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Abstract

Repetitive processes are a distinct class of 2D systems (i.e. in-
formation propagation occurs in two independent directions)
of both systems theoretic and applications interest. The feature
which makes them distinct from other classes of 2D systems
is that information propagation in one of the two independent
directions only occurs over a finite duration. Discrete linear
repetitive processes are a very important sub-class and in this
paper we study them in the behavioral setting. In particular, we
show that the key systems properties of stability and control-
lability are naturally characterized in this setting by means of
algebraic conditions on the matrices which define the model.

1 Introduction

The essential unique characteristic of a repetitive, or multipass,
process is a series of sweeps, termed passes, through a set of
dynamics defined over a fixed finite duration known as the pass
length. On each pass an output, termed the pass profile, is
produced which acts as a forcing function on, and hence con-
tributes to, dynamics of the next pass profile. This, in turn,
leads to the unique control problem for these processes in that
the output sequence of pass profiles generated can contain os-
cillations that increase in amplitude in the pass-to-pass direc-
tion.

To introduce a formal definition, let m < +oo be an integer de-
noting the pass length (assumed constant). Then in a repetitive
process the pass profile yx(p), 0 < p < m generated on pass
k acts as a forcing function on, and hence contributes to, the
dynamics of the new pass profile y1(p), 0 <p <m, k > 0.
The fact that the pass length is finite (where this is an intrinsic
feature of the process dynamics and not a simplifying assump-
tion), and hence information in this direction only occurs over
a finite duration, is the key difference with other classes of 2D
(discrete) linear systems and, in particular, those represented
by the Roesser and Fornasini Marchesini state space models
respectively (see, for example, the relevant references in[4]).

Physical examples of repetitive processes include long-wall
coal cutting and metal rolling operations (see, for example,[2]).
Also in recent years applications have arisen where adopting a

repetitive process setting for analysis has distinct advantages
over alternatives. Examples of these so-called algorithmic ap-
plications of repetitive processes include classes of iterative
learning control (ILC) schemes [1] and iterative algorithms for
solving nonlinear dynamic optimal control problems based on
the maximum principle [3]. In the case of ILC for the linear
dynamics case, the stability theory for differential and discrete
linear repetitive processes is the essential basis for a rigorous
stability/convergence analysis of such algorithms.

Attempts to control these processes using standard (or 1D) sys-
tems theory/algorithms fail in general precisely because such
an approach ignores their inherent 2D systems structure. In
particular, it ignores the fact that information propagation oc-
curs from pass to pass and along a given pass, and that the pass
initial conditions are reset before the start of each new pass.
A rigorous stability theory for linear repetitive processes has
been developed. This theory [4] is based on an abstract model
in a Banach space setting which includes all such processes as
special cases.

The purpose of this paper is to examine some of the key prob-
lems of repetitive process theory for the important sub-class of
so-called discrete linear repetitive processes, which are of par-
ticular relevance in the ILC application area, within the frame-
work of behavioral systems theory [6, 7]. In this framework an
analysis of a dynamic system (repetitive process or otherwise)
is developed using the most natural model of the system rather
than in terms of models in which inputs outputs and states are
pre-specified. This offers several advantages and allows trans-
formations of all the variables of the system rather than be-
ing restricted to the three separate classes of inputs, outputs, or
states.

The behavioral approach is inherently suitable for modeling
repetitive processes. We show how the well known model of
a discrete linear repetitive process leads to a hybrid (or a latent
variable) representation of its behavior. In this case, consider-
ing the time history of variables at all the intermediate instances
along a pass, the behavior turns out to have a finite number of
manifest variables and has also a standard, termed 1D in repet-
itive process literature, character. Hence its kernel represen-
tation can be determined by standard methods of behavioral
theory. We show in this paper that this kernel representation
can be computed by simple linear algebraic procedures with-
out recourse to polynomial methods. This further enables an



analysis of asymptotic stability and controllability properties
of these processes to be undertaken in much simpler ways than
reported previously (see, for example, [5]).

We then derive the conditions for stability and controllability
of the repetitive processes and also give results which are a
significant first step towards a procedure for obtaining the sta-
bilizing controller, which is a counterpart of the well known
constant output feedback controller in standard systems theory.
Further development of these results should make it possible
to circumvent the difficulties arising out of 2D nature of these
processes and lead to the development of a stabilization theory
by, in effect, utilizing 1D analysis.

2 Background

A discrete linear repetitive process having a K-pass memory,
i.e. when the previous K pass profiles explicitly contribute to
the current one, and having a constant pass length of m is given
by the dynamical equations,

Tr1(p+1) = Azgya(p) + Bugsa(p)
K-1
+ Z Bojyr—;(p)
j=0
Ye+1(p) = Czpg1(p) + Dups1(p)
K-1
+ Do;yr—;(p)
=0

together with boundary conditions which incorporate the his-
tory of variables of the previous pass given by

m—1

r41(0) = dir + Y Kjyk(j) (2)
j=0

where dy, is a vector with constant entries on each pass, k de-
notes the pass number or index, and p, 0 < p < m — 1 denotes
an instant during a pass. The unit pass repetitive process has
K = 1and hence in this case we set Bog = Bg and Doy = Dy.
In this paper we shall consider the unit memory case only since
the results for the K -pass memory case follow as natural gen-
eralizations.

A fundamental problem in the analysis of repetitive processes
is to determine the conditions for stability, since the stability
analysis for 1D systems does not transfer. In this paper we ap-
proach this problem by developing a hybrid model representing
the behavior of processes described by the model given above
(with dj, = 0) in which y(p) and ug(p) are manifest vari-
ables while x(p) are latent variables. In order to eliminate
the independent variable p on every pass we consider the be-
havior of all these variables for 0 < p < m — 1. Hence we
consider variables Y (k), U(k) denoting the collection of all
outputs yx(p) and inputs ug (p) respectively. Due to finiteness
of m the resulting behavior has finite number of manifest vari-

ables W = col (Y, U) and whose dynamical behavior evolves
with & as the independent variable. This leads to an equivalence
with existing theory [4] but a much more concise approach to
deriving the conditions for stability than alternatives [5].

Next we treat the question of controllability of discrete linear
repetitive processes in the behavioral framework. For this pur-
pose we consider the kernel representation of the behavior of
W (k) which can be obtained by the use of the elimination the-
orem on the hybrid model referred to above. In the behavioral
approach the variables U (k) are just treated as a subset of man-
ifest variables W (k) and the controllability of the behavior is
the existence of a patching trajectory W (k) for two arbitrary
trajectories in the behavior. We refer the reader to [6, 7] for
details and the criteria for controllability in terms of a kernel
representation in the standard case. We show that the crite-
rion for controllability can be obtained much more easily in
terms of a transformation of the manifest variables to obtain an
isomorphic behavior. The behavioral approach to controllabil-
ity subsumes the classical approach in which u(p) are inputs
and controllability amounts to driving the states (or outputs) to
a desired pass profile [5]. Finally, we show that the criterion
for controllability can be obtained using matrix computational
methods as in the classical approach.

Given the controllability analysis of the behavior of the repet-
itive process, a natural next step is to consider the problem
of closed loop eigenvalue assignment. In the case of repeti-
tive processes the meaning of eigenvalues (or poles) as well
as the concept of assignment of eigenvalues has to be redefined
from first principles. This difficulty again stems from the inher-
ent 2D nature of these processes. However the 1D equivalent
model of the behavior of W (k) referred above is a discrete time
linear time invariant behavior in which the variables Y (k) and
U (k) serve physically as collections of outputs and inputs re-
spectively but are not differentiated mathematically. Hence ob-
taining a constant gain controller of the form Y (k) = KU (k)
is analogous to the classical constant gain output feedback and
hence the exponents in the exponential solutions in the finite
dimensional (or autonomous) behavior of variables Y (k) after
such a controller is incorporated, are an analogue of the eigen-
values of the closed loop repetitive process.

We in this paper we develop results which should, with further
development, enable the assignment of the eigenvalues of the
discrete linear repetitive processes considered here to be carried
out once an analogous stabilizability condition is satisfied and
the derivation of the controller can be completed within the
framework of the 1D model. These results are unique (at this
stage) in the analysis of discrete linear repetitive processes.

3 Thebehavioral models

In this section we develop the hybrid and kernel forms of mod-
els of the behavior of the repetitive processes considered in this
wprk. A representation of the behavior of the unit memory ver-
sion of (1) and (2) can be obtained by specifying the manifest
variables. The resultant set of equations then gives a hybrid



representation of the behavior. To define the manifest and la-
tent variables we shall first consider the collections of variables
at all instances of a pass to obtain a 1D behavior, and use the
following notation

Y(k) = col (yo(p),y1(P) - Y(m-1)(P))
U(k) = col (uo(p),u1(p)...um-1)(p))
X(k) = col(zo(p),z1(p)-.-T(m-1)(p))

Thus Y (k), U(k), X (k) are vector valued variables of m vec-
tor components of the variables y (p), ux(p) and 1 (p) respec-
tively along the instances of the kth pass. Also let W (k) denote
the following vector,

which we shall consider as the vector valued manifest variable.
Then the equations (1) and (2) can be rewritten as (taking dy, =

0),
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where o denotes the difference operator o f(k) = f(k + 1) on
sequences f(k). The matrices in the above equation are given

by
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This completes the description of the latent variable (or hybrid)
representation (3) of the behavior of the repetitive process.

This is a linear time invariant discrete time behavior with a fi-
nite number of manifest variables W (k). To denote such a be-
havior in standard notation, observe that the manifest variables
W now take values in R? where ¢ = m(N, + N,,) where N,
N, are the number of y and u variables respectively (and m is
the pass length). Hence this behavior is denoted by £(Z) or by
the triple (Z,R?, B), or for ease of notation, by B.

3.1 Fundamental theorems

We now discuss two of the important mathematical facts con-
cerned with the above representation, the elimination theorem
and the module behavior correspondence [8] which form fun-
damental pillars of the behavioral theory. As observed in the
above model the matrices of the representation (3) are defined
over the polynomial ring R[o]. Let the collection of all se-
quences f(k),k =0,1..., f(k) € R be denoted as V. Then
V is a module over the commutative ring R[o] under the oper-
ation o f(k) = f(k + 1). The solution trajectories of variables
W (k) and X (k) are matrices whose entries are also such se-
guences. Hence the behavior of W is also defined as a module
over this ring.

This last fact means that all of the techniques of behavioral
theory are applicable to the processes considered in this paper
since the manifest and latent variables are defined over a finite
Cartesian product of the module V. The elimination theorem is
stated next.

Theorem 1 Let B be a behavior whose trajectories belong to
Y and given by a latent variable representation

R(o)w(n) = M(0)l(n)

If Q(o) isamatrix whose rows generate the R[¢]-module of re-
lations of rows of thematrix M (o) then akernel representation
of B isgiven by

Q(o)R(o)w(n) =0

The elimination theorem establishes that a behavior over V rep-
resented by a latent variable representation has a kernel rep-
resentation. We omit the proof of this theorem as it can be
developed by, in effect, routine modifications to that for the
well known discrete time case of behavioral systems over the
ring Rlo, o~!] and trajectories defined over two sided infinite
sequences [6]. Next we state the theorem on module behav-
ior correspondence for behaviors in terms of matrices of ker-
nel representations. (The notation M (R(o) denotes the R[o]-
module generated by the rows of the matrix R(c)).

Theorem 2 Let R;(o)w;(n) = 0 be kernel representations of
behaviors B; respectively. Then B; = B, if, and only if, there
isa unimodular matrix U (o) such that R, (c) = U(o)R2(0).
Also By C B, if, and onlyif, M(RQ(O)) C M(Rl(a))

We again omit the proof of this result as it follows routinely
from the discrete time results of [8].

Using these results, we can compute the kernel representation
of the behavior of W (k) with the help of following lemma.
We denote by rel P(o) the module of relations of the rows of
a matrix P(co) over the polynomial ring R[o] and denote by
< P(o) >, the module generated by its rows over this ring.
When P is a constant matrix we denote the vector spaces of
relations of rows of P and that generated by its rows over the
real field by the same symbols.
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Proof: Follows by computing the relations for m = 3 and then
by induction. The details are mainly computational and are
omitted.

Proposition 1 The behavior of W (k) hasthe kernel represen-
tation

([ oI +(QoK — Do) o(QoB—-D) ])W(k)=0 (4)

and the variables U (k) are maximally free.

Proof. The module of relations of the rows of the polynomial
matrix o[QT CT]7 is given by that of the relations of the con-
stant matrix [QT CT]T. This linear algebraic computation is
given by the above lemma. The result now follows on applying
the elimination theorem to the latent variable model. Note that
W(k)T = (Y(k)T,U(k)T). Since det(cT+(QoK—Dy)) # 0
it follows that U (k) are free variables.

We have thus obtained the hybrid and kernel representations of
the behavior of the manifest variables . In the next section
we employ these to obtain the criteria for stability and control-
lability.

4 Stability and controllability analysis

The derivation of the kernel representation of the behavior of
the repetitive system in terms of the manifest variable W was
carried out in the last section. This computation turned out to
be greatly simplified due to the fact that the module of relations
of the polynomial matrix on the right hand side of (3) has the
same generators as that of the vector space of relations of rows
of the constant matrix col [Q) C]. Hence the cumbersome com-
putation of relations of a polynomial matrix usually required in
elimination of latent variables is completely avoided. We now
develop the stability and controllability analysis of the system

. @).

4.1 Stability criterion

From a behavioral point of view, stability (asymptotic stability)
of a behavior is characterized by uniform boundedness (asymp-
totic decay) of all of its trajectories. Hence such a notion is
applicable only to behaviors which are autonomous i.e. those
which do not have free (or input) variables since such variables

can always be chosen to be unbounded. Hence it is necessary to
define stability of repetitive processes described by (1) and (2)
in terms of variables whose laws of motion determined by these
equations are autonomous. A physically meaningful notion of
stability in this context is given by

Definition 1 A discrete repetitiveprocess described by (1) and
(2) is externally stable if for u(p) = 0foral 0 <p<m —1
and k¥ = 1,2,... the solutions y(p) are uniformly bounded
(tend to zero) for k = 1,2,... (for k — oo) under arbitrary
initial conditions yo(p) for these variables for all 0 < p <
m — 1.

Thus it is necessary to verify from the model (4) that the be-
havior of the variables Y (k) when U(k) = 0 is autonomous
and then determine the stability of the behavior under the con-
ditions of zero U (k). The kernel representation (4) shows that
this is precisely the case i.e. when U(k) = 0 the resultant be-
havior of Y (k) is represented by

(01 + QoK — Do)Y (k) =0 (®)

Hence the presence of oI term shows that the matrix of the ker-
nel representation of Y (k) under the condition that U (k) = 0
is nonsingular and hence this behavior autonomous. We have
thus established the external stability of a repetitive process de-
scribed by (1) and (2) which is formally stated as follows.

Theorem 3 A discrete linear repetitive process described by
(1) and (2) isexternally stableif, and only if, the matrix (Do —
QoK) has all its eigenvalues inside the open unit disc of the
complex plane.

Proof. From the kernel representation (4) of the behavior it fol-
lows that the laws of the behavior of Y (k) under initial condi-
tions and zero inputs U(k) = 0 for all k are given by choosing
U(k) = 0in (4). These are precisely given by (5). Clearly the
presence of oI term shows that this behavior is autonomous.
The solution this system is given by

Y (k) = (-1)*(QoK — Do)*Y (0)

The theorem now follows readily from the above expression.

The above stability criterion was also obtained in [5] however
the above proof is much simpler due to the direct approach fa-
cilitated by notions of behavioral theory. In particular, it is a
simpler proof of the property termed asymptotic stability by
[5] which has a well defined physical meaning and is the es-
sential requirement of any physically relevant application of
repetitive process theory. Moreover, we will show later that the
behavioral setting has (with further development) the potential
to enable the design of a stabilizing control law — a key task
which has proved to be very difficult to formulate in repetitive
process theory (and other classes of 2D systems) beyond ob-
taining conditions for stability under a control law.



4.2 Controllability analysis

We now take up investigation of controllability of discrete lin-
ear repetitive processes from a behavioral point of view. For
completeness of exposition we first recall the property of con-
trollability of a behavior which appears quite distinct from the
classical nation of controllability in (1D) state space models.
Let B denote a (1D) linear time invariant behavior in the space
V7 with manifest variables . Recall that this space is a mod-
ule over the polynomial ring R[o] and from the fundamental
theory of behaviors there exists a kernel representation of B
of the form R(c)W (k) = 0. The behavioral interpretation of
controllability for such a system is given by

Definition 2 The behavior B is said to be controllable if for
any two trajectories Wy (k), Wa (k) in B there exists a time n
and a trajectory W (k) in B such that

W(k) = Wi(k)
= Wa(k)

fork=0,1,...,n
fork > (n+1)

From the above definition it follows that the behavioral inter-
pretation of controllability does not depend on any concept of
state. It is for this reason that the behavioral concept of control-
lability is useful even when there is no state space representa-
tion available. A very valuable fact for behavioral theory is that
the behavioral interpretation of controllability when applied to
a (1D) state space system turns out to be the same as that of the
classical concept of controllability of state from the inputs [7].
In terms of a kernel representation a criterion for controllability
of a behavior is given by the following.

Proposition 2 Consider a behavior B given by a kernel repre-
sentation R(o)W (k) = 0 inwhich thematrix R(o) hasr rows
all of which are linearly independent over the ring R[o]. Then
B is controllable if, and only if, there is no complex number A
such that rank R()) < r.

We omit the proof of this result as it can be easily constructed
in a very similar manner to the well known proof in the dis-
crete time case where the polynomial ring is R[o, o ~1] and the
space of sequences V consists of all sequences over Z, rather
than only the nonnegative integers considered in this paper [6].
Note, however, that the above criterion can pose a numerical
hurdle in its implementation since it depends on the existence
(or a lack) of zeros of the polynomial matrix R(c). Although
such computations can be performed using polynomial division
and the theory of polynomial matrix triangularization, such
polynomial computational tasks are considered to be exhaus-
tive from point of view numerical stability and floating point er-
ror accumulation, especially for large dimensions and degrees
of matrices R(o). Hence matrix computational procedures are
preferred in practice.

We can now immediately apply the above criterion to the kernel
representation (4) of our discrete linear repetitive process. In
our problem we can in fact derive a criterion for controllability

for the repetitive process which involves purely linear algebraic
computations instead of polynomial computations due to the
first order nature of our kernel representation (4).

Introduce now the notation, My = QoK — Do and Np =
QoB — D. Also we shall now use the classical state space
terminology of calling a pair of matrices (A, B) controllable if
they satisfy the following.

Definition 3 A pair of real matrices (A B), where A square
and B has the same number of rows as A is said to be control-
lable provided rank[B AB ... A""'B] = n.

Theorem 4 The behavior of W (k) represented by (4) is con-
trollableif, and only if, the pair (Mo, MyNy) iscontrollable.
Proof. The kernel representation (4) is of the form

(oI + My)Y (k) + oNoU (k) =0

Observe that the matrix R(o) in this representation has full row
rank. Moreover the above representation is also of the form

(oI No] + [Mo 0]) [ 583 ] — 0
Note that
ker[I No] = im [ _?70 ]

Consider the nonsingular transformation
Y(k) = -NoZ'(k)+ Z*(k)  U(k)=2Z'(k) (6)

of the manifest variables W (k). Then it can be shown that
the behavior of W is controllable if, and only if, Z!, Z2 is
controllable since the above transformation is nonsingular. The
behavior of these new variables is obtained by substituting the
transformation in the kernel representation, which gives

(o + Mo)Z*(k) — (MoNo)Z* (k) = 0 (7

The result thus follows on using the well known classical con-
trollability criterion of state space theory.

A major advantage of the above result is now clear. The cri-
terion of controllability of (4) is stated in terms of the control-
lability of a pair of matrices in its representation instead of in
terms of the roots of the polynomial matrix in the kernel rep-
resentation. Hence the above criterion can be computed using
matrix computations and is equivalent to that of Theorem 1 of

(5].

In physical terms, the property of controllability characterized
here is equivalent to the existence of an admissible input se-
quence which will drive the process to produce a pre-specified
pass profile on a pre-specified pass humber — see [2] for a
discussion of why this is physically meaningful for repetitive
processes. As with other classes of 2D linear systems, it is also
essential to note that controllability is not a single concept (see
[5] and the relevant cited references).

In the next section we shall utilize the representation (7) to pro-
vide some original results on the critical problem of finding a
stabilizing controller for the repetitive processes considered.



5 Stabilization and eigenvalue assignment

The problem of stabilizing discrete linear repetitive processes
described by (1) and (2) is now considered. We aim to solve
this problem in the output feedback form as this is most de-
sirable from a practical point of view. Consider the behavior
of the manifest variables W (k) which consists of the variables
Y (k) and U (k) which are traditionally output and input vari-
ables of the repetitive process. This behavior is given by the
kernel representation (4). A stabilizing controller for this be-
havior is defined as follows.

Definition 4 Let B be the behavior of W represented by (4). A
behavior B. represented by R.(o)W.(k) = 0 issaid to bea
stabilizing controller for B if 1) the number of variables T, are
same asthat of W and 2) the behavior BN B, isasymptotically
stable. If such a behavior B, exists we call B stabilizable.

These conditions imply that TV, can be partitioned in the vari-
ables Y., U, of same dimensions as that of Y, U respectively
and that the behavior represented by

[ R(0)

Re(0) ] Wik) =0

is autonomous and asymptotically stable and moreover we have

Definition 5 Let W be partitioned as col (Y U) in which U
isa maximal family of free variables (or inputs) and let W, be
manifest variables of the stabilizing controller with the parti-
tion col (Y. U.). Then B, is said to be a regular stabilizing
controller if Y, arefree variablesin the behavior B..

In the notation of the Theorem 4 of the last section we can first
establish the stabilizability of B as follows. Recall that in the
classical notion of stabilizability, a pair of matrices (4 B) (4
square and B with same number of rows as in A) is said to
be stabilizable if there exists a matrix F' such that A + BF' is
Hurwitz i.e. has all its eigenvalues inside the unit circle.

Proposition 3 Bisstabilizableif thepair (Mg, MyNy) issta-
bilizable.

Proof. As in the case of Theorem 4 of the last section, con-
sider the behavior of Z! and Z2 given by (7). If the pair
(Mo, MoNy) is stabilizable, there exists F' such that the law
Z' = F Z? stabilizes the behavior, i.e. the behavior

My —MyN,
“F I

is asymptotically stable. However the transformation (6) is
nonsingular, hence substituting Z!, Z2 in terms of Y, U it fol-
lows that there is a behavior B, such that BN B, is nonsingular
and asymptotically stable.

Although the above propaosition gives a sufficient condition for
stabilizability of the behavior of W it is as yet not clear whether

there is a regular stabilizing controller. This problem is ad-
dressed is currently under investigation and will be reported on
in due course.

6 Conclusions

It is shown in this paper that the class of discrete linear repet-
itive processes can be fruitfully investigated using the ideas of
behavioral systems theory. Criteria for stability and controlla-
bility are derived in a direct manner using behavioral concepts.
These conditions are also expressed in terms of algebraic con-
ditions reminiscent of the classical state space theory. Our ma-
jor conclusion is that the analysis and control of linear repet-
itive processes in the behavioral setting is a potentially very
powerful approach. This paper has reported the first substan-
tial progress in this respect.
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