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Abstract

Shunt active power filters are proved as useful elements to cor-
rect the distorted currents caused by nonlinear loads in power
distribution systems. This work presents an all digital ap-
proach, based on the repetitive control technique, for their con-
trol. The design is performed for the particular case of single-
phase shunt active filter with a full-bridge boost topology. Sev-
eral simulation results are also presented to show the good be-
havior of the closed loop system.

1 Introduction

In the last years, typical power distribution systems have a pro-
liferation of nonlinear loads such as power electronic convert-
ers. This fact has deteriorated the power quality of electrical
power systems. In particular, voltage harmonics and power
distribution equipment problems result from the current har-
monics produced by nonlinear loads. This fact has lead to the
proposal of more stringent requirements regarding power qual-
ity like the collected in the standards IEC-61000-3-{2,4} and
IEEE-519.

A lot of work have been done in the area of active filter con-
trol and among others could be cited [1, 2]. But it seems that,
as a conclusion, the most important fact is the necessity of
high gain current control loops [2]. Perhaps the easiest way
to obtain it is using some kind of hysteresis controller (or re-
lay controller). However, in the digital control area, there is a
technique called repetitive control that allows to design control
loops with high gain in the harmonic frequencies of a funda-
mental one. This approach can supply the necessary high gain
requirements of the current control loops in active filters. Pre-
viously, this technique has been applied to inverter and PWM
rectifier control [8, 7]. This work uses the repetitive control
technique to design a high gain current digital control loop for
a single-phase shunt active filter.

This paper is organized as follows. Section II presents the prob-
lem and the specifications for the closed loop system. Section
III shows the multi-loop controller design. Section IV collects
several simulation results of the system. And, finally, Section
V summarize the results of this work.

2 Problem statement and specifications

Fig. 1 shows the layout of the system under study: a mixed
linear and nonlinear load connected to a power source with
an internal impedance. The nonlinear load draws a distorted
current waveform (non-sinusoidal shape) with the same funda-
mental period as voltage but with high order harmonic content.
Also, the linear load can demand some reactive power from
the source and, in consequence, its sinusoidal current has a lag
with respect to the voltage waveform.
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Figure 1: Single-phase parallel active filter connected to a net-
work with a linear and a non-linear load.

The averaged (at the switching frequency) model of the full-
bridge boost active filter is given by

Lẋ1 = −rx1 − x2u + vs (1)

Cẋ2 = x1u (2)

where x1 is the inductor current and x2 is the DC capacitor
voltage; vs = E sin(ωrt) is the voltage at network terminals;
r sums the parasitic resistance of all the converter elements;
and L and C stands for the inductor and the capacitor of the
converter. The control variable u takes its value in the closed
real interval [−1, 1] and represents the averaged value of the
PWM (pulse-width modulated) control signal injected to the
real system.

The control objectives are: constant average value of the volt-
age at the DC bus capacitor, i.e. < x2 >∗

0= Vd, and sinu-
soidal source current in phase with the voltage waveform, i.e.
i∗s = I∗d sin(ωrt). These two objectives define a non-standard
control problem: the first one is a regulation objective but the



second one is not a tracking specification because only a shape
and not a function is desired, i.e. I∗d is not known a priori and
it must take the adequate value to maintain the power balance
of the system. This special form for the problem specifications
implies the particular structure of the controller loops described
in the next section. It is important to remark that the controller
structure will permit to overcome the inherent limits to the non-
minimum phase characteristic of the boost full-bridge active
filter.

3 Control Design

Assuming that v = ux2 and y = [x1,
1
2x2

2]
′ equations (1)-(2)

can be restated as

Lẏ1 = −ry1 − v + vs (3)

Cẏ2 = y1v (4)

where y1, y2 are the inductor current and the DC bus capacitor
voltage squared and divided by 2. The new input variable for
the plant is v.
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Figure 2: Controller block diagram showing the current and
voltage loops.

The controller is composed by two digital control loops as it
can be seen in Fig. 2. The inner loop is the current control loop.
Its function is to shape the source current is to a sinusoidal in
phase with the voltage source vs. To get this objective a current
sensor is placed on the network terminals and this current is
used as the feedback signal in the current control loop. A point
worthy of mention is that no current sensors are necessary at
the load terminals nor at the active filter inductor. In this case,
the load current is seen as a disturbance signal for the source
current control loop, see Fig. 3. However, this approach has
as drawback that the active filter and control loops dynamics
affect the active power flow from the source to the load and
then, the outer voltage loop must be slightly faster in order to
cope this problem.The current control loop works at a sampling
frequency equal to the switching frequency of the active filter.

The outer control loop is the voltage loop. Its main function is
to maintain the DC bus voltage close to the reference value in
spite of the load changes in the system. Since the inner current
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Figure 3: Block diagram for equation 3.

loop controls the source current and its reference is the output
of the voltage controller multiplied by a sinusoidal carrier sig-
nal in phase with the source voltage, to keep the DC bus voltage
close to the reference value can be seen as a way to assure the
power balance of the active filter plus load set.

3.1 Current loop design. A repetitive control approach

The continuous time transfer function that describes the unper-
turbed dynamic behavior of equation (3) is

Gp(s) =
Y1(s)
V (s)

=
−1/r

L
r s + 1

. (5)

This transfer function is sampled with a zero-order hold at a
sampling frequency equal to the switching frequency of the
converter giving as a result Gp(z), and then this function is
taken as a plant for the digital current controller design as it
can be seen in Fig. 4.
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Figure 4: Repetitive controller scheme for the current loop.

Repetitive controllers are usually implemented in a “plug-in”
fashion, that is to say the repetitive compensator is used to
augment an existing nominal controller, Gc (z) (Fig. 4). This
nominal compensator is designed to stabilize the plant, Gp (z),
and provides disturbance attenuation across a broad frequency
spectrum. This scheme was first introduced by Inoue et al. [5].

The repetitive controller is composed by the combination of
three lineal systems: a time delay z−N which, together with
the positive feedback loop, is in charge of introducing infinite
gain at harmonic frequencies; a null-phase FIR low pass filter
F (z) which reduces the gain of the abovementioned loop at
those frequencies where system behavior is not properly mod-
elled and; finally, a linear system Gx (z) which is designed to
assure closed loop stability. It is important to remark that the
FIR filter F (z) reduces the repetitive loop gain to finite val-
ues for all the frequencies endowing it with a general low-pass
shape. In order to obtain a stable closed-loop system the suffi-
cient conditions of Proposition 1 can be used.

Proposition 1 ([3]) The closed-loop system of Fig. 4 is stable
if the following conditions are fulfilled:

1. The closed loop system without the repetitive controller is



stable, i.e. Go (z) � Gc(z)Gp(z)
1+Gc(z)Gp(z) is stable.

2. ‖ F (z) ‖∞< 1.

3. ‖ 1 − Go (z)Gx (z) ‖∞< 1, where Go is the closed loop
transfer function without the repetitive plug-in controller
and Gx is a design filter to be chosen.

Comments: (with respect to the conditions stated in previous
Proposition)

• Cond. 1: This can assured by designing Gc (z) properly.
It is advisable to design the controller Gc(z) with a higher
enough robustness margin.

• Cond. 2: There is no problem about the causality of F (z)
because it is series connected with the delay z−N and the
repetitive loop will be executed as a whole in controller
real-time operation.

• Cond. 3: One trivial structure which is often used is [6]:
Gx (z) = krGo (z)−1. This structure can only be used
if Go is a minimum-phase transfer function. Other-
wise, other techniques should be applied in order to avoid
closed-RHS plane zero-pole cancellations [6]. Also, there
is no problem with the no causality of Gx(z) by the reason
exposed in aforementioned comment.

• As in [4], kr must be designed looking for a trade-off be-
tween robustness and transient response.

In this work the plant Gp(z) has no zeros and the designed
controller Gc(z) is a minimum-phase first order lag controller,
specifically Gc(z) = − 0.0135z−0.01

z−0.905 . Then, the closed-loop
function Go(z) is a minimum-phase function and there is no
problem choosing Gx (z) = krGo (z)−1. The assigned value
for kr is 0.2 and the null phase FIR low pass filter selected is
F (z) = 1

4z + 1
2 + 1

4z−1.

3.2 Zero Dynamics

In this section the zero dynamics is analyzed; steady-state con-
trols Id = I∗d and u = u(t) such that the specifications hold are
assumed. Then, the dynamics of x2 is proved to be periodic
and the value of I∗d is obtained as well.

Proposition 2 Let x1 = i∗s − il = I∗d sin(ωrt) − il(t) where
il(t) is a periodic signal with period T = 2π

ωr
, then

C x2
2

2

∣∣∣∣
t0+T

t0

=
∫ t0+T

t0

E sin(ωr t)(I∗d sin(ωr t) − il(t))dt

−
∫ t0+T

t0

r (I∗d sin(ωr t) − il(t))2dt

Proposition 3 The following statements are equivalent

• x2(t) is T -periodic.

•
∫ t0+T

t0

E sin(ωr t)(I∗d sin(ωr t) − il(t))dt

−
∫ t0+T

t0

r (I∗d sin(ωr t) − il(t))2dt = 0.

• x2((k + 1)T ) = x2(kT ).

As conclusion, let be assumed control inputs u and Id such that
x1 converges to I∗d sin(ωrt) − il(t) and 〈x2〉0 = x∗

2. Then Id

converges to I∗d which in turn satisfies

∫ t0+T

t0

E sin(ωr t)(I∗d sin(ωr t) − il(t))dt

−
∫ t0+T

t0

r (I∗d sin(ωr t) − il(t))2dt = 0,

and x2 converges to a periodic function of the same fundamen-
tal frequency as x1.

3.3 Voltage loop design

Let us take for simplicity r = 0. Then, the output voltage
dynamics can be sampled with sampling period T , which yields
the digital dynamics

C(z − 1)Y2(z) =
ET

2
(Id(z) − b)

where Id(z) is the z-transform of the modulating signal in the
AM-modulator (Fig. 2) and b is the coefficient of sin(2πt/T )
in the Fourier series expansion of the load current. The losses
in the inductor, represented by r �= 0 can be considered as an
additive disturbance in the digital system. Thus, a classical PI
controller will regulate y2 to the desired value y∗

2 . Namely,

Id(z) = kp(Y ∗
2 (z) − Y2(z)) + kI

z + 1
z − 1

(Y ∗
2 (z) − Y2(z))

4 Simulation results

The controller designed in the previous section has been tested
in simulation with the specific values given in Section 3.1. It is
important to remark that the simulated model has been coded
so close to reality as possible. In this context, the simulation
model includes the PWM modulator (switched model of the
active filter) and the physical parameters of the system corre-
spond to the experimental setup under construction. Also, the
simulation model includes a tuned (LC) filter at network termi-
nals to reduce the current ripple at the fundamental harmonic
of the switching frequency.

The values of the parameters are: active filter (r = 0.034Ω,
L = 1mH, C = 10000µF); rectifier (non-linear load) (C =
1500µF, Rload = 24Ω (full-load)), also the rectifier has an
inductor (0.2mH) in its AC side to limit the derivative of
the rectifier current; source (Vs = 220VRMS, 0.3Ω network
impedance) and switching frequency (20 KHz).
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Figure 5: Source voltage and current (top), DC bus voltage
(middle) and load current (bottom) when the non-linear load
goes from no-load to full-load condition.

Fig. 5 shows the source voltage and current, the DC bus volt-
age and the load current when the rectifier goes from no-load
to full-load condition. As it can be seen, the source current
achieves the steady-state after six 50 Hz periods and the DC
bus voltage overshoot is under 7% and 60 V up from the DC
bus boost condition voltage. The maximum value of the time
derivative of the load current is about 90 KA/s and the active
filter is able to compensate it. Fig. 6 shows the source voltage
and current, the DC bus voltage and the load current when the
rectifier goes from full-load to no-load condition. The results
are qualitatively very similar to the previous case showing that
the designed controller performs well regardless of the direc-
tion of load changes. The THD value of the source current at
full non-linear load is 1.9% and the power factor at network
terminals is 0.99.
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Figure 6: Source voltage and current (top), DC bus voltage
(middle) and load current (bottom) when the non-linear load
goes from full-load to no-load condition.

5 Conclusions

The paper shows the design of an all digital controller for a
parallel active filter. The inner current control loop is designed
using a digital repetitive control approach that, as the simula-
tion results show, has a very good behavior shaping the source
current. The high loop gain injected by the repetitive controller
at the fundamental and harmonic frequencies of network fre-
quency assures the good tracking of the reference current and
the rejection of the high order harmonics of the load current.
In the other hand, the external slow dynamics voltage loop as-
sures the active power balance of the whole system adequately
rejecting the load variations.
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