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Abstract

This paper considers the controllability and Riesz basis gener-
ation property of linear infinite dimensional systems with ��-
group generators and one-dimensional admissible input opera-
tors. The corresponding results of [Advances in Mathemati-
cal Systems Theory, 2000, pp. 221-242] under the assumption
of algebraic simplicity for eigenvalues of the generator are gen-
eralized to the case in which the eigenvalues are allowed to be
algebraically multiple but with uniform boundedness of multi-
plicity.

1 Introduction

Consider the infinite dimensional systems of the following
kind:

����� � ����� � ����� (1)

where � � ���� � � is the generator of a ��-group � ��� on
the complex separable Hilbert space � and � is an admissible
([5]) one-dimensional control operator. The input function � is
assumed to be in 	�

�����
��. Moreover, we assume that ��
generates an exponentially stable ��-semigroup. This assump-
tion, however, is not restrictive because both admissibility and
exact controllability are invariant with respect to a scalar shift
of �. In the sequel, we also use

�
��
 �� to refer to system (1).

We say that system (1) is exactly controllable in ��
 ��� if for
any �� � � there exists an input function � � 	���
 ��� such
that

� � � ������ �

� ��

�

� ��� � ��������� (2)

When the system (1) is exactly controllable, it has been shown
in [3] and [4] that the spectrum of � is of a very special form.
We summarize these results as follows:

Theorem 1. Assume that system (1) is exactly controllable.
Then

(i) the spectrum of � consists of isolated eigenvalues: ���� �
����

�
� 
 � � 	
�

�
���� � ��

�
���� ��;

(ii) each eigenvalue has finite algebraic multiplicity and geo-
metric multiplicity one;

(iii) ����� � ����
�
� and every �� is an isolated eigenvalue of

�� with finite algebraic multiplicity and geometric multiplicity
one;

(iv) both �����
 ���
� � �� and �����
 �
���
� � �� are

dense in � , where ���
 �� denotes the eigen projection with
respect to the spectral set �.

In the sequel, we still use � and ���
�� to denote their exten-
sions in ��� � �������� without diffusion ([5]).

2 ��� �� representation

Lemma 1. Suppose that
�

��
 �� is exactly controllable with
isolated separated eigenvalues ����

�
���. Then for any Æ �

�
 ���
�� is uniformly bounded in � � ���	�������Æ, ���Æ �
�� � ��


�� 
�� ��
 � Æ�.

Proof. It follows from the Hille-Yosida theorem and Lemma
5.12 of [4].

Recall that an entire function ���� is said to be exponential type
if the inequality


 ���� 
� ������ (3)

holds for some positive constants � and 	 and all complex
values of �. The smallest of constants 	 is said to be the expo-
nential type of ���� ([6]).

Lemma 2. If ���
 �� is exactly controllable in ��
 ���, then
for any � � � , there exist entire functions of exponential type
����� and ����� such that

� � ����������� ������
 �� � ��

where both the exponential type of �� and �� are at most ��.
Moreover ����� � �����

����
 ����� � �����
��.

Proof. Since ���
 �� is exactly controllable in ��
 ���, for any
� � � , there exists �� � 	���
 ��� such that

� � �

� ��

�

� ������������

Define operator ��� � 	���
 ���� � �

���� �

� ��

�

� ����������� (4)

Since � is admissible, ��� is a linear bounded operator from
	���
 ��� to � . Set

� � �� �����
� (5)



Then ��� is a 1-1 mapping from � to � : For any � � � , there
exists a unique �� � � such that �� � �����.

Now for � � � , define function ��� in 	�
�����
�� as

��� �

�
�����
 � � � � ��

�
 � � ��

and function in � :

���� � � ���� �

� �

�

� ��� �����������

Then ���� is continuous in � and ���� � �
 ���� � �
 � � ��.
Define entire functions

����� �

� ��

�

��	�������
 ����� �

� ��

�

��	�������� (6)

Then under the restriction �� � � , both �� and �� are uniquely
determined by � � � . It is obvious that both �� and ��

are entire functions of exponential type at most ��. Elemen-
tary arguments show that ��
 �� are functions required. Since
����
 ����� are square integrable functions, it follows from
the Paley-Wiener theorem that ����� � �����

����
 ����� �
�����

��.

In the representation of ����� of (6), the function ��� � �
and �� are nothing but control which drives � into the zero at
time ��. Moreover, The Plancherel’s theorem shows that� �

��


���!"�

��" � �#

� ��

�


�����

��� (7)

And from Theorem 17, and its Remark of [6] from page 96-98,
for any separated sequence ����

�
��� ( i.e., 	
����
 
����

 �

�), there exists a constant � � � such that

��
���


������

� � �

� �

��


���!"�

��"

� �#�
� ��
� 
�����


���

(8)

Let �� be an eigenvalue of � with algebraic multiplicity $�.
We say that %��� is an highest order generalized eigenvector of
� if

��� ���

�%��� � �
 ��� ���


���%��� �� �

3 Equivalent conditions for multiple eigenval-
ues

First, we introduce some notations. We always assume that
� satisfies parts �!� through �!&� of Theorem 1. For each
eigenvalue �� with algebraic multiplicity $�, let %��� be a
highest order generalized eigenvector of � associated with
��. Then other linear independent generalized eigenvec-
tors can be found through %��� � �� � ���

���%���
 ' �
�
 �
 � � � 
$�. Let ��(����


�

����
�
��� be the bi-orthogonal se-

quence of ��%����

�

����
�
���. Then ��� � ���(��� � �
 (��� �

��� � ���(�����
 ' � �
 �
 � � � 
$� � �. We can always make
�(��
�

� be uniformly bounded with respect to �. Denote
��� �� �
 (��� � for each ' and � and

�� �

�
������

��� � � � � � � �
��� ��� � � � � � �
��� ��� ��� � � � � �
...

...
...

...
...

��
�
��
��� ��
��� ��
��� � � � ��� 

	





� 
 � � �

(9)

�� � �%���
 %���
 � � � 
 %��
�
�� 


�� � �(���
 (���
 � � � 
 (��
�
�� 
 � � �

(10)

Let ����� denote the scalar vector

����� � �� �
(��� �
� �
 (��� �
 � � � 

� �
 (��
�

��� 
 � � �
� � �
(11)

Same definition to ����� by replacing (��� in the definition of
���� by %��� .

Theorem 3. The following conditions are equivalent:

(i). ���
 �� is exactly controllable in ��
 ���.

(ii). For every � � � , there exist entire functions of exponential
type at most ��, ����� and �����, such that

� � ����������� ������
 �� � ��

where also �� � �����
����
 �� � �����

��.

(iii). For every � � � , there exists an entire function of expo-
nential type at most ��, ����� � �����

�� such that

������ �

�
������
 �

�
�����


��������

��

 � � � 


�
�
����
� ����

�$� � ���

�

� ����
� �����
�� � �

(12)

Proof. �!��� �!!� follow from Lemma 2 and Proposition 12.5
of [3].

�!� �� �!!!�. Let ����� be the function defined in (6). �� is
an entire function of exponential type at most �� and belongs to
�����

��. It is found directly that

���
� ��� �

� ��

�

��	������������

For each �, note that ����
 ��� �
�
�

��� � �
 (��� � %���



and hence

����
 ��� � �

� ��

�

� ��������
 ����������

� �


��
��

� ��

�

��	��
������

�� � ���
��� ���

������
 ����������

� �


��
��


��
��

� �
 (������ �
�
����
� ����

�� � ���
%���

� �


��
���

�
��

��

������

�
����
� ����

�� � ���

�
%��� 

On the other hand,

����
 ��� �


��
���

� �
(��� � %��� 

Comparing these two expressions, we obtain

�������� � ������
�� � � (13)

By the exact controllability assumption, ��� �� �. So ���
� ex-

ists, proving the conclusion.

(iii)��(i). Suppose such an entire function of exponential type
����� does exist. Then since ����� is square integrable along
the imaginary axis, by the Paley-Wiener Theorem [Theorem
18, [6], pp.101] there exists an ����� � 	���
 ��� such that

����� �

� ��

�

��	�������� (14)

For this function ��, we compute ����� � � as follows:

� ����� � �
 (��� ��� ��

�

� � ��������
 ���
 (��� � �������� � �
(��� �

�


��
��

� ��

�

��	��
������

�� � ���
������� � ����
 ���


��� � ���
��(��� � � � �
(��� �

�

��
��

������

�
����
� ����

�� � ���
� � �
(��� �� �

Since �(���

�� ' � �
 � � � �$����� is complete in � , the above
implies that ����� � ��. The proof is complete.

Remark 1. Take � � � in (12), that is ����� � �, we have
������ � � for all � � �. By (14), we see that

� ��

�

����	��������� � �
 � � � ' � $� � �
 � � �

Now we make the following assumption: for some ) � �

� � 	
�� ���� � ��� ���� � )
� � � �
	
����
 
�� � �

 � �
 ����� $� ��

(15)

In the sequel, we need some properties of family of exponential
functions

* � �������
�
��� � ��+������
 +������
 � � � 


+��
�
����� �����
 +������ � �������

������ �
�	��

(16)

The following Proposition is key to the proof of our main re-
sults of this paper.

Proposition 1. Under the assumption (15), there ex-
ists an �� � � (and hence for all � � ��) such that *
forms a Riesz basis for span * in 	���
 ���. In particular, if
,���� � ��������
 �������
 � � � 
 ���
�

����� is the bi-orthogonal
sequence of * in span *, then for any � � span *
 � ���

��� �
�
� �����


��
��� ��

� � � , there are constants ��

and �� so that

��

��
���

��
� � 

��
���

��
� �����

�
��������

� ��

��
���

��
�

(17)
where �� � �� �
 ���� �
 � � � 
 � �
 ���
�

��� .

Proof. Suppose that we have arranged �� so that �$���� �
�$�� for all � � �. Let -�� � ��
 � � ' � $�
 � � �
� �
�-�� 
� � ' � $�
 � � ��. We use the same notations of [1]:

��� � � ��
�	��

���$� � ��
 � �  ��
 ����� � �	�
�
�

��� �

 


Let Æ � 	
����
 
�� � �

. For any � � ��, suppose there are
. number of balls with radius Æ/�, which covers the compact
region ���� � �
���
 � )
 �$� � ��
 � � ��� of ���. Note
that . is independent of � by unit shift. Then there are at most
�. number of � inside ����
 � � ��� $�. Hence for any
 � �, we have

��� � � ��
�	��

���$� � ��
 � �  ��

� ��
�	��

���$� � ��
 � � �� � � ���� � �� � � ���.

where � � denotes the maximal integer not exceeding  . There-
fore, ����� � �. . The result then follows from the Theorem
3 of [1] by taking any �� � �#�����.

Remark 2. Assume that �� is taken as that in Proposition 1
which makes

�
��
 �� be exactly controllable in ��
 ���. Then

from Remark 1, we have the explicit representation of � defined
by (5), � � span *.

Remark 3. Assume that �� is taken as that in Proposition 1
which makes

�
��
 �� be exactly controllable in ��
 ���. Then

for any � � � , motivated from (13), we define

����� � �

��
���

����
� ������

�,����



By (12) and (8),
��

��� �
��
� �����

� � � and hence �� �
	���
 ���. Define

����� �

� ��

�

��	��������

Then (12) is satisfied. As we mentioned after the proof of
Lemma 2 that such a ����� is nothing but the control which
drives � into zero.

Remark 4. Assume that �� is taken as that in Proposition 1
which makes

�
��
 �� be exactly controllable in ��
 ���. Let ���

is defined by (4). Then a direct computation shows that

��������
 ����
 � � � 
 ���
�
�� � ���,���� � ��

���


��
��
�� � �������
 � � �

(18)

Lemma 3. Assume that���
 �� is exactly controllable in ��
 ���
and condition (15) is satisfied. Then

� � 	
�
�

���� �
 (��� �

(���

��� � 	
�
�
�� � ��

�
�� ��

Proof. The first inequality comes from [4]. The second one is
trivial. For the third inequality, we first show that there exists a
. � �, such that for any ��, it holds


��� ���



��
����
 ��� �. � � � �
 � � � (19)

Indeed, by Lemma 1,

����
 �� �
�

�#!

�
�	�	����

���
����

is uniformly bounded for some small 0 � �. Since � is admis-
sible, ���� �

� ��
� � ����������� is bounded from 	���
 ��� to

� . So is

����
 ������ �

� ��

�

� ��������
 ���������

�


��
���

� ��

�

��	��
�������

�' � ���
��������� ���

�������
 ���

Set � � ��� $�. Since

��
 ����
 �����
 �����
 � � � 
 �������

is linearly independent in 	���
 ���, there exists its bi-
orthogonal sequence

���
 ��
 �� � � � 
 ��

such that � ��

�

�������������� � Æ�� 
 � � !
 ' � �

Now, we choose function ������� � �	�������. It has

���� 


� �

� ��

�


�������

��� �

� ��

�


�	�������

��� � �������

�

Hence
��
���

���� � ���� ���
����

�� ��

Under this group of functions


��� ���

���

�' � ���
����
 ��� � ����
 ���������

� ��������
 ������� ��
 � � � �
 � � ' � $�

Next, notice that

��
� � $�


��
���


 � �
 (��� � 
�

We need only show that for any �


��
���


 � �
 (��� � 
�

is uniformly bounded. Since

��� � ���

���(��
�

� (���

we have


��
���


 � �
 (��� � 
� �


��
���


 � �
 ��� � ���

���(��
�

� 
�

�


��
���


 � ��� ��
�������
 ���
 (��
�
� 
�

� $��(��
�
�


��
���


��� ���


���

�$� � '��
����
 ����

� �����$��(��
�
�����
 ������

�

��
���

��
�

which is uniformly bounded since as we mentioned in the be-
ginning of this section that we can choose ��� (��
�

 to be
uniformly bounded. The proof is complete.

Theorem 3. Assume that
�

��
 �� is exactly controllable and
the multiplicities of eigenvalues of � have finite upper bound:
��$� ��. Then the following conditions are equivalent:

(i). 	
����
 
�� � �

 � �.

(ii).�%���
�� ' � �
 �
 �
 � � � 
$����� forms a Riesz basis for

� . That is, for any � �
��

��� ��������, is has

��
���

�����
� � 

��
���

�����
���

� �

��
���

�����
�



(iii).�(���

�� ' � �
 �
 �
 � � � 
$����� forms a Riesz basis for
� .

Proof. The equivalent between (ii) and (iii) is from general
basis theory (see e.g. [6]).

(i)��(ii). Take �� as in Proposition 1 which makes
�

��
 �� be
exactly controllable in ��
 ���. Then ��� is bounded invertible
from � to � . By formulae (4.12) of [2], pp.28,

���
�  � 1

��

���


 � !��

(20)

where 1 is independent of �. From Lemma 3, there exists
. � � such that ���

�  � .
 �� � . for all � � �.
Furthermore, by Remark 4, �� � ����

� �����,���� for all
� � �. Since ����

� ����� is uniformly bounded with respect
to �, ����

�
��� forms a Riesz basis for � .

(ii)��(i). Take �� as in Proposition 1 which makes
�

��
 �� is
exactly controllable in ��
 ���. Then ��� is bounded invertible
from � to � . From Remark 4, we know that �����

��
� ��,����

forms a Riesz basis for span * of 	���
 ���. Since from
(20), �����

��
� �� is uniformly bounded with respect to �,

,���� forms a Riesz basis for span * of 	���
 ���. There-
fore ���	������� forms a Riesz basis for the closed subspace
span ���	��� of 	���
 ���. Thus, �������� is separated by the
necessary condition of Riesz basis for the functions of expo-
nentials.

Our final result of following generalizes Theorems 12.1, 12.2
of [3] to the case of multiple eigenvalues.

Theorem 4. Assume that (15) is satisfied. Then the following
conditions are equivalent:

(i). ���
 �� is exactly controllable.

(ii). � � 	
�
�

���� �
 (��� �

(���

��� � ��
�
�� �� and

��
���

���
� �����

� ��
 � � � �

where ���
� ����� denotes the Euclidean norm of ��
� .

(iii). � � 	
�
�

���� �
 (��� �

(���

��� � ��
�
�� � � and �(���

��
' � �
 �
 �
 � � � 
$����� forms a Riesz basis for � .

(iv). � � 	
�
�

���� �
 (��� �

(���

��� � ��
�
�� � � and �%���

��
' � �
 �
 �
 � � � 
$����� forms a Riesz basis for � .

Proof. The equivalence between �!!!� and �!&� is ensured by
the general Riesz basis theory (see e.g. [6]).

�!� �� �!!� The first part follows from Lemma 3. The second
part follows from (12) of Theorem 2 and (8).

�!!� �� �!� Let �� is as in Proposition 1. For any � � � ,
define control �� and �� as in Remark 3, we see that (12) is
satisfied. The result then follows from Theorem 2.

�!� �� �!!!� The first part follows from Lemma 3. Again
let �� be that in Proposition 1 which makes

�
��
 �� be ex-

actly controllable in ��
 ���. Then the second part follows from
Proposition 1 and Remark 4.

�!!!� �� �!� Take �� as that in Proposition 1. Then
�������

�
��� forms a Riesz basis for the closed subspace

spanned by �+������
 � � " � $�
 � � �� in 	���
 ���. Since
����

�
��� forms a Riesz basis for � , it has

��
���

�����
� ��

This, together with (20), gives

��
���

���
� �����

� ��

For any � � � , define function

����� � �

��
���

����
� ������

�,����

and ��� as before with respect to �� and above defined ��. A
direct computation as before, we obtain

����
 ������� � ��������
���

Therefore,

�� �

��
���

��������
��� �

��
���

����
 ������� � �����

That is,
�

��
 �� is exactly controllable. The proof is complete.
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