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Abstract

Let ���	�
���� be a stationary process of ����� real-valued
matrices, depending on some vector-valued parameter ����� ��� ,
satisfying ����� �"!$#%# �'&��
�"(#�#*),+ for all � . The top-Lyapunov
exponent of � is defined as- �.��/�0�%1�2� 34 ���%���5#%# � �76 � �98;:=<%<�< 6 � & #%# <
Top-Lyapunov exponents play a prominent role in randomiza-
tion procedures for optimization, such as SPSA, and in finance,
giving the growth-rate of a self-financing currency-portfolio
with a fixed strategy. We develop a convergent iterative pro-
cedure for the optimization of

- �.�� . In the case when � is a
Markov-process, the proposed procedure is formally within the
class defined in [1], however the general case requires funda-
mentally different techniques.

1 Random matrix-products

Let �>�?�
���@�A 4 �CB�A 3 A <�<%< be a stationary process of ���� real-valued matrices over some probability space �EDFA�GHAJIK ,
satisfying ����� � ! #�# �'&L#%#9)M+ (1)

where �%��� !KN denotes the positive part of ��� � N . It is well-
known (see [2]) that under the above condition- �O��1�2� 34 ����� �F#%# ��� 6 �'�L8;: <�<�<P6 �'&"#�# (2)

exists. Here
- �RQS+ is allowed. The following result is fun-

damental in multiplicative ergodic theory (see [2]):

Theorem 1 Assume that the process � �>�
� �  described
above satisfies (1) and in addition it is ergodic. Then T -almost
surely - �0�%1�2� 34 ��� �F#%# ��� 6 �'�L8;: <�<�< 6 �'&"#�# < (3)

The number
-

, the exponential growth rate of the product#%# � �U6 � �98V:W<�<%<X6 � & #�# , is called the top Lyapunov-exponent of
the process �Y�Z�.���X for reasons that will become clear later.

We also recall a part of Oseledec’s theorem (see [8] and [6])
which describes what happens if we apply the above random
matrix products to a fixed vector.

Theorem 2 Under the conditions of Theorem 1 there exists a
subset D\[;]MD of probability

3
such that for all ^/��D�[ there is a

proper subspace _��
^`5]a� �Sb of fixed dimension such that for
all c9��� �5b�de_��f^`��1%2� 34 ��� �Fg����;�f^`h�'�L8;:=�
^` 6(6i6 �'&��
^`jc;gk� - <
Assume now that the matrices �l�mA 4 �?B�A 3 <�<%< depend on a
common parameter, say � , where � �onp]	� �e� , and n is an
open domain. � is considered as a control-parameter that we
can set freely. Thus the top Lyapunov-exponent

- � - �.�� will
be a function of � , and will be called a controlled Lyapunov-
exponent. The problem that we consider in this paper is:2'1%qr - �
�" < (4)

A theoretical expression for
-

can be obtained as follows (cf.
[2]). Let s b �t� b <�<%< � : and define the normalized prod-
ucts u b �vs b w #�# s b #�# . Then it can be shown that the process�xu b A�� b ! :  is asymptotically stationary. Let y denote the sta-
tionary distribution of �
�lz Aou :  . Then we have- � { ��� �S#�# � z u/:P#�# | y < (5)

Obviously this expression is not very useful for practical com-
putations.

2 Minimization of the top-Lyapunov exponent

In developing an iterative procedure for solving the above min-
imization problem an alternative expression for

- � - �.�� will
play a key role. Let us define a �}��� matrix-valued processu~�Z��u����A 4 �0B�A 3 A <�<�< as follows:u����0�'� 6 ���98V: <�<%< 6 �'& w #%# ��� 6 ���98V: <�<%<�6 �'&"#�# (6)

assuming that the denominator is not zero. In the latter case we
write u����~B . Obviously, uM���xu��� can be defined recursively
as follows: u�� ! :��0�'� ! :(u�� w #�# ��� ! :(u��V#�# (7)



with initial condition u�&S�M�'& w #�# �7&9#%# , and the convention thatB w B��~B . It is easily seen that�%���S#%# � �76 � �98;:=<%<�< 6 � & #%# � �98V:�b�� & ��� �S#�# � b ! : u b #%#������ �S#�# � & #%# <
Thus Theorem 1 implies- �M�%1�2� 34 �L8;:�b�� & ��� �F#%# � b ! :�u b #�# (8)T -almost surely.

To compute the gradient of
-

with respect to � consider first
the expression #%# ��uK#%# with ����� � b���b fixed. Let �xu��.�JJ�A����ZB
be a smooth curve in � �Sb �Xb with u��.B����ukAF�u��.B"�� �u such
that ��u���YB . Then at �U�YB we have, using #�# ��u��.�J(#�#`���� �
��uFu5�;���� :J� z , that

||�� #%# ��u��
�Ji#%# equals3� ��� �
��uFu � � �  8;:�� z 6 ��� �
� �u5u � � � ����u �u � � �  <
Using the identities

����� � ���o� � and
���o�5� � ���o���

, we get||�� #�# ��u��
�Ji#%#�� 3#�# ��u�#�# ��� � �uSu � � � �} < (9)

Now let the role of � and u be interchanged: let u5��� � b �Xb be
fixed and let ���.�J be a smooth curve in � �Fb �Xb with ��B"`�a�
such that ��u���MB . Proceed as above, and note that, in analogy
with (9) we have||�� #�# ���.�J�uK#%#�� 3#�# ��u�#�# ��� �����uSu � � �  < (10)

Thus we finally arrive at the following result:

Lemma 1 Let ���.�J�A�u��.�J�AJ�U��B be smooth curves in � �5b���b ,
with ���.B"k�Z��Aou��.B�k� ukA'����EB�5� ���AF�u��.B�S�¡�u , such that��u���MB . Then at ���MB we have|| � #�# ���
�J�u��.�J(#�# � 3#�# ��u�#�# ��� � �u5u � � � �¢� ��}uFu � � �  <

(11)

Let us now consider the case where where �U���¢�'�;�.�� is a
smooth function of � , as above, i.e. � �on?]�� � � , and n is an
open domain. Assume that �l�m�
�� is non-singular for all 4 and
all � �on . Thus we get a well-defined sequence �xu/��/����u��V�
��� ,
and for all 4 u��;�.�� is a smooth function of � . Let �P£ for some¤ � 3 A <�<%< A.¥ be a fixed coordinate direction and let us introduce
the notations� rh¦x§ ��� ¨¨ � £ ���;�.���u rJ¦x§ ��� ¨¨ � £ u��;�
�� <
Differentiating (8), and using Lemma 1 with �©�ª� b ! :P�.�� ,u«�¢u b �
�� we get, after formal derivation, the following ex-
pression for

- rJ¦ ��� ¨ w ¨ �=£� - �
�� :��1�2� 34 �98;:�b¬� &
��� ��u rh¦x§ b u5�b �}�b ! : � b ! :/�� rJ¦x§ b ! :iu b u5�b ���b ! : #%# � b ! :(u b #�# z <

(12)

Introduce the notations:�_��
�®A'���AoukA5�uk¯� ��� � �uSu5�V���V��� ��}uFuk�*���*#%# ��uK#%# z_'£��.�®AJ� rh¦ A�u�A�u rJ¦ ¯� �_��.�®AJ� rh¦ A�u�A�u rJ¦ 
_��
��AJ� r A�u�A�u r ¯� �._l: � <i<(< �A <�<�< A�_ � � <(<(< J < (13)

It is assumed that the partial derivatives � rJ¦x§ b ! : are available
explicitly. On the other hand the partial derivatives u rh¦x§ b will be
computed recursively, taking into account the recursive defini-
tion of u � given in (7). For this purpose consider the mapping
of � � b �Xb �H� � b ��b into � � b �Xb defined by° �.�®AouS��O��u w #�# ��u�#�# (14)

assuming that ��u±��²B . To obtain the derivative of
°

with
respect to u let �}��� �kb���b be fixed and let ��u��
�J��AJ���«B be a
smooth curve in � � b �Xb with u��EB�'�u�AF�u��.B�'� �u . Then at���~B we have||�� ° �
�®A�u��.�JJ�� �	�u#%# ��uK#%# Q���u 3#%# ��uK#%# z ||�� #%# ��u��
�Ji#%# <
Taking into account (9) we get|| � ° �.�®Aou��
�J��� ���u#�# ��u�#�# Q ��u#�# ��u�#�# ³ ��� �`�uFu � � � �� < (15)

Now interchanging the role of � and u we get||�� ° �
�´�
�J�A�u5�� ��}u#�# ��uK#�# Q ��u#�# ��u�#�# ³ ��� �F���uFu � � �  < (16)

Thus we arrive at the following result:

Lemma 2 Let �´�
�J�A�u��.�J�A��µ�B be smooth curves in � �Sb �Xb
with ���.B"S�,�®A�u��EB�F�«u�A'����.B"S� ���AS�u¶�EB���·�u such that��u���0B . Then at ���0B we have|| � ��u w #%# ��uK#%#=� �	�u#%# ��uK#%# � ���u#%# ��uK#%# QQ ��u#%# ��uK#%# ³U¸ ��� �`�uFu � � � ��V� ��� �F��}uSu � � � h¹$��»º;�
�®A�u�A'���AF�uS < (17)

Thus we can write||�� ° �
�´�
�J�A�u��.�JJ��Mºm�.�®AoukA7���AF�u5 < (18)

Applying the above notations we can express the derivativesu r ¦ § � �.�� in a recursive manner for any � as follows:u rh¦x§ � ! :��Oº;�
��� ! :WAou��mA�� rh¦x§ � ! :WAou rh¦�§ �� < (19)



The iterative scheme. Assume, that at time 4 we have
at our disposal the latest estimator �P� and the matrices���mAJ� r(§ �@A�u��mA�u r(§ � . Observe �l� ! :¡� ��� ! :=�
�=�� and� r¬§ � ! :\�M� r(§ � ! :W�.�=�� . Then setu�� ! :p� ��� ! :(u�� w #�# ��� ! :¬u��V#�#u rJ¦�§ � ! :p� ºm�.��� ! :WA�u��¼AJ� rJ¦x§ � ! :=Aou rJ¦x§ �L_ � � _��
� � ! : AJ� r(§ � ! : Aou � A�u r(§ � �=� ! :p� �=��Q 34 _'� (20)

An important technical tool is enforced boundedness which is
achieved by resetting: if � � ! : would leave a fixed compact
domain then we reset to its initial value.

The algorithm formally falls within the class of recursive es-
timation methods described in [1] if � is a Markov-process,
but the application of the results of [1] is not straightforward.
In particular, [1] does not consider the effect of resetting. The
convergence analysis requires completely different tools if �
is not Markov. The first step is relatively easy: the extension of
the ODE-method to recursive estimation processes with reset-
ting, when the correction term is strictly stationary (asymptot-
ically) for each fixed � . The hard part is to establish uniform
laws of large numbers with respect to � for sums defined in
terms of the process �.� � ! : A�u �  .
3 Noise-free SPSA

We consider the following problem:2'1�qK½5�.���A
where ½5�
�" is defined for � ��� �\� . A key assumption is that the
computation of ½5� <  is expensive and the gradient of ½5� <  is not
computable at all. Therefore, we need a numerical procedure
to estimate the gradient of ½S� <  denoted by¾ �.��/�~½ r �.�� < (21)

Following [7] we consider random perturbations of the com-
ponents of � . For this we first consider a sequence of in-
dependent, identically distributed (i.i.d.) random variables¿ b £JA��Z� 3 A <�<�< A ¤ � 3 A <%<�< A.¥ defined over some probability
space �EDFAJGµAhIK satisfying certain weak technical conditions
given in [7]. E.g. they may be chosen Bernoulli withT�� ¿ b £À�a� 3 �� 3 w � T�� ¿ b £À�ÁQ 3 �� 3 w � <
Now let Â b�Ã B be a fixed sequence of numbers. For any � ��� �k�
we evaluate ½5� <  at two randomly and symmetrically chosen
points �V��Â b ¿ b and �ÀQKÂ b ¿ b , respectively. Define the random
vector ¿ 8;:b �Ä ¿ 8V:b : A <(<(< A ¿ 8;:b���Å � <
Then the estimator of the gradient is defined as_��E�mA���/� ¿ 8V:b 3� Â b�Æ ½S�
�S��Â b ¿ b ÇQ�½5�
�¶Q�Â b ¿ b hÈ <

The fixed gain SPSA (simultaneous perturbation stochastic ap-
proximation) procedure is then defined byÉ� b ! :k� É� b Q�Ê9_������ 3 A É� b  (22)

with Ê Ã B fixed. The peculiarity of the procedure is, that for�a�	� � and Â b0Ë B the correction term _��E�;AJ� �  vanishes
asymptotically. Fixed gain SPSA methods have been first con-
sidered in [4] in connection with discrete optimization.

A main result is that fixed gain SPSA applied to noise-free op-
timization yields geometric rate of convergence almost surely,
just like deterministic gradient methods under appropriate con-
ditions, see [5]. The convergence properties of the proposed
fixed gain SPSA method can be easily established for quadratic
functions. We have the following result:

Theorem 3 Let ½ be a positive definite quadratic function,

½5�.���� 3� �
�¶Q�� �  � � �
�¶Q�� � �A
and let Â b � Â be fixed. Then, for sufficiently small Ê there is
a deterministic constant

- )ZB , depending on Ê , such that for
any initial condition �=& outside of a set of Lebesgue-measure
zero we have ��1�2b¬Ì�Í 3� �%���S# É� b Q}� � # � -
with probability 1.

Sketch the proof: first, it is easy to see that for quadratic func-
tions _��E�mA����� ¿ 8V:b ¿ � b ¾ �.�� <
Since

¾ �.��K� � �.�'Q´� �  , we get the following recursion forÎ � b �0� b Q�� � : Î � b ! :k���.Ï�Q�Ê ¿ 8;:b ¿ � b �  Î � b < (23)

Now the sequence
¿ b is i.i.d., hence the matrix-valued process� b ���EÏ�Q�Ê ¿ 8V:b ¿ � b � 

is stationary and ergodic. Applying Oseledec’s multiplicative
ergodic theorem (cf. [8, 6]) the claim of the theorem follows
immediately with some deterministic, not necessarily negative-

. To show that
- )OB for small Ê we use the result of [3].

Simple adaptive procedures for noise-free SPSA have been
considered in earlier works. A simple procedure is to use two
gains and choose the one in each step that gives smaller func-
tion value. To our knowledge the best switching strategy, mini-
mizing the top-Lyapunov exponent is not known. The problem
is hard even for two fixed matrices, and has been solved only
recently by V. Blondel (yet unpublished ).



4 Growth rate of wealth-processes

Let us consider a currency portfolio Ð�����Ð �  consisting of �
currencies. Thus Ð � �,��Ð £ § � ¬A ¤ � 3 A <%< A�� , where Ð £ § � denotes
the absolute size of the portfolio held in the

¤
-th currency at

time 4 . At any time 4 the exchange rates are collected in a �`�k�
matrix Ñ � . Obviously, Ñ � is random. �
Ñ �  will be assumed
to be a strictly stationary process. Based on past and present
values of Ñ@� a rebalancing of the portfolio will take place, so
that a certain fixed percentage of dollar will be converted into
Euro or the other way round. This rebalancing can be described
by a linear transformation:Ð@� ! :��M����Ð¼�;A (24)

where �
���� is a strictly stationary sequence of �$��� random
matrices, describing the strategy of the investor. Let us focus on
a parametric set of strategies ��0���
�� . There is no reason to
assume that �
�l�� is a Markov-process. The wealth or the value
of the portfolio in say Euros will be obtained from a scalar
product of the form Ò �l�»Ó �� Ð¼�;A
where ÓL� is an appropriate row of the random matrix Ñm� . Then
the growth rate of the wealth will be- �Ô�%1�2� Ì�Í 34 ��� � Ò �
which, under reasonable conditions, is equal to the top-
Lyapunov exponent of �
�l�X . Its the maximization can be car-
ried out by the procedure proposed in Section 1.

5 Simulation results

Our first experiments show the dependence of the top-
Lyapunov exponent

-
on the stepsize Ê in the fixed gain SPSA

method. As a benchmark example, we considered the problem
of minimizing a quadratic function of the form½S�
������
�¶Q�� �  � � �
�¶Q�� �  <
The minimizing point � � was generated uniformly within the
unit cube. The matrix

�
was also generated randomly in the

following way: first we generated the eigenvalues of
�

,
-XÕ

,
according to exponential distribution with parameter y���B <×Ö ,
and considered the matrix Ø� �0ÙL1ÛÚP�¼� -LÕ  . Then we applied ran-
domly chosen rotations, and considered

� �«Ü�Ø� Ü 8;: , whereÜ is the product of ¥ random rotations.

In Figure 1 we plotted the estimation of the top-Lyapunov ex-
ponent

-
as the function of the stepsize Ê .

In Figure 2 we plotted the estimation of the gradient of the
top Lyapunov exponent, as it is computed in Section 2. It is
seen, that the gradient vanishes around the minimizing point,Ê7Ý0B < B Ö .

In Figure 3 we plotted the result of the proposed iterative
scheme to find the optimal control Lyapunov exponents in 3000
iterations.
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Figure 1: Top Ljapunov exponent as the function of the step-
size.
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Figure 2: The gradient of the top-Lyapunov exponent.
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Figure 3: The result of the iterative scheme.
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