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Abstract  
 
An interpretation of some chaotic systems as the result of 
optimal decisions is presented. First, a generalised discrete-
time two-person game is introduced that may be solved by 
Dynamic Programming. Then, a specific game of this type is 
formulated whose optimal solution transforms an originally 
linear discrete-time system into a well-known discrete-time 
chaotic system. Finally, a particular continuous-time optimal 
control problem is formulated whose optimal feedback 
solution transforms an originally linear continuous-time 
system into a well-known continuous-time chaotic system. 
 

1  Introduction 
 
Chaotic systems have attracted the attention of control 
engineers trying to eliminate the chaotic behaviour by 
application of suitable feedback laws [3]. On the other hand, 
it appears curious enough to consider the transformation of 
simple, deterministic, non-chaotic systems into chaotic 
systems via optimal feedback resulting from suitably defined 
optimisation problems. The possibility of interpreting chaotic 
systems as optimally controlled systems or optimal games has 
been known in Economic Science since the mid-80’s [1,2]. 
 
This paper defines a generalised two-person game (section 2) 
that may be solved by Dynamic Programming. A specific 
game of this type is then formulated (section 3) whose 
optimal solution transforms an originally linear discrete-time 
system into a well-known discrete-time chaotic system. 
Moreover, a particular continuous-time optimal control 
problem is formulated whose optimal feedback solution 
transforms an originally linear continuous-time system into a 
well-known continuous-time chaotic system (section 4). In 
brief, both discrete-time and continuous-time chaotic systems 
may appear as the result of optimal decision processes. 
 

2  A Generalized Two-Person Game 
 
Consider a discrete-time deterministic two-person game 
characterized by a state vector x(k), with time index k = 
0,1,...,K, taking values from a discrete or continuous set Xk. 
Consider a disjoint division of Xk, such that  

and  = Ø. If x(k) ∈ , then player 1 is making a 

decision, while if x(k)∈ , then player 2 is making a 
decision. The evolution of the state may be described by a 
difference equation  
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     x(k+1) = fk[x(k), u(k)] , x(0) = x0 
         (1) 
 
where u(k) is the decision vector to be selected from an 
admissible region u(k)∈U 1 [x(k)] or u(k)∈U [x(k)] if 
players 1 or 2, respectively, are making the decision. An 
objective function 
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should be minimized or maximized by players 1 or 2, 
respectively.  
 
The introduced game differs from common two-person games 
(e.g. chess) because the player to make a decision at time k, 
depends upon the current state x(k) rather than on strict 
alternation. Common two-person games may be expressed in 
a generalized form as above by augmenting their state vector 
with a new state variable }1,0{(k)x~ ∈  using the state equation 
 
         (k).x~11)(kx~ −=+             (3) 
 
Then, defining },0{~},1{~ 21 == XX

1

 players 1 or 2 are making 

a decision if ~(k)x~ X∈  or 2~(k)x~ X∈ , respectively, which 
imposes a strict alternation. 
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The introduced generalized two-person game may be solved, 
like common two-person games, via Dynamic Programming 
(min-max procedure), the only difference being that, at each 
stage k, a minimization or maximization may take place 
according to the current decision maker 1 or 2, respectively, 
rather than in a strictly alternating order. 
 
Several generalizations, including a stochastic version, of the 
formulated game may be introduced. 
 
3  Chaos as an Optimal Game 
 
Consider a specific generalised two-person game with state 
x(k)∈R, 1X  = {x x ≤ α/2β}, 2X  = {x x>α/2β}, where α, 
β are non-negative parameters, and state equation 
 
 x(k+1) = Ax(k) + u(k)           (4) 
 
with A>0. The objective function at each stage is composed 
as follows. First, there is a standard objective function 
 

       φs[x(k), u(k)] = 
2
1 u(k)2 + 

2β
Aα x(k) – 

2
1 (A2–αΑ+1)x(k)2    

                                – 
3

Aβ
x(k)3.                                      (5) 

 
Furthermore, there is an additional objective function 
 

 φa[x(k)] = 3/22
2

4βx(k)][a
12β

A
−             (6) 

 
that is added to or subtracted from the standard objective if 
player 1 or 2, respectively, was the decision maker at stage k–
1. To be conform with the game formulation of section 2, we 
augment the system state via  
 

 y(k+1) = sign [x(k) – 
2β
α ]           (7) 

 
where sign(η) equals 1 or –1 if η>0 or η≤0, respectively, and 
we obtain an augmented state x = [x y]T. The objective 
function (2) is then defined via 
 
     φ[x(k), u(k)] = φs[x(k), u(k)] – y(k) ⋅ φa[x(k)].          (8) 
 
For the final cost we assume 
 

     θ[x(K)] = 
2β
Aα x(K) – 

2
1 x(K)2 – y(K)φa[x(K)].         (9) 

 
The admissible decision region is common for both players 
and is defined by  
 

       u(k) ≤ Αx(k)
4β
α 2

−          (10) 

 
which avoids for the square root argument in (6) to become 
negative. This completes the problem formulation.  
 
To solve this problem, one may provide the Bellman-equation 
 
       Vk[x(k)] = {φ[x(k), u(k)] + V

U∈u
opt k+1[x(k+1)]}       (11) 

 
with terminal condition 
 
        VK[x(K)] = θ[x(K)]         (12) 
 
where Vk[x(k)] is the optimal objective function to go and opt 
in (11) corresponds to min or max if x(k)∈X 1  or x(k)∈X 2 , 
respectively. 
 
For k = K–1, equation (11) yields with (4), (7), (12) 
 

    VK–1[x(K–1)] = {
U∈u

opt
2
1 u(K–1)2 + 

2β
Aα x(K–1)  

                                 – 
2
1 (A2–αΑ+1)x(K–1)2 

                                –
3

Aβ
x(K–1)3 – y(K–1)φa[x(K–1)] 

                                + 
2β
Aα  [Ax(K–1)+u(K–1)] 

                                 – 
2
1 [Ax(K–1)+u(K–1)]2  

– sign[x(K–1)–
2β
α ]

212β
A  

    [α2–4β[Αx(K–1)+u(K–1)]]3/2}.     (13) 
 
Setting the derivative w.r.t. u(K–1) of the term under 
optimization equal to zero, one obtains after some 
calculations the unique solution 
 
        u(K–1) = (α–A)x(K–1) – βx(K–1)2       (14) 
 
that may be readily shown to satisfy the control constraint 
(10). Taking the second derivative w.r.t. u(K–1) of the term 
under optimization, one obtains the term 
 

  –sign[x(K–1)–
2β
α ]⋅A⋅[α2–4Αβx(K–1)–4βu(K–1)]–1/2.     

(15) 
 
Substituting u(K–1) from (14), the term in (15) becomes 
 
         A[α–2βx(K–1)]3         (16) 
 



which is nonnegative if x(K–1)∈X 1  and negative if x(K–
1)∈X 2 . Hence, the solution (14) is a common optimal policy 
for both players, because it will minimize or maximize the 
term under optimization in (13) according to the first or 
second player, respectively, being the decision maker. 
 
Substituting (14) into (13) yields after some calculations 
 

     VK–1[x(K–1)] = 
2β
Aα

12β
Aα

2

3
+ x(K–1)–

2
1 x(K–1)2 

                                                –y(K–1)
212β

A [α–4βx(K–1)]3/2.       (17) 

 
Because VK–1 in (17) is identical to VK (see (9), (12)) except 
for a constant term, the Bellman-equation will provide an 
identical optimal feedback for k = K–2, and in fact for all 
previous stages k = K–3,..., 0. Hence the optimal policy for 
both players in this game reads 
 
 u(k) = (α–Α)x(k)–βx(k)2,     k=0,..., K–1.       (18) 
 
Substituting (18) into (4), one obtains the optimal state 
evolution 
 
 x(k+1) = αx(k) – βx(k)2         (19) 
 
which is a well-known [4] discrete-time system that is stable 
for values α=β less than about 3.3, periodic for α=β less than 
about 3.6 and higher than about 3.3, and chaotic for α=β 
higher than about 3.6. Hence, for the corresponding range of 
α, β values, the formulated generalized two-person game 
transforms the initial linear system (4) into an optimally 
controlled chaotic system. 
 

4  Chaos as an Optimally Controlled System 
 
Consider the continuous-time linear system 
 

   = Ax + u           (20) x&
 
with state vector x∈R3, xT = [x y z], control vector u∈R3, and 
time-invariant, diagonal state matrix A∈R3×3, A = diag(a1, a2, 
a3). We look for an optimal feedback law for (20) that 
minimizes the cost criterion  
 

   J = θ[x(T)] +         (21) ∫
T

0

(t)]dt (t),φ[ ux

 
where  
 

 φ(x,u) = )uuu
a
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and 
 

   θ(x)= bxyz)a(c
2
1y)a(1

2
1xa)(a

a
b

2
1 2

3
2

2
2

1 −+++++        (23) 

 
where a, b, c have positive constant values. 
 
The Hamilton-Jacobi-Bellman equation for this problem 
reads  
 

0)}(V),{φ(min
t

T
=+

∂
∂

++
∂
∂ uAx

x
ux

u
V        (24) 

 
with the boundary condition 
 
     V[x(T),T] = θ[x(T)]                      (25) 
 
where V(x,t) is the optimal cost function to go. 
 
We claim that V(x,t) is given by  
 

V(x,t)=V(x)=

bxy)za(c
2
1)ya(1

2
1a)x(a

a
b
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1 2
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2

2
2

1 −+++++     (26) 

 
which immediately verifies (25). 
 
Substituting (26) in (24) and setting the derivative w.r.t. u of 
the term under minimization equal to zero, one obtains after 
some calculations the unique solution  
 
         u1 = – (a1+a) x + ay 
         u2 = bx – (1+a2) y –xz        (27) 
         u3 = – (a3+ c)z + xy.  
 
This is a minimizing feedback law because the Hessian 
matrix w.r.t. u of the term under minimization in (24) is 
clearly positive definite. Substitution of (26), (27) may be 
seen, after many calculations, to verify (24), hence (27) is a 
unique optimal feedback for the formulated optimal control 
problem. 
 
Substituting the optimal feedback (27) into the system 
equation (20) yields 
 



                                       (28) 
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which is a well-known [4] continuous-time chaotic system 
(the Lorenz strange attractor). Thus, the formulated optimal 
control problem transforms an originally linear continuous-
time system into the chaotic Lorenz system, that may 
therefore be viewed as an optimally controlled system. 
 

5  Conclusion 
 
The paper provided two examples of simple systems that are 
rendered chaotic via optimal control. In the first example, the 
original discrete-time system is represented as a two-person 
game while in the second example three interconnected 
continuous-time state-space equations are used. At present 
there is no obvious application of this idea other than the 
curiosity of the fact that some chaotic dynamic systems can 
be understood as optimally controlled systems by appropriate 
selection of an objective function. 
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