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Abstract

This paper deals with the problem of adaptive observer-based
synchronization of chaotic dynamical systems. The proposed
approach consists in estimating the states and the unknown pa-
rameters in a separate way to reduce computational require-
ments. A rigorous stability analysis is performed and a judi-
cious parametrization of the algorithm is proposed to enlarge
the bassin of attraction with high tracking ability. The results
are illustrated by numerical examples of adaptive synchroniza-
tion of Chua’s system with application to the problem of en-
coded signal transmission in secure communications.

1 Introduction

Synchronization of dynamical chaotic systems has received
growing attention during the last decade due to its potential
applications to secure communications problems. From a con-
trol theory point of view, chaos synchronization can be con-
sidered as an observer design problem in the sense that the re-
ceiver system is an observer of the chaotic transmitter system
[1, 2, 3]. Few results, however, has been established to deal
with the problem of synchronizing chaotic systems when the
designer of the receiver doesn’t know some of the parameters
of the transmitter, this problem is referred to adaptive (non lin-
ear) observers [4, 5] or adaptive synchronization [6], the lack of
knowledge of some parameters may corrupt the synchroniza-
tion and even break it. On the other hand, adaptive synchro-
nization is an essential topic in secure communications when
parameter modulation technique is used for message transmis-
sion, this approach consists in encoding the information mes-
sage into the chaotic transmitter and the receiver should be able
to recover the message (see [7] and the references inside for an
overview of decoding observer-based techniques).

In this contribution, we propose a useful and decentralized al-
gorithm for the states and parameters estimation of a large class
of chaotic transmitters in the deterministic context. We show
that the proposed technique is equivalent to the global extended
Kalman observer when the state vector is completed by the un-

known parameters. Some connections between the basin of
attraction of the observer and the design of weighting arbi-
trary matrices are established. Performance of the proposed
approach will be shown trough numerical simulations on the
classicalChua’s circuit with applications in secure communi-
cations.

2 The decentralized adaptive synchronization
algorithm

Consider a chaotic discrete-time transmitter system written in
the general form :

xk+1 = f(xk, y1k, ..., yqk, θ) (1a)

yik = Cx
i xk i = 1, . . . , q (1b)

wherexk ∈ IRn is the state vector of the transmitter,f is a dif-
ferentiable nonlinear function,yik is theith transmitted chaotic
signal,Cx

i is theith row of a known real matricesCx ∈ IRq×n

andθ = θk = θk+1 ∈ IRp is an unknown constant parameter
vector that possibly contains the encoding messages in case of
secure communications.

To achieve adaptive chaotic synchronization, the objective is to
design an observer-based receiver for transmitter system (1a)-
(1b) that provides both estimateŝxk and θ̂k of the unknown
transmitter states and parameters respectively based on the
transmission of one or more driving signalsyik,i = 1, . . . , q.

An intuitive approach consists in using nonlinear estimation
techniques on the augmented system where the state vector has
been extended with the unknown parameters. However, in ad-
dition to the large computational requirements, we notice that
this approach is very sensitive to initial conditions with some
divergence problems occur when the initialization is not suffi-
ciently close to the actual values. In order to avoid the previous
problems, we propose to estimate the state and the parameter
vectors in a separate way. Therefore the dynamic of the re-
ceiver is :

x̂k+1 = l(x̂k, y1k, ..., yqk, θ̂k) (2)

θ̂k+1 = m(x̂k, y1k, ..., yqk, θ̂k) (3)

and we want to design the functionsm(.) andl(.) in order to



ensure local asymptotic convergence :

lim
k→∞

(xk − x̂k) = 0 (4)

lim
k→∞

(θ − θ̂k) = 0 (5)

for all (x0−x̂0) ∈ Bx
0 and(θ0− θ̂0) ∈ Bθ

0 whereBx
0 andBθ

0 are
large enough open subsets (Bx = {x : ‖x‖ ≤ εx, εx ≥ 0}).

Using standard Kalman theory, the decoupled states and pa-
rameters estimation algorithm that we propose is of the follow-
ing form :

Stage 1 : states estimation

x̂k+1 = x̂k+1/k + Kx
k+1ek+1 (6)

Kx
k+1 = Φk+1∆k+1 (7)

P x
k+1/k =

(
F x

k F θ
k

)( P x
k P xθ

k

P xθT

k P θ
k

)(
F xT

k

F θT

k

)
+ Qx

k (8)

P x
k+1 = P x

k+1/k − Kx
k+1Φ

T
k+1 (9)

Stage 2 : parameters estimation

θ̂k+1 = θ̂k + Kθ
k+1ek+1 (10)

Kθ
k+1 = Ψk+1∆k+1 (11)

P θ
k+1/k = P θ

k + Qθ
k (12)

P θ
k+1 = P θ

k+1/k − Kθ
k+1Ψ

T
k+1 (13)

where

x̂k+1/k = f(x̂k, θ̂k, y1k, ..., yqk, uk) (14)

∆k+1 = (CxP x
k+1/kCxT

+ Rk+1)−1 (15)

Φk+1 = P x
k+1/kCxT

(16)

Ψk+1 = P xθT

k+1/kCxT

(17)

P xθ
k+1/k = F x

k P xθ
k + F θ

k P θ
k + Qxθ

k (18)

P xθ
k+1 = P xθ

k+1/k − Kx
k+1Ψ

T
k+1 (19)

with

F x
k =

∂f(xk, y1k, ..., yqk, θ)
∂xk

∣∣∣∣
x̂k,θ̂k

(20)

F θ
k =

∂f(xk, y1k, ..., yqk, θ)
∂θ

∣∣∣∣
x̂k,θ̂k

(21)

ek+1 = yk+1−Cxx̂k+1/k = Cx(xk+1−x̂k+1/k)(22)

We set at the initializationP x
0 = µxIn, P θ

0 = µθIq and
P xθ

0 = 0 whereµx andµθ are positive scalars, in particular,
large for bad initializations. Hereafter,Qx

k, Qxθ
k , Qθ

k andRk+1

– which usually correspond to system and measurement noise
covariance matrices in a stochastic context – will be used as
free instrumental matrices whose choices are crucial to control
stability and rate of convergence of the algorithm.

3 Convergence analysis

Before we give the main result in this section, we show first that
the proposed separate-bias observer is equivalent to the global
state and bias estimation algorithm obtained from the Extended
Kalman Observer (EKO) where the states are augmented by the
bias vector. Indeed, (7), (11), (15), (16) and (17) may be written
as :(

Kx
k+1

Kθ
k+1

)
=

(
P x

k+1/k P xθ
k+1/k

P xθT

k+1/k P θ
k+1/k

)(
CxT

0

)((
Cx 0

) ×
(

P x
k+1/k P xθ

k+1/k

P xθT

k+1/k P θ
k+1/k

)(
CxT

0

)
+ Rk+1

)−1

(23)

and by the use of (8), (12) and (18) we have :(
P x

k+1/k P xθ
k+1/k

P xθT

k+1/k P θ
k+1/k

)
=

(
F x

k F θ
k

0 Iq

)(
P x

k P xθ
k

P xθT

k P θ
k

)
×

(
F x

k F θ
k

0 Iq

)T

+
(

Qx
k Qxθ

k

QxθT

k Qθ
k

)
(24)

also from (9), (13) and (19) we deduce that :(
P x

k+1 P xθ
k+1

P xθT

k+1 P θ
k+1

)
=

((
In 0
0 Iq

)
−

(
Kx

k+1

Kθ
k+1

) (
Cx 0

)) ×(
P x

k+1/k P xθ
k+1/k

P xθT

k+1/k P θ
k+1/k

)
(25)

By using the notationsKk+1 =
(

Kx
k+1

Kθ
k+1

)
, Pk+1 =(

P x
k+1 P xθ

k+1

P xθT

k+1 P θ
k+1

)
, Pk+1/k =

(
P x

k+1/k P xθ
k+1/k

P xθT

k+1/k P θ
k+1/k

)
, Fk =(

F x
k F θ

k

0 Iq

)
, C =

(
Cx 0

)
andQk =

(
Qx

k Qxθ
k

QxθT

k Qθ
k

)
, it’s

easy to verify that (23), (24) and (25) are the propagation equa-
tions of the augmented EKO.

In the following we show, by the use of the exact lineariza-
tion technique presented in [8], that the design of the instru-
mental matrices, in particularQx

k andQθ
k, plays a central role

to improve tracking and rate of convergence of the proposed
separate-bias observer. In the rest of the paper and without loss
of generality, we setQxθ

k = 0.
Let us introduce the error vectors̃xk+1, x̃k+1/k andθ̃k+1 :

x̃k+1 = xk+1 − x̂k+1 (26)

x̃k+1/k = xk+1 − x̂k+1/k (27)

θ̃k+1 = θk+1 − θ̂k+1 = θ − θ̂k+1 (28)

and consider the following candidate Lyapunov functionVk+1 :

Vk+1 =
(

x̃k+1

θ̃k+1

)T

P−1
k+1

(
x̃k+1

θ̃k+1

)
(29)

The goal is to point out conditions so thatVk+1 is a decreasing
sequence.



First of all, we introduce an unknown diagonal matrixβk to
parametrize all the errors due to the first order linearization
technique of the nonlinear functionf [8]. We have then the
following exact relation :

x̃k+1/k = βk(F x
k x̃k + F θ

k θ̃k) (30)

instead of the following approximation usually used in the lit-
erature :

x̃k+1/k ≈ F x
k x̃k + F θ

k θ̃k (31)

which are correct only at the neighborhood of the actual trajec-
tories.

The unknown diagonal matrixβk depends on how far̃xk and
θ̃k are from zeros. In the following, (30) will be used in the
Lyapunov function in order to evaluate the propagation errors
and to point out connections between convergence of the pro-
posed observer and the linearisation errors. From (23) to (25),
we have :

Kk+1 = Pk+1C
T R−1

k+1

= Pk+1/kCT
(
CPk+1/kCT + Rk+1

)−1
(32)

P−1
k+1 = P−1

k+1/k + CT R−1
k+1C (33)

Using (32), (6) and (10), the Lyapunov functionVk+1 (29) be-
comes :

Vk+1 =
(

x̃k+1/k

θ̃k

)T

P−1
k+1

(
x̃k+1/k

θ̃k

)

−
(

x̃k+1/k

θ̃k

)T

CT R−1
k+1ek+1 − eT

k+1R
−1
k+1C

(
x̃k+1/k

θ̃k

)
+eT

k+1R
−1
k+1CPk+1C

T R−1
k+1ek+1 (34)

Using (33), (30), (22) and the special structure ofC =(
Cx 0

)
we obtain :

Vk+1 =
(

x̃k

θ̃k

)T

FT
k β̌k

(
FkPkFT

k + Qk

)−1
β̌kFk

(
x̃k

θ̃k

)

+eT
k+1(−R−1

k+1+R−1
k+1C

xP x
k+1C

xT

R−1
k+1)ek+1 (35)

with the extended matrix̌βk =
(

βk 0
0 Iq

)
.

The Lyapunov sequence{Vk}k=1,... is a decreasing one if there
exists a positive scalarζ ∈ ]0, 1[ so that :

Vk+1 − Vk ≤ −ζVk, (36)

or equivalently :

Vk+1 − (1 − ζ)Vk =
(

x̃k

θ̃k

)T (
FT

k β̌k×
(
FkPkFT

k + Qk

)−1
β̌kFk − (1 − ζ)Vk

) (
x̃k

θ̃k

)

+eT
k+1(−R−1

k+1 + R−1
k+1C

xP x
k+1C

xT

R−1
k+1)ek+1 (37)

We notice that a sufficient condition to ensure (37) consists in
verifying the following couple of inequalities :

FT
k β̌k

(
FkPkFT

k + Qk

)−1
β̌kFk ≤ (1− ζ)P−1

k (38)

R−1
k+1C

xP x
k+1C

xT ≤ Iq (39)

In the following theorem we give sufficient conditions to ensure
asymptotic convergence of the proposed adaptive observer.

Theorem 1 If we assume that :

i. The augmented – when the states are completed by the pa-
rameters vector – linearized system along the estimator’s
trajectory isN -locally observable, i.e. there exist a finite
integerN ≥ 1 and positive real numbersγ1 andγ2 such
that, for all k ≥ N − 1, we have :

γ1In+q ≤ OT
[k−N+1,k] diag(R−1

k−N+1, . . . , R
−1
k ) ×

O[k−N+1,k] ≤ γ2In+q (40)

where0 < γ1, γ2 < ∞ and,

O[k−N+1,k] =




C
CFk−N+1

...
CFk−1Fk−2 . . . Fk−N+1


(41)

for all

(
x̂k

θ̂k

)
∈ N(xk,θ) which denotes a neighborhood

of

(
xk

θk

)
,

ii. F x
k , F θ

k are uniformly bounded matrices andFx−1

k exists,

iii. The instrumental matrixβk ∈ IRn×n satisfies :

β̄k ≤
(

(1 − ζ)σmin(FkPkFT
k + Qk)

σmax(FT
k )σmax(Pk)σmax(Fk)

)1/2

= Πβ
k

(42)

with 0 < β̄k = max
i=1,...,n

(|βik|, 1) < ∞,

iv. The weighting matrixRk+1 is chosen as :

Rk+1 = λCxP x
k+1/kCxT

, λ ≥ 1 (43)

then (6)-(22) is a decentralized adaptive observer for (1a)-(1b)
and :

lim
k→∞

(xk − x̂k) = 0 and lim
k→∞

(θ − θ̂k) = 0

σmax and σmin denote the maximum and minimum singular
values respectively.

Proof : First of all, hypothesisii. and the local observability
assumption (40) are introduced to assure that the matrixPk is
bounded from above and below, for more details see [9], while



hypothesisiii. and iv. lead to obtain a decreasing Lyapunov
function{Vk}k=1,.... Indeed, using the fact thatβk is diagonal
matrices and from (42), we obtain :(

σmax(β̌k)
)2 ≤

(1 − ζ)σmin(P−1
k )

σmax(FT
k )σmax((FkPkFT

k + Qk)−1)σmax(Fk)
(44)

As,

σmax

(
FT

k β̌k(FkPkFT
k + Qk)−1β̌kFk

) ≤(
σmax(β̌k)

)2
σmax(FT

k )σmax((FkPkFT
k + Qk)−1) ×

σmax(Fk) (45)

We have then :

σmax

(
FT

k β̌k(FkPkFT
k + Qk)−1β̌kFk

)
≤ (

σmax(β̌k)
)2
σmax(FT

k )σmax((FkPkFT
k + Qk)−1) ×

σmax(Fk)
≤ (1 − ζ)σmin(P−1

k ) (46)

which induce that (38) is satisfied.
On the other hand, substituting (43) into (39), we have :

λ−1(CxP x
k+1/kCxT

)−1(CxP x
k+1/kCxT

) ≤ Iq (47)

which is satisfied for allλ ≥ 1.
Therefore, (45) and (47) induce that thatVk is a decreasing
Lyapunov function.

Finally, asPk is a bounded matrix, it follows from (36) that :

0 ≤ µ

(
x̃k

θ̃k

)T (
x̃k

θ̃k

)
≤ Vk ≤ (1 − ζ)kV0 (48)

which implies :

0 ≤ µ lim
k→∞

(
(

x̃k

θ̃k

)T (
x̃k

θ̃k

)
) ≤ lim

k→∞
(Vk)

≤ V0 lim
k→∞

(1 − ζ)k = 0 (49)

with µIn+p ≤ P−1
k .

Therefore :

lim
k→∞

(
xk − x̂k

θ − θ̂k

)
= 0 (50)

Remark 1 : The sufficient conditions (42) represents, in a way,
the attraction region in the state and parameters spaces. In-
deed, in the body of the paper we introduced a linearisation
technique in the form of (30) to quantify the distance between
the actual and estimated trajectories and in the same time we
deduce a sufficient condition (42) on the norm ofβk so that we
obtain a decreasing Lyapunov function, i.e. asymptotic con-
vergence of the observer. Contrary to the standard EKO where
βk is assumed to be very close to the identity matrix (that is

very small initialization errors), the proposed approach ensures
asymptotic convergence for all matrixβk (which represent the
linearisation errors) bounded byΠβ

k . On the other hand, as

long as

(
x̂k

θ̂k

)
goes to

(
xk

θk

)
, the matrixβk converges to

the identity and the approximation (31) usually used in the lit-
erature becomes valid. The stability analysis is then similar to
the linear case.

Design of the arbitrary matricesQx
k andQθ

k, in order to sat-
isfy the condition (42), depends on the evaluation of the upper
boundβ̄k on the norm ofβk in particular at the initialization of
the algorithm. In practice, from our knowledge of the system
to synchronize likeLorentzsystem,Rosslersystem orChua
circuit, most often we have an idea on the bounds of the state
and parameter vectors to be estimated and by the use of the non
linearitiesf(.) we may evaluate realistic values ofβ̄k. In addi-
tion, we should recall that the proposed approach in only local
but improve the convergence significantly.

Remark 2 : Hereafter, by a quantitative analysis, the aim is to
design the weighting matricesQx

k andQθ
k so that the boundΠβ

k

is as large as possible in order to satisfy condition (42).
Before we introduce a simple design ofQx

k andQθ
k, we no-

tice that the upper boundΠβ
k is large whenQk (consequently

Qx
k andQθ

k) is large. Indeed, since the matricesPk andFk

depend onQk−1 computed at time instantk − 1, Qk is a
free weighting matrix to enlarge the above upper bound in the

sense that we have

(
(1 − ζ)σmin(FkPkFT

k + Q1
k)

σmax(FT
k )σmax(Pk)σmax(Fk)

)1/2

≥(
(1 − ζ)σmin(FkPkFT

k + Q2
k)

σmax(FT
k )σmax(Pk)σmax(Fk)

)1/2

for Q1
k ≥ Q2

k > 0.

However, we should have in mind that matricesPk+1 and
Pk+1/k have to remain bounded and, in order to avoid numeri-
cal instabilities,Qk can not be chosen extremely large.

Remark 3 : In the following we propose a simple and efficient
design, which is not unique, forQx

k andQθ
k :

Qx
k = ζxeT

k ekIn + εxIn (51)

Qθ
k = ζθeT

k ekIp + εθIp (52)

whereek = yk −Cxx̂k/k−1 and the positive scalarsζx andζθ

have to be chosen sufficiently large especially in case of bad
initial conditions and high non-linearities off(.), εx andεθ are
small enough scalars introduced to avoid numerical instabili-
ties.

The original idea of designingQx
k and Qθ

k is, in fact, the
presence of the output errorek which controls automatically
width of the upper bound onβk. Indeed, in case of high
non-linearities and/or arbitrary large initialization errors, the
termsζxeT

k ek and ζθeT
k ek (and consequently the bound) be-

come large.

Remark 4 : Considering the weighting matrix (43), we remark
that setting high values ofλ leads to a very slow convergence
rate or even a divergence of the algorithm (the gainsKx

k+1 and
Kθ

k+1 quickly go to zero) so much so that the choice ofλ must



be a judicious compromise between stability and rate of con-
vergence of the proposed observer.

Since the proposed approach is only local but may be applied
to a very large class of non-linear systems, it is very difficult to
give an idea, a priori, on the values of the parametersζx, ζθ and
λ which depend on many factors such as initializations or de-
gree of non linearity of the system. In practice, suitable values
of these parameters are determined, by an iterative approach.
From our experience (we have tried this approach on several
chaotic systems and on a large variety of physical processes
under severe conditions)ζx, ζθ andλ belong in general to the
intervals

[
100 1020

]
,
[
100 1020

]
and[1 20] respectively.

Remark 5 : Using the special structures ofFk =(
F x

k F θ
k

0 Iq

)
andC =

(
Cx 0

)
, the observability matrix

O[k−N+1,k] may be partitioned as follows :

O[k−N+1,k] =
[
Ox

[k−N+1,k] Oθ
[k−N+1,k]

]
with

Ox
[k−N+1,k] =




Cx

CxF x
k−N+1
...

CxF x
k−1 . . . F x

k−N+1




Oθ
[k−N+1,k] =


0

CxF θ
k−N+1

...
Cx

(
F x

k−1 . . . F θ
k−N+1 + F x

k−1 . . . F θ
k−N+2 + . . . + F θ

k−1

)




As we can expect, if the original system (1a)-(1b) isn’t in
some sense “observable” or “persistently excited” that is if
rang(Ox

[k−N+1,k]) < n or rang(Oθ
[k−N+1,k]) < p, then the

observability condition (40) is not verified. In particular, when
a state has null initial condition and is not reachable, then
all parameters multiplying only this state variable couldn’t be
identified because they are not persistently excited i.e. the cor-
responding columns inF θ

k are zero and then we have rank
rang(Oθ

[k−N+1,k]) < p.

Remark 6 : In order to reduce the computational require-
ments and then the numerical instabilities, in particular, for
large scale systems the proposed two stage algorithm may be
implemented, in real time applications, on a separate processor
system.

4 Numerical examples

Example 1 : Synchronization of Chua’s cirucit

Consider the example of chaotic synchronization where both
transmitter and receiver systems are implemented asChuacir-
cuits with unknown constant parameters [10]. The transmitter

system, so-called double scroll chatic attractor (see Figure 1),
is described by the following set of nonlinear differential equa-
tions :

ẋ1(t) = α(−x1(t) + x2(t) − g(x1(t)))
ẋ2(t) = x1(t) − x2(t) + x3(t)
ẋ3(t) = −γx2(t)

whereg(x1) = m1x1 +
m0 − m1

2
(|x1 + 1| − |x1 − 1|) with

m0 = −8/7 andm1 = −5/7. The transmitted driven signal
is y(t) = x1(t). We suppose that the parametersα andλ are

unknown but constants (i.e.θ =
(
α γ

)T
, θ̇ = 0).

Using Euler discretization method, the discrete-time model of
Chua’s circuit is :

x1k+1 = (1 − αT )x1k + αT (x2k − g(x1k))
x2k+1 = Tx1k + (1 − T )x2k + Tx3k

x3k+1 = x3k − γTx2k

whereT is the sampling period and the driven signal isyk =
x1k.

The initial conditions for the transmitter were taken asx0 =(
0.1 0.1 0.1

)T
while the true values of the supposed un-

known parameters are :α = 15.6 andγ = 27. The sampling
period isT = 0.01 second.

For the receiver, the initial conditions are very bad for the states

as well as for the unknown parameters :x̂0 =
(
1 1 1

)T
and

θ̂0 =
(
10 20

)T
with P x

0 = 1010I3 andP θ
0 = 1010I2 . In

order to ensure convergence of the algorithm, the weighting
matricesQx

k, Qθ
k andRk+1 are chosen as in (51), (52) and (43)

with ζx = ζθ = 1010, λ = 1 andεx = εθ = 10−3.

The results of the simulations are reported in Figure 2 and 3.
A comparison has been realized with the classical extended
Kalman filter when the weighting matricesQx

k, Qθ
k andRk+1

are chosen asQx
k = Qx = 10−3I3, Qθ

k = Qθ = 10−3I2 and
Rk+1 = R = 10−3. The plots clearly show high performances
of the proposed adaptive observer and the important role of the
instrumental matricesQx

k, Qθ
k andRk+1 to ensure strong con-

vergence even with very bad initial conditions.
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Figure 1:The double-scroll attractor and the output of Chua’s circuit

Example 2 : Secure communications using Chua’s cirucit

In the current example, we are going to present the potential
applications of synchronizedChua’s systems in secure trans-
missions. In this case, the driven signalyk contains a binary
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Figure 2:Convergence behavior of‖x̃2k‖ and‖x̃3k‖. Proposed ob-
server (–) and standard EKO (--)
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Figure 3:Estimation of parametersα andγ. Proposed observer (- -)
and standard EKO (-.)

encoding messagesk that has been used to modulate one or
more parameters of the chaotic transmitter.

Then we use the proposed decentralized algorithm to estimate
the modulated parameters in order to recover the information
signalsk. Here we suppose that the message modulate the pa-
rametersα of the transmitter with the following modulation
rule :

αk = α0 + α1sk

wheresk = 0.5(1 − sgn
(
sin

(
2πkT

T0

))
) with α0 = 15.6, α1 =

0.5 and the period ofsk is T0 = 20 s.

The initial conditions for the transmitter are the same as in
the first example, we suppose that only the parameterα is un-
known.

The initial conditions of the receiver are :̂x0 =
(
1 1 1

)T

and α̂0 = 16.5 with P x
0 = 1020I3 and P θ

0 = 1020 . The
weighting matricesQx

k, Qθ
k andRk+1 are chosen as in (51),

(52) and (43) withζx = 1, ζθ = 1015, λ = 15 andεx = εθ =
10−3.

Figure 4 shows the secure communication via binary parame-
ter modulation. We easily verify that the proposed algorithm
recovers the information messagesk at the end of the commu-
nication link without any information on the dynamics ofsk.

5 Conclusion

In this contribution a simple decoupled adaptive observer for
chaos synchronization has been derived. Sufficient conditions
for local asymptotic stability were established. Convergence
and strong tracking ability were illustrated by chaotic synchro-
nization using the classicalChua’s circuit.
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Figure 4: Convergence behavior of‖x̃k‖ and estimation of the pa-
rameterα with the proposed observer

References

[1] H. Nijmeijer and I. Mareels, “An observer look at the
synchronization,”IEEE Transactions on Circuits and Sys-
tems, vol. 44, pp. 882–889, 1997.

[2] T. Ushio, “Synthesis of synchronized chaotic systems
based on observers,”International Journal of Bifurcation
and Chaos, vol. 9, no. 3, pp. 541–546, 1999.

[3] G. Santoboni, A. Pogromsky, and H. Nijmeijer, “Par-
tial observers and partial synchronization,”International
Journal of Bifurcation and Chaos, vol. 13, no. 2, pp. 453–
458, 2003.

[4] G. Bastin and M. R. Gevers, “Stable Adaptive Observers
for Nonlinear Time-Varying Systems,”IEEE Transac-
tions on Automatic Control, vol. 33, no. 7, pp. 650–658,
1988.

[5] R. Marino and P. Tomei, “Adaptive Observers with Arbi-
trary Exponential Rate of Convergence for Nonlinear Sys-
tems,”IEEE Transactions on Automatic Control, vol. 40,
no. 7, pp. 1300–1304, 1995.

[6] T.-L. Liao and S.-H. Tsai, “Adaptive synchronization of
chaotic systems and its application to secure communica-
tions,” Chaos, Solitons and Fractals, vol. 11, pp. 1387–
1396, 2000.

[7] M. Boutayeb, M. Darouach, and H. Rafaralahy, “General-
ized State-Space Observers for Chaotic Synchronization
and Secure Communication,”IEEE Transactions on Cir-
cuits and Systems, vol. 19, no. 3, pp. 345–349, 2002.

[8] M. Boutayeb and D. Aubry, “A strong tracking extended
Kalman observer for nonlinear discrete-time systems,”
IEEE Transactions on Automatic Control, vol. 44, no. 8,
pp. 1550–1556, 1999.

[9] Y. Song and J. W. Grizzle, “The Extended Kalman Filter
as a Local Asymptotic Observer for Discrete-time Non-
linear Systems,”Journal of Mathematical Systems Esti-
mation and Control, vol. 5, no. 1, pp. 59–78, 1995.

[10] H. Huijberts, H. Nijmeijer, and R. Willems, “System
Identification in Communication with Chaotic Systems,”
IEEE Transactions on Circuits and Systems, vol. 47,
no. 6, pp. 800–808, 2000.


	Session Index
	Author Index



