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synchronization, secure communications attraction of the observer and the design of weighting arbi-
trary matrices are established. Performance of the proposed
Abstract approach will be shown trough numerical simulations on the

classicalChuds circuit with applications in secure communi-
This paper deals with the problem of adaptive observer-baggdions.
synchronization of chaotic dynamical systems. The proposed
approach consists in estimating the states and the unknownpa-The decentralized adaptive synchronization
rameters in a separate way to reduce computational require- algorithm
ments. A rigorous stability analysis is performed and a judi-
cious parametrization of the algorithm is proposed to enlargensider a chaotic discrete-time transmitter system written in
the bassin of attraction with high tracking ability. The resulte general form :
are illustrated by numerical examples of adaptive synchroniza-

tion of Chuds system with application to the problem of en- Tht1 = f(Zks Y1ks - Ygh» 0) (1a)
coded signal transmission in secure communications. yix = CPay, i=1,...,q (1b)
1 Introduction wherezx;, € R" is the state vector of the transmittéris a dif-

ferentiable nonlinear function,y, is the:™ transmitted chaotic
Synchronization of dynamical chaotic systems has receigignal,C? is thei™ row of a known real matrice§” € IR7*"
growing attention during the last decade due to its potentRdd® = 0 = 0,11 € IR” is an unknown constant parameter
applications to secure communications problems. From a ca@ctor that possibly contains the encoding messages in case of
trol theory point of view, chaos synchronization can be cofecure communications.
sidered as an observer design problem in the sense that thel-g)ea-1

ceiver system is an observer of the chaotic transmitter systg ign an observer-based receiver for transmitter system (1a)-
[1, 2, 3]. Few results, however, has been established to d ) that provides both estimatés andd, of the unknown

W'th. the problem of 'synchromz’mg chaotic systems when t fansmitter states and parameters respectively based on the
designer of the receiver doesn’t know some of the parametgrs .. of one or more driving signaisi — 1

of the transmitter, this problem is referred to adaptive (non lin-
ear) observers [4, 5] or adaptive synchronization [6], the lack®f intuitive approach consists in using nonlinear estimation
knowledge of some parameters may corrupt the synchroni#@ehniques on the augmented system where the state vector has
tion and even break it. On the other hand, adaptive synchhgen extended with the unknown parameters. However, in ad-
nization is an essential topic in secure communications wh@ition to the large computational requirements, we notice that
parameter modulation technique is used for message transitlis approach is very sensitive to initial conditions with some
sion, this approach consists in encoding the information mekvergence problems occur when the initialization is not suffi-
sage into the chaotic transmitter and the receiver should be abigntly close to the actual values. In order to avoid the previous
to recover the message (see [7] and the references inside fopeghlems, we propose to estimate the state and the parameter

chieve adaptive chaotic synchronization, the objective is to

overview of decoding observer-based techniques). vectors in a separate way. Therefore the dynamic of the re-
. o . ceiver is :

In this contribution, we propose a useful and decentralized al-

gorithm torthe sta_tes artd parameters_ e_sti_mation of alarge class Errr = U@k Y1y o Yahos ék) 2)

of chaotic transmitters in the deterministic context. We show b — (i P 3

that the proposed technique is equivalent to the global extended k1 = MUEks Yiks oo Yaks O ) ®)

Kalman observer when the state vector is completed by the U \ve want to design the functions(.) and!(.) in order to



ensure local asymptotic convergence :

Jim (z) —2) =0 4)
Jim (6 — Ox) =0 (5)

forall (zo— ) € BE and(6y—0,) € Bf whereBg andB3 are
large enough open subse¥ (= {z : |z| <e®, €% > 0}).

Using standard Kalman theory, the decoupled states and pg- k+1> _ Pk+1/k Pk+1/k (Cm
rameters estimation algorithm that we propose is of the follow- Ky, P;fﬁl/k P;f+1/k 0

ing form :

Stage 1: statesestimation

Try1 = Tpgr/e + K prerp1 (6)
Kk+1 (I)k+1Ak+1 (7)
P Pw@
Pk-l-l/k_(F Fg)(f)mZT " )<F£T> +Qk (8)
Pl =Pl — Kk+1(1>k+1 9)
Stage 2 : parametersestimation
Opir = O + K{ yenin (10)
Kp =V Appy (11)
Pk+1/lc =P +Qf (12)
Plf+1 = P/f+1/k Kk+1‘1’k+1 (13)
where
i‘k+1/k :f(i‘k7ék7ylka“'aqu7uk) (14)
Apyr = (CIPI?+1/I€CIT + Riy1) ™" (15)
T
Pr1 = Py C” (16)
T T
Wht1 = ngl/kcw (17)
Py = FEPE® + FUP + Q3 (18)
Py = Bk — K Vi (19)
with
ka — 8f(xk'7y1k7"'7qu’a9) (20)
8xk ik,ék
af LTk Ylky - Yqks 0
Fkﬁ _ ( 189 q ) ) (21)
ilﬁek

k1 = Yor1—C Tpq1yi = O (1 —Tpg1/1)(22)

We set at the initialization?y = p®I,, P¢ = u°I, and

Pg?% = 0 wherep® andu? are positive scalars, in particular,

large for bad initializations. Hereaftep?, Q¢%, Q% and Ry 1

— which usually correspond to system and measurement noise
will be used as

covariance matrices in a stochastic context —

3 Convergence analysis

Before we give the main result in this section, we show first that
the proposed separate-bias observer is equivalent to the global
state and bias estimation algorithm obtained from the Extended
Kalman Observer (EKO) where the states are augmented by the
bias vector. Indeed, (7), (11), (15), (16) and (17) may be written
as:

> (c* 0) x

-1

P pz xT
o1/l L ht1/k (C )+R
. k1 | (23)
(PkJGrl/k PkeJrl/k) 0
and by the use of (8), (12) and (18) we have :
Pk+1/k ka—?-l/k _ (Fr F? I
Pmﬁ P0 - 0 I PmHT PH X
k+1/k  Th41/k k
F F,f) ( o Qi")
S (24)
( 0 L) \ei" @

also from (9), (13) and (19) we deduce that :

PI?+1 Plzcﬁl) <(In O) (Klf+1> T )
T T — - ] C‘L 0 X
(Pkfrl PI?+1 0 Iq Kk—i—l ( )
6
Pk-gl/k Pz;ﬂ/k (25)
Plfﬂ/k Pk+1/k
. . K,
By using the notationsKy,; = % R A
k+1
T T z6
<Pk§1 P%ﬁl)’ Priar = P’Hél/k Pke“/k B =
Pl§+1 Pk+1 Plf-s-l/k Plc+1/k
FF Fk> . < QF ;‘9> ,
,C = (C* 0)andQr = | ., , it's
< 0 Iq ( ) k QkGT QZ

easy to verify that (23), (24) and (25) are the propagation equa-
tions of the augmented EKO.

In the following we show, by the use of the exact lineariza-
tion technique presented in [8], that the design of the instru-
mental matrices, in particula@? andQ?, plays a central role

to improve tracking and rate of convergence of the proposed
separate-bias observer. In the rest of the paper and without loss
of generality, we sef?? = 0.

Let us introduce the error Vectors 1, Tpy1/k andékﬂ :

T4l = Tig1 — Tpg1 (26)
Try1/k = Tha1 — Tryr/k (27)
ki1 = Ot — Op1 = 0 — Op i (28)

and consider the following candidate Lyapunov functi@n :

- T -
_ [ Tk+1 -1 [ Zk+1
Virr = <9k+1> i <9k+1)

(29)

free instrumental matrices whose choices are crucial to confftle goal is to point out conditions so tHat, ; is a decreasing

stability and rate of convergence of the algorithm.

sequence.



First of all, we introduce an unknown diagonal matfx to We notice that a sufficient condition to ensure (37) consists in
parametrize all the errors due to the first order linearizatimerifying the following couple of inequalities :

technique of the nonlinear functiofi [8]. We have then the .

following exact relation : FLB(FrPyFE+ Q1) BrFy < (1= Q)P (38)

~ -1 T DT zT
Erar/e = Bo(FFER + FLOr) (30) Ry CP P07 < (39)

instead of the following approximation usually used in the iitn the following theorem we give sufficient conditions to ensure
erature : asymptotic convergence of the proposed adaptive observer.

Fry1n ~ FEE, + FLO (31) Theorem 1 If we assume that :

which are correct only at the neighborhood of the actual trajec, The augmented — when the states are completed by the pa-
tories. rameters vector — linearized system along the estimator’s

The unknown diagonal matrig;, depends on how fa¥, and trajectory isN-locally observable, i.e. there exist a finite
d,, are from zeros. In the following, (30) will be used in the ~ iNtegerN > 1 and positive real numbers, and -, such
Lyapunov function in order to evaluate the propagation errors that, forallk > N — 1, we have :

and to point out connections between convergence of the pro-

inearisati < O iag(Ry !y ys - Ry
posed observer and the linearisation errors. From (23) to (25), Vilnto < O yam dag(Ry iy -0 By ) %
we have : Ole—n+1,8) < Y2lntq (40)
Kiy1 = PoaCTRCL where0 < 71,72 < oo and,
-1
Pk+1/kCT (CPuy1kCT + Riia) — (32) oF C
— _ T k—N+1
Pk+1 = P +1/k + C Rk+1c (33) O[kaqu,k] = : (41)
Using (32), (6) and (10), the Lyapunov functid®, ; (29) be- CFy1Fy_s...Fooni
comes :
~ T ~ . .
Vi = (J;kgl/k) P (J;kgl/k) for all < 0, ) € N(z,.0) Which denotes a neighborhood
k
- T - 0f< zk ).
x _ _ X k
- (Fa) e R e — eEamghio () )
o S i. Fg, FY are uniformly bounded matrices add’  exists,
+6k+1Rk+1OP]€+1O Rk+1€]¢,+1 (34)

iii. The instrumental matrix3, € IR"*" satisfies :
Using (33), (30), (22) and the special structure @f =

(C* 0) we obtain G, < ( (1 = Q)omin(Fi P} + Qi) )1/2 _f
B T B - Umax(Fg)gmax(Pk')O—max(Fk)
Vi1 = (g:)Fl;Fﬁk (FuPeFE + Q) BiF (g:) (42)

with0 < 3 = ,max el 1
tel (R L+ Ry L CTPEL,C* Ry L e s1(35) B = max (|, 1) <

B 0 iv. The weighting matri>Rk+1 is chosen as :
)

q
The Lyapunov sequendé’,, },_ 1. is a decreasing one if there

exists a positive scalar e 0, 1] so that :

with the extended matrig;, = ( ;
Rt = \C*PE,, 0%, A>1 (43)

then (6)-(22) is a decentralized adaptive observer for (1a)-(1b)

Vi1 — Vie < —(Vi, (36) and:
or equivalently : Jim (2, — &) =0 and  lim (6 — Ox) =0
Tk T 5 Omax and oy, denote the maximum and minimum singular
Vipr =(1=QOVi = <gk> (F B values respectively.
(FLPLFT + Qk)71 BpFr — (1 — C)Vk) <‘§:> Proof : First of all, hypothesisi. and the local observability

. assumption (40) are introduced to assure that the ma&jris
tel (=Rl + Ryl CPE C* Rl )errr (37) bounded from above and below, for more details see [9], while



hypothesigii. andiv. lead to obtain a decreasing Lyapunowvery small initialization errors), the proposed approach ensures

function{V} },_, . Indeed, using the fact thaj is diagonal
matrices and from (42), we obtain :

(O.IIIaX(Bk}))2 S
(1 = Qomin(Py )
Umax(Fg)Jmax((FkPkFg + Qk)il)o—max(Fk)

(44)

As,

Omax (F Be(FuPeF + Qi)' BrFy) <

(Ulnax(Bk))2 Umax(F‘]gj)amax((ka']Dkalz1 + Qk)il) X
Urnax(Fk) (45)

We have then :
Omax (F Br(FxPuFF + Qi) ™' BuFy)

S (Umax(ﬁvk))%—max(Fg)Umax((FkPkFg + Qk)_l) X
Umax(Fk)
< (1 - C)Umin(Pk_l) (46)

which induce that (38) is satisfied.
On the other hand, substituting (43) into (39), we have :

N CPE ) CaPE O < T, (47)
which is satisfied for al\ > 1.
Therefore, (45) and (47) induce that tHat is a decreasing
Lyapunov function.

Finally, asPy is a bounded matrix, it follows from (36) that :
i\ (i
0<u(z) (FF)<vi<@-0% @48
O O
which implies :

~ T ,.
. Tk Tk .
0< “JL%J(&J (ak)> < Jlim (Vi)

Vo lim (1— ()% =0(49)

IN

with pl,1, < P
Therefore :

(T — 3k
k:lggc < 0 — ék > - (50)

Remark 1 : The sufficient conditions (42) represents, in a wa
the attraction region in the state and parameters spaces.
deed, in the body of the paper we introduced a linearisati

technique in the form of (30) to quantify the distance betwe%ra

asymptotic convergence for all matri (which represent the
linearisation errors) bounded kﬂf On the other hand, as

9;9 0k
the identity and the approximation (31) usually used in the lit-
erature becomes valid. The stability analysis is then similar to
the linear case.

long as( Tk ) goes to( Lk ) the matrix3; converges to

Design of the arbitrary matrice@? and @Y, in order to sat-

isfy the condition (42), depends on the evaluation of the upper
boundg;, on the norm of3;, in particular at the initialization of

the algorithm. In practice, from our knowledge of the system
to synchronize likeLorentz system,Rosslersystem orChua
circuit, most often we have an idea on the bounds of the state
and parameter vectors to be estimated and by the use of the non
linearitiesf(.) we may evaluate realistic values@f. In addi-

tion, we should recall that the proposed approach in only local
but improve the convergence significantly.

Remark 2 : Hereafter, by a quantitative analysis, the aim is to
design the weighting matric&g; ansz so that the bounﬂ[f

is as large as possible in order to satisfy condition (42).

Before we introduce a simple design @ and Q¢, we no-
tice that the upper bounﬁf is large whenQ; (consequently
Q7% and QZ) is large. Indeed, since the matric€ and Fy,
depend onQ@,_; computed at time instant — 1, Q. is a
free weighting matrix to enlarge the above upper bound in the

1/2
(1 = Q)omin(FrPFE + Q}) ) /
Umax(FE)Umax(Pk)amaX (Fk)
1 — O)omin(FxPLFT + Q) \'?

Umax(Fk )O'max(Pk)amax(Fl_c) . .
However, we should have in mind that matricBs,; and
P11, have to remain bounded and, in order to avoid numeri-
cal instabilities ), can not be chosen extremely large.

>

sense that we hav{

Remark 3 : In the following we propose a simple and efficient
design, which is not unique, f@p¢ andQ? :

Qi = Czegekln + 81[71 (51)
QY = (Pelenl, + 1, (52)

whereey, =y, — C*Zy/,—1 and the positive scalats’ and¢?
have to be chosen sufficiently large especially in case of bad
initial conditions and high non-linearities ¢f.), c* and<? are
small enough scalars introduced to avoid numerical instabili-
ties.

The original idea of designing)? and Q¢ is, in fact, the
gvresence of the output erref, which controls automatically
vidth of the upper bound o;. Indeed, in case of high
I(Blﬁ- . .. . C .
non-linearities and/or arbitrary large initialization errors, the
Pé}msgme{ek and¢%Te;, (and consequently the bound) be-
me large.

the actual and estimated trajectories and in the same time we

deduce a sufficient condition (42) on the normipfso that we

Remark 4 : Considering the weighting matrix (43), we remark

obtain a decreasing Lyapunov function, i.e. asymptotic colftat setting high values of leads to a very slow convergence

vergence of the observer. Contrary to the standard EKO wh
0k is assumed to be very close to the identity matrix (that

eate or even a divergence of the algorithm (the gdifs ; and
K,‘jH quickly go to zero) so much so that the choice\ahust



be a judicious compromise between stability and rate of casystem, so-called double scroll chatic attractor (see Figure 1),

vergence of the proposed observer. is described by the following set of nonlinear differential equa-
Since the proposed approach is only local but may be appllttlao S

to a very large class of non-linear systems, it is very difficult to 21(t) = a(—z1(t) + z2(t) — g(z1(2)))

give an idea, a priori, on the values of the parametérg® and da(t) = 21(t) — za(t) + 23(t)

A which depend on many factors such as initializations or de-

gree of non linearity of the system. In practice, suitable values Z3(t) = —y2(t)

of these paramgters are determined, by an iterative appro%l']]ereg(xl) I — mo —my (21 + 1] — |1 — 1|) with
From our experience (we have tried this approach on several 8 5 ) ) ]
chaotic systems and on a large variety of physical proces&és = —°/7 andm, = —9/7. The transmitted driven signal
under severe conditions¥, ¢? and\ belong in general to the IS ¥(t) = z1(t). We suppose that theTpa.rametarand)\ are
intervals[10° 10%°], [10° 10%°] and[1 20] respectively. unknown but constants (i.6.= (a v)", 6 = 0).
Remark 5 : Using the special structures of}, = Using Euler discretization method, the discrete-time model of

L . . Chuds circuit is :
( Fg“ ﬁ;" ) andC = ( C, 0 ), the observability matrix

a T = (1 — o)z, + oT(z2r — g(z11))

Oi—n+1,5) May be partitioned as follows :
Topy1 = Tx1 + (1 — T)wog, + Tw3p
Ol—N+1,4] = {Of;chJrl,k] O‘[gkaJrl,k]] T3kt+1 = T3k — YL Tok
. whereT is the sampling period and the driven signalis=
with T1k.
ce The initial conditions for the transmitter were takenags—=
- _ CUF N+ (0.1 0.1 O.I)T while the true values of the supposed un-
[k=N+1,k] : known parameters arex = 15.6 andy = 27. The sampling
CTFP | F¥ ni period isT = 0.01 second.
For the receiver, the initial conditions are very bad for the states
as well as for the unknown parametetis;:= (1 1 1)T and
0 fo = (10 20)T with P¥ = 10'°75 and P{ = 101, . In
CoF¢_ns order to ensure convergence of the algorithm, the weighting

matrices?, Q? andRy41 are chosen as in (51), (52) and (43)
with ¢* = ¢? =109, A = 1 ande® = £/ = 1073,

OfkaH,k] =

CHFZ ... F} Ny +F2 . F nyio+...+F |
( " " ) The results of the simulations are reported in Figure 2 and 3.
As we can expect, if the original system (1a)-(1b) isn't IA comparison has been r_eall_zed Wlth the claéssmal extended
B . " ; s . Kalman filter when the weighting matricé€g;, @}, and R4
some sense “observable” or “persistently excited” that is | w - _3 0 5 _3
. o are chosen aQ7 = Q* = 107°I3, Q) = Q° = 107’1, and
rang(O[k_J\,_s_1 k]) < nor rang(O[k_J\,_s_1 k]) < p, then the

— — -3 i

observability condition (40) is not verified. In particular, wherl?’“+1 F =107 Th? plots clearly show h_|gh performances

L ”» . of the proposed adaptive observer and the important role of the

a state has null initial condition and is not reachable, then A

o . . . nstrumental matriceQ7, ()%, and Ry, to ensure strong con-

all parameters multiplying only this state variable couldn’t be . o .

. o ; L vergence even with very bad initial conditions.
identified because they are not persistently excited i.e. the cof-

responding columns i are zero and then we have rank
rang(O[Gk_NH,k]) < p.

Remark 6 : In order to reduce the computational require-

ments and then the numerical instabilities, in particular, for ™
large scale systems the proposed two stage algorithm may b
implemented, in real time applications, on a separate processc = ™
system.

Time (5)

4 Numerical examples Figure 1:The double-scroll attractor and the output of Chua’s circuit

Example 1: Synchronization of Chua’s cirucit Example 2 : Secure communications using Chua’s cirucit

Consider the example of chaotic synchronization where bdththe current example, we are going to present the potential
transmitter and receiver systems are implementedhagcir- applications of synchronize@huds systems in secure trans-
cuits with unknown constant parameters [10]. The transmitt@issions. In this case, the driven sigmal contains a binary
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Figure 2:Convergence behavior dfi2x || and||Zs. ||. Proposed ob- Figure 4: Convergence behavior dfi || and estimation of the pa-
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Figure 3:Estimation of parameteks and~. Proposed observer (--)

and standard EKO (-.) (3]

encoding message, that has been used to modulate one or
more parameters of the chaotic transmitter. [4]

Then we use the proposed decentralized algorithm to estimate
the modulated parameters in order to recover the information
signalsy. Here we suppose that the message modulate the pa-
rametersa of the transmitter with the following modulation [5]
rule:

Q= g + 18k

wheres, = 0.5(1 — sgn (sin (2}%T))) with ag = 15.6, o1 =
0.5 and the period of;, is Ty = 20 s.

(6]

The initial conditions for the transmitter are the same as in
the first example, we suppose that only the parameisrun-
known.

(7]

The initial conditions of the receiver arety = (1 1 l)T
andag = 16.5 with P¥ = 10%°I3 and P{ = 10%° . The
weighting matrices)?, QY and Ry, are chosen as in (51),
(52) and (43) with(® = 1, ¢? = 10", A = 15 ande® = ¢ =
1073,

(8]

Figure 4 shows the secure communication via binary parame-
ter modulation. We easily verify that the proposed algorithm
recovers the information messageat the end of the commu-
nication link without any information on the dynamicsf (9]

5 Conclusion

In this contribution a simple decoupled adaptive observer fgry
chaos synchronization has been derived. Sufficient conditions
for local asymptotic stability were established. Convergence
and strong tracking ability were illustrated by chaotic synchro-
nization using the classic@lhuds circuit.

rametera with the proposed observer
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