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Abstract

This paper studies fault detection problem of linear
continuous-time periodic systems. At first, an optimal peri-
odic observer-based residual generator is derived for the case
of no model uncertainty, which achieves the best compro-
mise between the sensitivity to faults and the robustness to
unknown disturbances. Then, in order to deal with model
uncertainty, a post-filter is introduced which provides more
design freedom and the residual generator is designed to ap-
proximate the best compromise character. Periodic Riccati
differential equation and periodic differential LMI play an
important role in the computation of the optimal solution.

1 Introduction

Model based fault detection (FD) technology has attracted
much attention in the last years [5, 6]. It is well recognized
that, in order to ensure a successful detection of faults, both
the robustness of the FD system to unknown disturbances
and its sensitivity to faults should be taken into consideration.
In the context of linear time-invariant systems, a number of
approaches have been proposed for the optimal design of FD
systems [4, 5, 6]. In this paper, we are concerned with the FD
problem of linear continuous-time periodic systems, which
exist widely in different areas [1, 2]. As far as the authors
know, this problem has not yet been handled in the literature.

Model uncertainty presents one of the main challenges in
dealing with real systems. The development of periodic
Bounded Real Lemma and periodic differential linear matrix
inequality (LMI) technique stimulates a renewed high inter-
est in the control and filtering problem of periodic systems
[1]. Making use of this knowledge, we treat both polytopic
uncertainty and norm-bounded uncertainty after deriving the
optimal FD system for periodic systems without model un-
certainty.

2 Preliminary

This section presents some preliminary results on linear
continuous-time periodic systems, which play an important

role in the subsequent analysis.

Given a periodic system described by

ẋ(t) = A(t)x(t) +B(t)u(t)

y(t) = C(t)x(t) +D(t)u(t) (1)

where x ∈ Rn, u ∈ Rp, y ∈ Rm denote the vectors
of states, inputs and outputs, respectively, A(t), B(t), C(t),
D(t) are real bounded continuous periodic matrices with pe-
riod T , i.e. ∀t, A(t+ T ) = A(t), etc. Under the assumption
that the initial condition of the system is x(0) = 0, if system
(1) is stable, i.e. all the characteristic multipliers of A(t) be-
long to the open unit disk [2], then associated with it there is
a linear bounded operator Π mapping u(t) ∈ L2(R,Rp) to
y(t) ∈ L2(R,Rm). For the sake of convenience, we write
Π = (A(t), B(t), C(t),D(t)). It is well-known that the ad-
joint of operator Π is Π∗ = (−A (t),−C (t), B (t),D (t)).
The operator associated with periodic systems with only di-
rect through terms like y(t) = D(t)u(t) is denoted simply
by Π = (D(t)). If the operator Π associated to a stable pe-
riodic system satisfies ΠΠ∗ = I, then Π is called a co-inner.
If both the operator Π and its left inverse are associated to
stable periodic systems, then Π is called a co-outer.

Lemma 1 Given an operator Π = (A(t), B(t), C(t),D(t))
associated to a stable periodic system. It is co-inner, if there
exists a T -periodic symmetric positive definite matrix Q(t)
(i.e. ∀t, Q(t) = Q (t) > 0, Q(t) = Q(t+ T )), such that ∀t,

D(t)B (t) +C(t)Q(t) = 0

D(t)D (t) = I

A(t)Q(t) +Q(t)A (t) +B(t)B (t) = Q̇(t)

Lemma 2 Given an operator Π = (A(t), B(t), C(t),D(t))
associated to a stable periodic system, then Π can be fac-
torized as Π = ΠoΠi, where Πo = (A(t),−L̄(t)W̄−1(t),
−C(t), W̄−1(t)) is the co-outer andΠi = (A(t)−L̄(t)C(t),
B(t)−L̄(t)D(t), W̄ (t)C(t), W̄ (t)D(t)) is the co-inner with
L̄(t), W̄ (t) given by

L̄(t) = (Y (t)C (t) +B(t)D (t))(D(t)D (t))−1

W̄ (t) = (D(t)D (t))−1/2

and Y (t) > 0 is the stabilizing T -periodic solution to peri-



odic Riccati differential equation (PRDE)

Ẏ (t) = A(t)Y (t) + Y (t)A (t) +B(t)B (t)

− L̄(t)D(t)D (t)L̄ (t)
Lemma 1 and 2 are proved by considering the cascade con-
nection of Π and Π∗, as well as that of Πo and Πi, while
Lemma 1 builds the basis of Lemma 2. Due to limitation of
space, proofs are omitted here.

3 Problem formulation

The systems considered in this paper are described by

ẋ(t) = (A(t) +∆A(t))x(t) + (B(t) +∆B(t))u(t)

+(Ed(t) +∆Ed(t))d(t) + (Ef (t) +∆Ef (t))f(t)

y(t) = C(t)x(t) +D(t)u(t) + Fd(t)d(t) + Ff (t)f(t) (2)

where x ∈ Rn, u ∈ Rku , y ∈ Rm, d ∈ Rkd , f ∈ Rkf
denote the vector of states, control inputs, measured out-
puts, unknown disturbances and faults, respectively, A(t),
B(t), C(t),D(t), Ed(t), Ef (t), Fd(t), Ff (t) are known real
bounded continuous T -periodic matrices of appropriate di-
mensions, ∆A(t),∆B(t),∆Ed(t),∆Ef (t) are unknown
matrices representing parameter uncertainties. It is assumed
that (A(t), C(t)) is observable at each time t and sys-
tem (2) remains stable for all possible ∆A. Let ∆ :=
∆A(t) ∆B(t) ∆Ed(t) ∆Ef (t) . The following

three cases will be considered.

Case I no model uncertainty

∆ = O (3)

Case II polytopic uncertainty

∆ =
v

i=1
λi(t) Ai(t) Bi(t) Edi(t) Efi(t) (4)

where Ai(t), Bi(t), Edi(t), Efi(t) are known continuous T -
periodic matrices, λ1(t), · · · ,λv(t) are unknown periodic
quantities satisfying λi 0,

v
i=1 λi = 1.

Case III norm-bounded uncertainty

∆ =M(t)∆o(t) Na(t) Nb(t) Nd(t) Nf (t) (5)

whereM(t), Na(t), Nb(t),Nd(t) andNf (t) are known con-
tinuous T -periodic matrices,∆o(t) is unknown but bounded
by∆o(t)∆o(t) ≤ I, ∀t.
In this paper, we concentrate on the problem of residual gen-
eration. Our aim is to design an optimal residual generator
for system (2), which is sensitive to the faults and robust to
the unknown disturbances as well as the model uncertainty.

4 Optimal design of residual generator

In this section, at first we treat case I and develop an approach
to design the optimal residual generator. Then based on it, we
consider the cases with model uncertainty.

4.1 Case I:∆ = O

A linear continuous-time periodic residual generator can be
constructed as

˙̂x(t) = A(t)x̂(t) +B(t)u(t) + L(t)rb(t)

ŷ(t) = C(t)x̂(t) +D(t)u(t), rb(t) = y(t)− ŷ(t)
r(t) =W (t)rb(t) (6)

where rb ∈ Rm denotes the output estimation error, r ∈ Rkr

the so-called residual signal, L(t) the observer gain matrix,
W (t) the weighting matrix, L(t) and W (t) are T -periodic
matrices to be determined.

Let e(t) := x(t) − x̂(t). It can be easily derived that the
dynamics of residual generator (6) is governed by

ė(t) = (A(t)− L(t)C(t))e(t)
+ (Ed(t)− L(t)Fd(t))d(t) + (Ef (t)− L(t)Ff (t))f(t)
r(t) =W (t)(C(t)e(t) + Fd(t)d(t) + Ff (t)f(t)) (7)

To ensure the stability of the error dynamics, L(t) should
be chosen to make the characteristic multipliers of A(t) −
L(t)C(t) lie inside the open unit circle. Since in case of
∆ = O, the control inputs will not influence the dynamics
of the residual generator, the problem now is how to choose
L(t) andW (t) to enhance the robustness of the FD system to
the disturbances without loss of the sensitivity to the faults.

Use operators Πrd = (A(t)−L(t)C(t), Ed(t)−L(t)Fd(t),
W (t)C(t),W (t)Fd(t)) and Πrf = (A(t) − L(t)C(t),
Ef (t) − L(t)Ff (t),W (t)C(t),W (t)Ff (t)) to denote the
mapping from d(t) and f(t) to the residual r(t), respectively.
According to the theory of functional analysis, the induced
norms of operators Πrd,Πrf defined by

Πrd = sup
d∈L2−{0}

r 2

d 2

, Πrf = sup
f∈L2−{0}

r 2

f 2

represent, respectively, the maximal possible influence of the
unknown disturbances and the faults of unit energy on the
residual. Let

J =
Πrd
Πrf

Minimizing J means to reduce Πrd and increase Πrf .
Therefore, J can be taken as an index for evaluating the per-
formance of the residual generator. As a result, the optimal
design of the residual generator can be formulated as the fol-
lowing optimization problem

min
L(t),W(t)

J = min
L(t),W(t)

Πrd
Πrf

(8)

whose optimal solution is presented in Theorem 1.

Theorem 1 Given system (7) and assume that (A(t), C(t))
is observable at each time t, then Ln(t) andWn(t) given by

Ln(t) = (Y (t)C (t) +Ed(t)Fd(t))(Fd(t)Fd(t))
−1

Wn(t) = (Fd(t)Fd(t))
−1/2 (9)



solve optimization problem (8), where the T -periodic matrix
Y (t) > 0 is the stabilizing solution to PRDE

Ẏ (t) = A(t)Y (t) + Y (t)A (t) +Ed(t)Ed(t)

− Ln(t)Q(t)Ln(t) (10)

Proof: It can be easily shown that Πrd and Πrf are indeed
the following cascade connections

Πrd = ΠWΠLΠyd, Πrf = ΠWΠLΠyf

where ΠW = (W (t)), ΠL = (A(t) − L(t)C(t), L(t),
−C(t), I), Πyd = (A(t), Ed(t), C(t), Fd(t)), Πyf = (A(t),
Ef (t), C(t), Ff (t)). Optimization problem (8) can be re-
written as

min
L(t),W(t)

J = min
L(t),W(t)

ΠWΠLΠyd
ΠWΠLΠyf

(11)

Before solving (11), we consider at first

min
ΠR

Jo = min
ΠR

ΠRΠLΠyd
ΠRΠLΠyf

(12)

Note that the difference between (12) and (11) lies in that
ΠR = (AR(t), BR(t), CR(t),DR(t)), which is associated
to an arbitrarily selectable stable periodic post-filter of order
kR, appears in place ofΠW = (W (t)). ApparentlyΠW con-
stitutes only a subclass ofΠR. Thus, for any given stabilizing
L(t),

min
ΠR

Jo ≤ min
ΠW

J (13)

SinceΠLΠyd = (A(t)−L(t)C(t), Ed(t)−L(t)Fd(t), C(t),
Fd(t)) is stable, according to Lemma 2, ΠLΠyd has the co-
inner-outer factorization

ΠLΠyd = ΠdoΠdi

where Πdo is the co-outer and Πdi is the co-inner. Because
ΠRΠLΠyd is a bounded Hilbert space operator, we have

ΠRΠLΠyd = ΠRΠdoΠdi = ΠRΠdo

Setting ΠR = Π̄RΠ
−1
do , we get

Jo =
ΠRΠdo
ΠRΠLΠyf

=
Π̄R

Π̄RΠ
−1
do ΠLΠyf

Because

Π̄RΠ
−1
do ΠLΠyf ≤ Π̄R Π−1do ΠLΠyf

there is

Jo ≥ 1

Π−1do ΠLΠyf

The equality is guaranteed if Π̄R = (I). ThusΠR,opt = Π
−1
do

solves optimization problem (12). Applying Lemma 2 and
introducing relations (9)-(10), it yields

ΠR,opt = Π
−1
do = (A(t)− Ln(t)C(t),

L(t)− Ln(t),Wn(t)C(t),Wn(t)) (14)

Note that if L(t) is chosen to be equal to Ln(t), then ΠR,opt
reduces to (Wn(t)). Since for any stabilizing L(t), there is

ΠLn = ΠtempΠL

where bothΠtemp = (A(t)−Ln(t)C(t), L(t)−Ln(t), C(t),
I) and Π−1temp are associated to stable periodic systems, so

ΠRΠLnΠyd
ΠRΠLnΠyf ΠR=(Wn(t))

= min
ΠR

ΠRΠLnΠyd
ΠRΠLnΠyf

= min
ΠR

ΠRΠtempΠLΠyd
ΠRΠtempΠLΠyf

= min
Π̂R

Π̂RΠLΠyd

Π̂RΠLΠyf

≤ min
W(t)

ΠWΠLΠyd
ΠWΠLΠyf

where Π̂R := ΠRΠtemp and the last inequality comes from
(13). Thus

ΠWΠLΠyd
ΠWΠLΠyf

|L(t)=Ln(t),ΠW=Wn(t)

≤ min
L(t),W(t)

ΠWΠLΠyd
ΠWΠLΠyf

which shows that Ln(t),Wn(t) defined by (9)-(10) is the op-
timal solution to optimization problem (8).

Remark 1 From the proof we see that the residual genera-
tor can indeed also be constructed as an observer with (any)
stable error dynamics followed by a periodic post filter (14).

In summary, in case of ∆ = 0, the optimal residual genera-
tor for periodic systems can be carried out according to the
following steps, either

• solve PRDE (10) for Y (t);
• calculate Ln(t),Wn(t) according to (9);
• construct the optimal residual generator of the form (6),

or

• choose a (any) periodic observer gain matrix L(t) which
makes the characteristic multipliers of A(t) − L(t)C(t) lie
inside the open unit disk;
• solve PRDE (10) for Y (t);
• determine Ln(t),Wn(t) according to (9);
• compute the optimal post-filter by (14);
• construct the optimal residual generator of the form

˙̂x(t) = A(t)x̂(t) +B(t)u(t) + L(t)rb(t)

ŷ(t) = C(t)x̂(t) +D(t)u(t), rb(t) = y(t)− ŷ(t)
ẋR(t) = AR(t)xR(t) +BR(t)rb(t)

r(t) = CR(t)xR(t) +DR(t)rb(t) (15)

It is worth noticing that in the optimal case (6) and (15) de-
liver the same optimal dynamics

ėn(t) = (A(t)− Ln(t)C(t))en(t)
+(Ed(t)− Ln(t)Fd(t))d(t) + (Ef (t)− Ln(t)Ff (t))f(t)
rn(t) =Wn(t)(C(t)en(t) + Fd(t)d(t) + Ff (t)f(t)) (16)

while due to the introduction of the post filter, residual gen-
erator (15) provides more design freedom.



4.2 Case II and Case III: ∆ = O

Note that the optimal residual (16) represents the best com-
promise between the sensitivity to the faults and the robust-
ness to the disturbances in the case of no model uncertainty
(∆ = O). We hope that in the presence of model uncertainty
(∆ = O) the residual dynamics can approximate (16) to pre-
serve the best compromise character.

To get more design freedom, we choose residual generator

of the form (15), where L(t),ΘR(t) :=
AR(t) BR(t)
CR(t) DR(t)

are design parameters. Since ∆ = O, now the dynamics of
residual generator (15) is also related to control inputs u(t)
and governed by

ẋ
ė

=
A(t) +∆A(t) O
∆A(t) A(t)− L(t)C(t)

x
e

+
Ef (t) +∆Ef (t)

Ef (t)− L(t)Ff (t) +∆Ef (t)
Ed(t) +∆Ed(t) B(t) +∆B(t)

Ed(t)− L(t)Fd(t) +∆Ed(t) ∆B(t)
δ

rb = O C(t)
x
e

+ Ff (t) Fd(t) O δ

ẋR = AR(t)xR +BR(t)rb

r = CR(t)xR +DR(t)rb (17)

where the vector δ = [ f d u ] collects the signals
that have influence on the residual. The dynamics of resid-
ual generator (15) is stable, as long as system (2) is stable
and L(t) is so selected that the characteristic multipliers of
A(t) − L(t)C(t) belong to the open unit disk. Due to the
presence of the post-filter, we just select L(t) according to
the stability condition. Define ξ(t) = r(t) − rn(t) to repre-
sent the difference between the residual r(t) in case of model
uncertainty and the optimal residual rn(t) in (16).

Our problem is thus formulated as to determine the parame-
ters of the periodic post filter ΘR(t), such that ξ(t)→ 0.

The whole system can be arranged into the form of a lower
linear fractional connection of the following extended plant
with the post filter

Ẋp(t) = Ap(t)Xp(t) +Bp(t)δ(t)

ξ(t) = C1p(t)Xp(t) +D1p(t)δ(t) + r(t)

rb(t) = C2p(t)Xp(t) +D2p(t)δ(t) (18)

where the extended state vector Xp = x e en and
the coefficient matrices are respectively

Ap(t) = Apo(t) +∆Ap(t) (19)

Bp(t) = Bpo(t) +∆Bp(t)

Apo(t) =

 A(t) O O
O A(t)− L(t)C(t) O
O O A(t)− Ln(t)C(t)


C1p(t) = O O −Wn(t)C(t)

C2p(t) = O C(t) O

Bpo(t) =

 Ef (t) Ed(t) B(t)
Ef (t)− L(t)Ff (t) Ed(t)− L(t)Fd(t) O
Ef (t)− Ln(t)Ff (t) Ed(t)− Ln(t)Fd(t) O


D1p(t) = −Wn(t)Ff (t) −Wn(t)Fd(t) O

D2p(t) = Ff (t) Fd(t) O

∆Ap(t) =

 ∆A(t) O O
∆A(t) O O
O O O


∆Bp(t) =

 ∆Ef (t) ∆Ed(t) ∆B(t)
∆Ef (t) ∆Ed(t) ∆B(t)
O O O


As is standard, the dynamics of the whole system with δ(t)
as input and ξ(t) as output is governed by

Ẋe(t) = Ae(t)Xe(t) +Be(t)δ(t)

ξ(t) = Ce(t)Xe(t) +De(t)δ(t) (20)

whereXe(t) = [ Xp xR ] ,

Ae(t) = Aeo(t) +∆Ae(t) + B̃ΘR(t)C̃(t) (21)

Be(t) = Beo(t) +∆Be(t) + B̃ΘR(t)D̃21(t)

Ce(t) = Ceo(t) + D̃12ΘR(t)C̃(t)

De(t) = D1p(t) + D̃12ΘR(t)D̃21(t)

Aeo(t) =
Apo(t) O
O O

,Beo(t) =
Bpo(t)
O

Ceo(t) = C1p(t) O

B̃ =
O O
I O

, C̃(t) =
O I

C2p(t) O

D̃21(t) =
O

D2p(t)
, D̃12 = O I

∆Ae(t) =
∆Ap(t) O
O O

, ∆Be(t) =
∆Bp(t)
O

Use operator Πξδ to denote the mapping from δ(t) to ξ(t).
Then the norm defined by

Πξδ = sup
δ∈L2−{0}

ξ 2

δ 2

describes how well the approximation is. As a result, the
problem of selecting the optimal post filter can be reformu-
lated as

min
ΘR(t)

γ (22)

Πξδ = sup
δ=o

ξ 2

δ 2

< γ (23)

According to the periodic Bounded Real Lemma [1], for
given γ > 0, (23) holds if and only if there exists a T -
periodic matrix Pe(t) > 0 such that ∀t, the following pe-
riodic differential LMI holds Ω11(t) Pe(t)Be(t) Ce(t)

Be(t)Pe(t) −γ2I De(t)
Ce(t) De(t) −I

 < 0 (24)

Ω11(t) = Ṗe(t) +Ae(t)Pe(t) + Pe(t)Ae(t)



Depending on the forms of model uncertainty, ∆Ae(t) and
∆Be(t) in (20) may take different forms. Hence, different
techniques are suitable to handle the problem. So in the fol-
lowing we shall treat Case II and Case III separately.

Case II: Polytopic uncertainty

In this case,∆Ae(t) and∆Be(t) are

∆Ae(t) ∆Be(t) =
v

i=1
λi Aei(t) Bei(t)

Aei(t) =
Api(t) O
O O

, Bei(t) =
Bpi(t)
O

Api(t) =

 Ai(t) O O
Ai(t) O O
O O O


Bpi(t) =

 Efi(t) Edi(t) Bi(t)
Efi(t) Edi(t) Bi(t)
O O O


i = 1, 2, · · · , v (25)

Formula (24) holds if there exists a T -periodic Pe(t) > 0,
such that for i = 1, 2, · · · v and ∀t ∈ [0, T ], Ψ11(t) Ψ12(t) Ψ13(t)

Ψ12(t) −γ2I Ψ23(t)
Ψ13(t) Ψ23(t) −I

 < 0, (26)

where

Ψ11 = Ṗe(t) + (Aeo(t) +Aei(t) + B̃ΘR(t)C̃(t)) Pe(t)

+ Pe(t)(Aeo(t) +Aei(t) + B̃ΘR(t)C̃(t))

Ψ12 = Pe(t)(Beo(t) +Bei(t) + B̃ΘR(t)D̃21(t))

Ψ13 = (Ceo(t) + D̃12ΘR(t)C̃(t))

Ψ23 = (D1p(t) + D̃12ΘR(t)D̃21(t))

Then, (26) can be re-written into

Φ(t) + Γ(t)ΘR(t)Λ(t) + (Γ(t)ΘR(t)Λ(t)) < 0 (27)

where

Φ(t) =

 Φ11(t) Φ12(t) Ceo(t)
Φ12(t) −γ2I D1p(t)
Ceo(t) D1p(t) −I


Φ11(t) = Ṗe(t) + (Aeo(t) +Aei(t)) Pe(t)

+ Pe(t)(Aeo(t) +Aei(t))

Φ12(t) = Pe(t)(Beo(t) +Bei(t))

Γ(t) =

 Pe(t)B̃
O

D̃12

 ,Λ(t) = C̃(t) D̃21(t) O

There exists a matrix ΘR(t) so that (27) holds, iff [7]

Γ⊥(t)Φ(t)Γ⊥ (t) < 0, Λ ⊥(t)Φ(t)Λ ⊥ (t) < 0 (28)

Assume that Pe(t) and P−1e (t) can be partitioned as

Pe(t) =
S(t) Y (t)

Y (t) Ŝ(t)

P−1e (t) =
Q(t) X(t)

X (t) Q̂(t)
(29)

(29) holds, iff

S(t) Q−1(t), rank(Q−1(t)− S(t)) kR (30)

Substituting (21) and (29) into (28), it turns out to be

−Q̇(t) + (Apo(t) +Api(t))Q(t) +Q(t)(Apo(t) +Api(t))
+γ−2(Bpo(t) +Bpi(t))(Bpo(t) +Bpi(t)) < 0 (31)

Vl(t)

 11(t) 12(t) C1p(t)

12(t) −γ2I D1p(t)
C1p(t) D1p(t) −I

Vl (t) < 0 (32)

11(t) = Ṡ(t) + (Apo(t) +Api(t))S(t)

+ S(t)(Apo(t) +Api(t))

12(t) = S(t)(Bpo(t) +Bpi(t))

where Vl(t) = diag{V (t), I} and V (t) denotes the base of
the null space of matrix [ C2p(t) D2p(t) ] . As a result,
we get the following theorem.

Theorem 2 Given system (20) with uncertainty (25) and
γ > 0, there exists a post-filter (15) of order kR so that
Ae(t) stable and (23) holds, if there exist T -periodic matri-
ces S(t) > 0, Q(t) > 0 such that for i = 1, 2, · · · , v and
∀t ∈ [0, T ], (30)-(32) hold.

Case III: Norm-bounded uncertainty

In this case,∆Ae(t) and∆Be(t) are

∆Ae(k) ∆Be(k) =Me(t)∆o(t) Nae(t) Nbe(t)

Me(t) =
Mp(t)
O

, Mp(t) =

 M(t)
M(t)
O

 (33)

Nae(t) = Nap(t) O , Nbe(t) = Nbp(t)

Nap(t) = Na(t) O O

Nbp(t) = Nf (t) Nd(t) Nb(t)

Formula (24) holds if there exists Pe(t) > 0 and a scalar
ε > 0, such that ∀t ∈ [0, T ],

Ψ̂11 Ψ̂12 Ce(t) Pe(t)Me(t)

Ψ̂12 Ψ̂22 De(t) O
Ce(t) De −I O

Me(t)Pe(t) O O −εI

 < 0 (34)

where

Ψ̂11(t) = Ṗe(t) + Pe(t)(Aeo(t) + B̃ΘR(t)C̃(t))

+(Aeo(t) + B̃ΘR(t)C̃(t)) Pe(t) + εNae(t)Nae(t)

Ψ̂12(t) = Pe(t)(Beo(t) + B̃ΘR(t)D̃21(t)) + εNae(t)Nbe(t)

Ψ̂22(t) = −γ2I + εNbe(t)Nbe(t)

Then, (34) can be written into the form of

Φ̂(t) + Γ̂(t)ΘR(t)Λ̂(t) + (Γ̂(t)ΘR(t)Λ̂(t)) < 0 (35)



where

Φ̂(t) =


Φ̂11 Φ̂12 Ceo(t) Pe(t)Me(t)

Φ̂12 Φ̂22 D1p(t) O
Ceo(t) D1p(t) −I O

Me(t)Pe(t) O O −εI


Φ̂11 = Ṗe(t) +Aeo(t)Pe(t) + Pe(t)Aeo(t) + εNaeNae

Φ̂12 = Pe(t)Beo(t) + εNae(t)Nbe(t)

Φ̂22 = −γ2I + εNbe(t)Nbe(t)

Λ̂(t) = C̃(t) D̃21(t) O O

Γ̂(t) = B̃ Pe(t) O D̃12 O

There exists a matrix ΘR(t) so that (35) holds, iff [7]

Λ̂ ⊥(t)Φ̂(t)Λ̂ ⊥ (t) < 0, Γ̂⊥(t)Φ̂(t)Γ̂⊥ (t) < 0 (36)

Assume that Pe(t), P−1e (t) are partitioned as (29) and let

U(t) = Q−1(t) (37)

Then (36) are equivalent to U̇(t) +Apo(t)U(t) + U(t)Apo(t) + εNap(t)Nap(t)
Bpo(t)U(t) + εNbp(t)Nap(t)

Mp(t)U(t)

U(t)Bpo(t) + εNap(t)Nbp(t) U(t)Mp(t)
−γ2I + εNbp(t)Nbp(t) O

O −εI

 < 0 (38)

V̂l(t)


ˆ 11(t) ˆ 12(t) C1p(t) ˆ 14(t)
ˆ
12(t) ˆ 22(t) D1p(t) O

C1p(t) D1p(t) −I O
ˆ
14(t) O O −εI

 V̂l (t) < 0
(39)

ˆ 11(t) = Ṡ(t) + S(t)Apo(t) +Apo(t)S(t)

+εNap(t)Nap(t)

ˆ 12(t) = S(t)Bpo(t) + εNap(t)Nbp(t)

ˆ 14(t) = S(t)Mp(t), ˆ 22(t) = −γ2I + εNbp(t)Nbp(t)

V̂l(t) = diag{V (t), I, I}
And due to (37), (29) holds, iff

S(t) U(t), rank(U(t)− S(t)) kR (40)

Theorem 3 is thus obtained.

Theorem 3 Given system (20) with uncertainty (33) and
γ > 0, there exists a post-filter (15) of order kR so thatAe(t)
is stable and (23) holds, if there exist T -periodic matrices
S(t) > 0, U(t) > 0 and a scalar ε > 0, such that ∀t ∈ [0, T ],
(38)-(40) hold.

In summary, in case of ∆ = 0, the residua generators for
periodic systems with polytopic (norm-bounded) uncertainty
can be designed as follows:

• Choose a stabilizing T -periodic observer gain matrixL(t);
• Build the matrices of the extended plant according to (19);

• Given γ > 0, solve (30)-(32) ((38)-(40)) for T -periodic
symmetric positive definite matrices S(t), Q(t) (S(t),U(t));
• Reduce or increase the value of γ, iterate the last step till
the minimal γ is found and then write down the correspond-
ing S(t), Q(t) (S(t),Q(t)=U−1(t));
• To determine Pe(t), at first calculate two full column rank
matricesX(t), Y (t) satisfying

S(t)Q(t) + Y (t)X (t) = I

then solve the equation below for Pe(t)

S(t) I
Y (t) O

= Pe(t)
I Q(t)
O X (t)

(41)

• Substituting Pe(t) back into (27) ((35)) and solve it for
ΘR(t), optimization problem (22) is then solved.

5 Conclusion

In this paper, we have addressed the FD problem of linear
continuous-time periodic systems. In case of no model un-
certainty, the key point of designing residual generator with
optimal sensitivity and robustness consists in introducing op-
erators and their induced norms to formulate the optimization
problem. It is further shown that the optimal solution is re-
lated to a PDRE. After that both polytopic uncertainty and
norm-bounded uncertainty are taken into consideration by
using the periodic differential LMI technique. To solve the
PDRE and periodic differential LMIs, the algorithms given
in [3] and [1] are available.
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