)
+(3T 2

CT 2
LDL)u̇M (t) + a・xd1(t) + c・xd2(t)
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