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Abstract

This paper establishes the exponential decay of the energy of
the solution of the wave equation with variable coefficients in
the principal part subject to dissipative feedback acting in the
Neumann boundary condition. The approach adopted uses Rie-
mannian geometry combined with classical differential multi-
pliers.

1 Introduction

Let Ω be an open bounded domain in Rn with boundary Γ of
class C2. It is assumed that Γ consists of two parts Γ0 and Γ1
such that

Γ1 6= ∅ and Γ0 ∩ Γ1 = ∅ (1)
Let

Ay = −
nX

i,j=1

∂

∂xi
(aij(x)

∂y

∂xj
) (2)

be a second order differential operator with real coefficients
aij = aji of class C1satsifying the uniform ellipticity condi-
tion

nX
i,j=1

aij(x)ξiξj ≥ α
nX
i=1

|ξi|2 , x ∈ Ω (3)

for some positive constant α. Assume further that
nX

i,j=1

aij(x)ξiξj > 0,

∀x ∈ Rn, ξ = (ξ1, ..., ξn)T ∈ Rn, ξ 6= 0.

Let k be an L∞(Γ0) function satisfying k(x) ≥ 0 almost ev-
erywhere on Γ0.

In Ω we consider the Neumann mixed second order hyperbolic
problem in y(t, x)

ytt +Ay = 0 in (0,+∞)×Ω (4)
y(0, x) = y0, yt(0, x) = y1 in Ω (5)
y = 0 on (0,+∞)× Γ1 (6)
∂y

∂νA
= −k(x)yt on (0,+∞)× Γ0 (7)

where ytt = ∂2y
∂t2 ,

∂y

∂νA
=

nX
i,j=1

aij(x)
∂y

∂xj
νi (8)

is the co-normal derivative with respect to A and ν =
(ν1, ..., νn) is the unit normal on Γ pointing towards the ex-
terior of Ω.

We define the energy of a solution y(t, x) as follows

E(t) =
1

2

Z
Ω

[y2 +
nX

i,j=1

aij(x)
∂y

∂xi

∂y

∂xj
]dΩ (9)

There has been an extensive work over the last two decades

centered on the question of energy decay as t → +∞ for
problem (4)-(7). In the case where the coefficients aij are con-
stant, energy decay rates were obtained by Chen [1], Lagnese
[4],[5] and Komornik and Zuazua [3]. Their work uses a Lya-
punov method, based on Lyapunov type functions which con-
tain among other terms, differential multipliers. As it was men-
tionned in Lagnese [4],[5], this method can be adapted to obtain
decay estimates for problem (4)-(7) provided the coefficients
aij satisfy further assumption (Condition (d), p. 167 in [5]).

In this paper, we use Riemann geometric methods combined
with classical differential multipliers to study this stabilization
question for problem (4)-(7). This approach was introduced by
Yao in ([6]) to establish some observability inequalities for the
wave equation (4).We prove that the energy decays exponen-
tially without any strict assumption on the coefficients aij .

The paper is organized as follows. In §2, we present a few pre-
liminary results and some of the machinery needed for proving
the main result. Section 3 contains the statement and the proof
of the main result.

2 Preliminary results

Let A(x) and G(x) be, repectively, the coefficient matrix and
its inverse

A(x) = (aij(x)); G(x) = [A(x)]−1 = (gij(x))
i, j = 1, ...., n; x ∈ Rn (10)



Euclidean metric

Let [x1, ..., xn] be the natural coordinate system in Rn. For
each x ∈ Rn, denote by

X.Y =
nX
i=1

αiβi, |X|20 = X.X,

∀X =
nX
i=1

αi
∂

∂xi
, Y =

nX
i=1

βi
∂

∂xi
∈ TxRn

the Euclidean metric on Rn.

For f ∈ C1(Ω) andX =
Pn
i=1 αi

∂
∂xi
, denote by

∇0f =
nX
i=1

∂f

∂xi

∂

∂xi
and div0(X) =

nX
i=1

∂αi(x)

∂xi
(11)

the gradient of f and the divergence of X in the Euclidean

metric.

Riemannian metric

For each x ∈ Rn, define the inner product and the correspond-
ing norm on the tangent space TxRn by

g(X,Y ) = hX,Y ig = X.G(x)Y =
nX
i=1

gij(x)αiβi

|X|2g = hX,Y ig ,

∀X =
nX
i=1

αi
∂

∂xi
, Y =

nX
i=1

βi
∂

∂xi
∈ TxRn (12)

Then (Rn, g) is a Riemannian manifold with a Riemannian
metric g. Denote the Levi-Civita connection in metric g by D.
Let H be a vector field on (Rn, g). The covariant differential
DH of H determines a bilinear form on TxRn × TxRn, for
each x ∈ Rn, by

DH(X,Y ) = hDXH,Y ig , ∀X,Y ∈ TxRn

whereDXH is the covariant derivative ofH with respect toX.

The following lemma provides some useful identities.([6],
Lemma 2.1)

Lemma 1 Let f, h ∈ C1(Ω) and let H,X be vector fields on
Rn. Then with reference to the above notation, we have
(i)

hH(x), A(x)X(x)ig = H(x).X(x), x ∈ Rn (13)

(ii) The gradient∇gf of f in the Riemannian metric g is given
by

∇gf(x) =
nX
i=1

 nX
j=1

aij(x)
∂f

∂xj

 ∂

∂xi

= A(x)∇0f, x ∈ Rn (14)

(iii)
∂y

∂νA
= (A(x)∇0y).ν = ∇gy.ν (15)

(iv)

h∇gf,∇ghig = ∇gf(h)
= ∇0f.A(x)∇0h, x ∈ Rn (16)

(v)

h∇gf,∇gH(f)ig = DH(∇gf,∇gf)

+
1

2
div0(|∇gf |2gH)(x)

− 1
2
|∇gf |2g div0(H)(x), x ∈ Rn (17)

(vi)

Ay = −
nX

i,j=1

∂

∂xi
(aij(x)

∂y

∂xj
)

= −div0(A(x)∇0y)
= −div0(∇gy), y ∈ C2(Ω) (18)

(vii)
E(t) =

1

2

Z
Ω

[y2 + |∇gy|2g]dΩ (19)

(v) Green’s formula. Let z ∈ C1(Ω).Then
Z
Ω

(Ay)zdΩ =
Z
Ω

h∇gy,∇gzig dΩ−
Z
Γ

z
∂y

∂νA
dΓ (20)

Before going on to the main result, we state three preliminary

results that we will need in the proof of Theorem.3.1.

Theorem 2 Assume (1) and set

V = {ϕ ∈ H1(Ω) : ϕ = 0 on Γ1}

Then for any initial data {y0, y1} ∈ V × L2(Ω) there exists a
unique solution y = y(t, x) of (4)-(7) such that

y ∈ C(R+, V ) ∩ C1(R+, L2(Ω))

If in addition we assume {y0, y1} ∈W where

W = {(y0, y1) ∈ V × V : Ay0 ∈ L2(Ω) and
∂y0
∂νA

= −g(x)y1 on Γ0}

then we have

y ∈ C1(R+, V ); Ay ∈ C(R+, L2(Ω)



This theorem is well known (see [2], Theorem 7.4).

Lemma 3 Let {y0, y1} ∈ W. Then the solution of (4)-(7) sat-
isfies

E(S)−E(T ) =
Z T

S

Z
Γ0

(yt)
2k(x)dΓdt (21)

for all 0 ≤ S < T < +∞.

Proof. Consider the expression

Z T

S

Z
Ω

(ytt +Ay)ytdΩdt = 0

If we apply integration by parts in t and Green’s formula (19)
in x we are led to

·
1

2

Z
Ω

[y2 + |∇gy|2g]dΩ
¸T
S

−
Z T

S

Z
Γ

∂y

∂νA
yt = 0

and (21) follows from (6), (7) and (9).

Lemma 4 Let {y0, y1} ∈ W , H a vector field on Ω and a
some positive constant. Then the solution of (4)-(7) satisfies
the following identity for all 0 ≤ S < T < +∞.
Z T

S

Z
Γ1

(
∂y

∂νA
)2

1

|νA(x)|2g
H.νdΓdt+

Z T

S

Z
Γ0

yt
2H.νdΓdt

+ 2

Z T

S

Z
Γ0

∂y

∂νA
H(y)dΓdt−

Z T

S

Z
Γ0

|∇gy|2gH.νdΓdt

+

Z T

S

Z
Γ0

(
∂y

∂νA
)(div0(H)− a)ydΓdt

=

·Z
Ω

[2ytH(y) + (div0(H)− a)yty]dΩ
¸T
S

+ a

Z T

S

Z
Ω

[y2t − |∇gy|2g]dΩdt

+

Z T

S

Z
Ω

h∇gy,∇g(div0(H)− a)ig ydΩdt

+ 2

Z T

S

Z
Ω

DH(∇gy,∇gy)dΩdt (22)

Proof. We multiply (4) by 2H(y) + (div0(H)− a)y and inte-
grate by parts over (S, T )×Ω. Using Lemma 1, we find that

Z T

S

Z
Ω

Ay[2H(y) + (div0(H)− a)y]dΩdt

=

Z T

S

Z
Ω

h∇gy,∇g[2H(y) + (div0(H)− a)y]ig dΩdt

−
Z T

S

Z
Γ

∂y

∂νA
[2H(y) + (div0(H)− a)y]dΓdt

= 2

Z T

S

Z
Ω

h∇gy,∇g(H(y))ig dΩdt

+

Z T

S

Z
Ω

h∇gy,∇g(div0(H)− a)gyi dΩdt

−
Z T

S

Z
Γ

∂y

∂νA
[2H(y) + (div0(H)− a)y]dΓdt

= 2

Z T

S

Z
Ω

DH(∇gy,∇gy)dΩdt+
Z T

S

Z
Γ

|∇gy|2gH.νdΓdt

−
Z T

S

Z
Ω

|∇gy|2g div0(H)dΩdt

+

Z T

S

Z
Ω

|∇gy|2g (div0(H)− a)dΩdt

+

Z T

S

Z
Ω

h∇gy,∇g(div0(H)− a)ig ydΩdt

−
Z T

S

Z
Γ

∂y

∂νA
[2H(y) + (div0(H)− a)y]dΓdt (23)

On the other hand, we obtain from integration by parts in t and
Lemma 1

Z T

S

Z
Ω

ytt[2H(y) + (div0(H)− a)y]dΩdt =·Z
Ω

yt[2H(y) + (div0(H)− a)y]dΩ
¸T
S

−
Z T

S

Z
Ω

yt[2H(yt) + (div0(H)− a)yt]dΩdt

=

·Z
Ω

yt[2H(yt) + (div0(H)− a)y]dΩ
¸T
S

−
Z T

S

Z
Γ

y2tH.νdΓdt+Z T

S

Z
Ω

£
y2t div0(H)− (div0(H)− a)y2t

¤
dΩdt (24)

Summing up (23) and (24), we find the identity



Z T

S

Z
Γ

∂y

∂νA
[2H(y) + (div0(H)− a)y]dΓdt

−
Z T

S

Z
Γ

|∇gy|2gH.νdΓdt+
Z T

S

Z
Γ

y2tH.νdΓdt =·Z
Ω

yt[2H(yt) + (div0(H)− a)y]dΩ
¸T
S

+ a

Z T

S

Z
Ω

[y2t − |∇gy|2g]dΩdt

+ 2

Z T

S

Z
Ω

DH(∇gy,∇gy)dΩdt

+

Z T

S

Z
Ω

h∇gy,∇g(div0(H)− a)ig ydΩdt (25)

We now use the boundary condition (6). Thus

on Γ1: y = yt = 0; |∇gy|2g =
1

|νA(x)|2g
(
∂y

∂νA
)2;

H(y) =
H.ν

|νA(x)|2g
∂y

∂νA
(26)

Hence substitution of (6) and (26) into (25) yields the desired
identity.

3 Main result

Theorem 5 Assume there is a vector field H on the Rieman-
nian manifold (Rn, g) such that

hDXH,Y ig ≥ a |X|2g
∀X,Y ∈ TxRn, x ∈ Ω, for some constant a > 0 (27)
H.ν ≤ 0 on Γ1 (28)
H.ν > 0 on Γ0 (29)

Choose
k(x) = H(x)ν(x) (30)

Then there existM ≥ 1 and ω > 0 such that

E(t) ≤Me−ωtE(0), t ≥ 0 (31)

for every solution of (4)-(7) for which E(0) < +∞.

Proof. It is sufficient to prove the estimate (31) for smooth
{y0, y1} ∈W. The general case then follows by an easy density
argument.
Let µ0, µ1 be the smallest constants such thatZ

Γ0

v2dΓ ≤ µ0

Z
Ω

|∇gy|2g dΩZ
Ω

v2dΩ ≤ µ1

Z
Ω

|∇gy|2g dΩ

Set

C1 = sup
x∈Ω

|H(x)|g ,

C2 = sup
x∈Ω

¯̄
(div0(H))

2 − a2 + 2H(div0(H)− a)
¯̄
,

C3 = sup
x∈Ω

|div0(H)− a| , C4 = sup
x∈Γ0

|H.ν| ,

C5 = sup
x∈Ω

|∇g(div0(H)− a)|

From Lemma 4 and assumptions (27) and (28), we have

a

Z T

S

Z
Ω

h
y2 + |∇gy|2g]

i
dΩdt

≤ −
·Z
Ω

[2ytH(y) + (div0(H)− a)yty]dΩ
¸T
S

−
Z T

S

Z
Ω

h∇gy,∇g(div0(H)− a)ig ydΩdt

− 2
Z T

S

Z
Γ0

ytH(y)H.νdΓdt−
Z T

S

Z
Γ0

|∇gy|2gH.νdΓdt

+

Z T

S

Z
Γ0

yt
2H.νdΓdt

−
Z T

S

Z
Γ0

yt(div0(H)− a)yH.νdΓdt (32)

Now we estimate the terms on the right-hand side of (32).

Term
£R
Ω
[2ytH(y) + (div0(H)− a)yty]dΩ

¤T
S
.

We proceed as in [2]. Application of divergence theorem yieldsZ
Ω

[2H(y) + (div0(H)− a)y]2dΩ

=

Z
Ω

[4(H(y))2 + (div0(H)− a)2y2]dΩ

+ 4

Z
Ω

(div0(H)− a)yH(y)dΩ

=

Z
Ω

[4(H(y))2 + (div0(H)− a)2y2]dΩ

+ 2

Z
Ω

(div0(H)− a)H(y2)dΩ = 4
Z
Ω

(H(y))2dΩ

−
Z
Ω

£
(div0(H))

2 + a2 − 2H(div0(H)− a)
¤
y2dΩ

+ 2

Z
Γ0

(div0(H)− a)y2H.νdΓ

≤ (4C21 + C2µ1 + 2C3C4µ0)
Z
Ω

|∇gy|2g dΩ (33)

It follows from (33) that¯̄̄̄Z
Ω

[2ytH(y) + (div0(H)− a)yty]dΩ
¯̄̄̄

≤ kytkL2(Ω) k2H(y) + (div0(H)− a)ykL2(Ω)
≤ γE(t)



where
γ2 = 4C21 + C2µ1 + 2C3C4µ0

Hence¯̄̄̄
¯
·Z
Ω

[2ytH(y) + (div0(H)− a)yty]dΩ
¸T
S

¯̄̄̄
¯ ≤ 2γE(S) (34)

Term
R T
S

R
Ω
h∇gy,∇g(div0(H)− a)ig ydΩdt

We have by the Cauchy-Schwarz inequality¯̄̄̄
¯
Z T

S

Z
Ω

h∇gy,∇g(div0(H)− a)ig ydΩdt
¯̄̄̄
¯

≤ δ

2

Z T

S

Z
Ω

|∇gy|2g dΩdt+
C25
2δ

Z T

S

Z
Ω

y2dΩdt (35)

where δ > 0 to be chosen below.

Term 2
R T
S

R
Γ0
ytH(y)H.νdΓdt¯̄̄̄

¯2
Z T

S

Z
Γ0

ytH(y)H.νdΓdt

¯̄̄̄
¯

≤ 2
Z T

S

Z
Γ0

¯̄̄
yt hH(x),∇gyig

¯̄̄
H.νdΓdt

≤ C21
Z T

S

Z
Γ0

y2tH.νdΓdt+

Z T

S

Z
Γ0

|∇gy|2gH.νdΓdt (36)

Term
R T
S

R
Γ0
yt(div0(H)− a)yH.νdΓdt¯̄̄̄

¯
Z T

S

Z
Γ0

yt(div0(H)− a)yH.νdΓdt
¯̄̄̄
¯

≤ C4C
2
3

2δ

Z T

S

Z
Γ0

y2tH.νdΓdt+
δ

2

Z T

S

Z
Γ0

y2dΓdt

≤ C4C
2
3

2δ

Z T

S

Z
Γ0

y2tH.νdΓdt+
δ

2
µ0

Z T

S

Z
Ω

|∇gy|2g dΩdt
(37)

Use of (34)-(37) in (32) yields

a

Z T

S

Z
Ω

h
y2 + |∇gy|2g]

i
dΩdt

≤ 2γE(S) + δ

2
(µ0 + 1)

Z T

S

Z
Ω

|∇gy|2g dΩdt

+ (C21 + 1 +
C4C

2
3

2δ
)

Z T

S

Z
Γ0

y2tH.νdΓdt

+
C25
2δ

Z T

S

Z
Ω

y2dΩdt

Chosing δ = a
µ0+1

we obtainZ T

S

E(t)dt ≤ C6E(S) + C7
Z T

S

Z
Γ0

y2tH.νdΓdt

+ C8

Z T

S

Z
Ω

y2dΩdt (38)

where

C6 =
2γ

a
, C7 =

1

a
(C21 + 1 +

C4C
2
3(µ0 + 1)

2a
),

C8 =
C25(µ0 + 1)

2a

Recalling Lemma 3, we obtain from (38)Z T

S

E(t)dt ≤ (C6 + C7)E(S) + C8
Z T

S

Z
Ω

y2dΩdt (39)

From Theorem 2 of [5], we deduce the existence of an integer
n > 1 such thatZ T

S

Z
Ω

y2dΩdt ≤ C∗ηE(S) + η

Z nT

S

E(t)dt (40)

where η > 0 is arbitrary and C∗η > 0 depends on η.
Insertion of (40) into (39) yieldsZ T

S

E(t)dt ≤ (C6 + C7 + C8C∗η)E(S) + C8η
Z nT

S

E(t)dt

Let T → +∞ and choose η so that 1− η > 0, to obtainZ +∞

S

E(t)dt ≤ (C6 + C7 + C8C
∗
η)

1− C8η E(S)

The conclusions of the theoremwith ω = 1−C8η
C6+C7+C∗η

andM =

e follow from Theorem 8.1 of [2].

Remark 6 In general, it is not easy to find a vector field H
satisfying assumption (27). Some sufficient conditions for the
existence of a such vector field with a number of nontrivial ex-
amples are presented in [6] .
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