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Abstract

This paper considers the controllability and Riesz basis gener-
ation property of linear infinite dimensional systems with C'y-
group generators and one-dimensional admissible input opera-
tors. The corresponding results of [Advancesin Mathemati-
cal Systems Theory, 2000, pp. 221-242] under the assumption
of algebraic smplicity for eigenvalues of the generator are gen-
eralized to the case in which the eigenvalues are allowed to be
algebraically multiple but with uniform boundedness of multi-

plicity.

1 Introduction

Consider the infinite dimensional systems of the following
kind:
z(t) = Az(t) + bu(t) (1)

where A : D(A) — H isthe generator of a Co-group 7'(¢) on
the complex separable Hilbert space H and b is an admissible
([5]) one-dimensional control operator. The input function  is
assumed to be in L7, (0, co). Moreover, we assume that — A
generates an exponentially stable Cy-semigroup. This assump-
tion, however, is not restrictive because both admissibility and
exact controllability are invariant with respect to a scalar shift

of A. Inthesequel, weasouse > (A, b) torefer to system (1).

We say that system (1) is exactly controllable in [0, o] if for
any zo € H there exists an input function u € L%(0,t,) such
that

to
0=T(to)xo + / T(to — s)bu(s)ds. 2
0

When the system (1) is exactly controllable, it has been shown
in [3] and [4] that the spectrum of A is of avery special form.
We summarize these results as follows:

Theorem 1. Assume that system (1) is exactly controllable.
Then

(i) the spectrumof A consists of isolated eigenvalues. o(A) =
{An}5°,0 < inf Re),, <sup Re), < oo;

(ii) each eigenvalue has finite algebraic multiplicity and geo-
metric multiplicity one;

(iii) o(A*) = {)\,}3° andevery \,, isanisolated eigenvalueof

A* with finite algebraic multiplicity and geometric multiplicity
one;

(iv) both{E(\,, A)H,n > 1} and {E(\,,, A*)H,n > 1} are
dense in H, where E(o, ) denotes the eigen projection with
respect to the spectral set o.

Inthe sequel, we still use A and E(A, A) to denote their exten-
sionsin H_; = [D(A*)]" without diffusion ([5]).

2 (& w) representation

Lemma 1. Supposethat Y (A, b) is exactly controllable with
isolated separated eigenvalues {A,,}2° ;. Then for any § >
0, R(A, A) isuniformly boundedin G = €' —U52 1 Sn,5, Sn.s =
{AeX,||X= | <3}

Proof. It follows from the Hille-Yosida theorem and Lemma
5.12 of [4].
Recall that an entirefunction f(z) is said to be exponential type
if the inequality

| f(2) |< Ce" (3)
holds for some positive constants C' and L and all complex

values of z. The smallest of constants L is said to be the expo-
nential type of f(z) ([6]).

Lemma 2. If £(A,b) is exactly controllable in [0, o], then

for any x € H, there exist entire functions of exponential type

&:(N\) and w, (A) such that
r=A—-A4)&N) —bw, (), VYrel

where both the exponential type of £, and w, are at most .
Moreover &, (-) € Ho(Ct; H),w,(-) € Ha(T).

Proof. Since X(A,b) isexactly controllablein [0, t], for any
r € H,thereexistsu,, € L*(0,t,) such that

r=—- /Oto T(—s)bu,(s)ds.

Define operator By, : L*(0,t0) — H :

Biu = /to T(—s)bu(s)ds. (4)
0

Since b is admissible, By, is a linear bounded operator from
L?(0,tp) to H. Set

U = ker(B,)™ . (5)



Then B;, isal-1mappingfromU to H: Forany = € H, there
existsauniqueu, € U suchthat —z = By u,.

Now for 2 € H, define function @, in L?

loc

(0,00) as

and functionin H:
t
z(t) =T (t)x + / T(t — s)bu,(s)ds.
0

Then z(¢) is continuousin H and z(0) = x,z(t) = 0,¢ > to.
Define entire functions

&m= [ Y e Ma(tydt,  wy(A) = / Y oM, (1)de. (6)
0 0

Then under therestrictionu,, € U, both &, and w,, areuniquely
determined by x € H. It is obvious that both ¢, and w,
are entire functions of exponentia type at most t,. Elemen-
tary arguments show that &, ,w, are functions required. Since
z(t),u,(t) are square integrable functions, it follows from
the Paley-Wiener theorem that ¢,(-) € H2(C; H),w,(-) €
Hy(@™).

In the representation of w, () of (6), the function —u, € U

and to are nothing but control which drives z into the zero at
time ty. Moreover, The Plancherel’s theorem shows that

oo to
/ lw (i7) 2 = 271'/ s (1) 2dt.
—o00 0

And from Theorem 17, and its Remark of [6] from page 96-98,
for any separated sequence {A,, } 52 (i.€,inf 2 [ A=A | >
0), there exists aconstant C' > 0 such that

v

oo

Sl Om)P < C / g (i) Pdr
n=1 —00

(8)
=200 [3° |ug(t)|2dt.

Let A\, be an eigenvalue of A with algebraic multiplicity m .
We say that ¢,, 1 isan highest order generalized eigenvector of
Aif

(A - An)m" ¢n,1 =0, (A - )‘n)mn_l¢n,1 7é 0.

3 Egquivalent conditions for multiple eigenval-
ues

First, we introduce some notations. \We always assume that
A satisfies parts (i) through (iv) of Theorem 1. For each
eigenvalue \,, with algebraic multiplicity m.,, let ¢, 1 be a
highest order generalized eigenvector of A associated with
An. Then other linear independent generalized eigenvec-
tors can be found through ¢,,; = (4 — A\,) " ¢n1,j =
2,3, ,mp. Let {{pn;}717 152, be the bi-orthogonal se-

quence of {{¢;}7 1o, Then (A* — X )1 = 0,4 ; =

(A* = X)) j41,d = 2,3, -+, m, — 1. We can always make
{I|¥n,m..||} be uniformly bounded with respect to n. Denote
b} =< b,n,; > foreach j andn and

by 0 0 0 -0
b by 0 0 -0
o= |t w0 0 | s
b Omn—1 Op,—2 U3 by
€)
q)n:((z)nla(pn%'”:(bnm )T7
1 On, e 10
‘I]n:(¢n717¢n,27"'7¢n7mn)TanZ]-~ ( )
Let ¥,,(x) denote the scalar vector
\Iln(m) = (< m;"/}n,l >, < Z’,'I/ng >y, (11)

< xawn,mn >)T,$‘ € Hn>1.

Same definition to ®,,() by replacing v,, ; in the definition of
U (x) by dn ;-

Theorem 3. The following conditions are equivalent:

(). (A, b) isexactly controllablein [0, ¢o].

(i1). For every z € H, thereexist entire functions of exponential
type at most ¢o, & (A) and w,(\), such that

z=(\— A& —bw,(N), YA

wherealso &, € Hy (@ H),w, € Ho(CT).

(iii). For every z € H, there exists an entire function of expo-
nential type at most ¢, w, (A) € Ho(C'™) such that

() = (wr00n) ), Z25)
Wg(cmnil)()\n) T . (12)
(mn_l)' > Bnlq]”(m)avnz 1.

Proof. (i) <= (i) follow from Lemma2 and Proposition 12.5
of [3].

(i) = (4ii). Let w, () bethe function defined in (6). w, is
an entire function of exponential type at most ¢ and belongsto
H,(C). Itisfound directly that

wF () :AOe_AS(—s)kuw(s)ds.

For each n, note that E(\,,, A)b = >"""

j=1 < by nj > Pn,j



and hence

E(\,, A)z = — /0 ' T(—s)E(\n, A)bu,(s)ds

Mn to _o\k—1

:_Z/ e)‘"s%(fl M) Y E(\,, A)bug (s)ds
k=170
My My (Ic 1)( )

A
:_Zz<bwnﬂ k+1 > (k ) ¢n71

k=1 j=k
(k—1)
TR
1)! ’
j=1 Lk=
On the other hand,
EQn, Az = <z,%n; > dn;-
j=1
Comparing these two expressions, we obtain
B, Q. (A

n) =~V (z),Vn > 1. (13)

By the exact controllability assumption, b7 # 0. So B, ! ex-
ists, proving the conclusion.

(iii)=(i). Suppose such an entire function of exponential type
w, () doesexist. Then sincew, (\) is square integrable along
the imaginary axis, by the Paley-Wiener Theorem [Theorem
18, [6], pp.101] there exists an u,(s) € L?(0,to) such that

wz(A) = /Oto e M, (s)ds. (14)

For thisfunction u ., we compute By, u, + z asfollows:
< Biyug + 2,955 >=
to
| < TEDE O by > wa(e)dst <t >
0

_ o fo — ns(_s)k_l
‘Z/o T

k=1
(A=,

ug(s)ds < E(Ay, A)b,

P i >+ <z, >

we V()

b k+171)+<$,wn7] >= 0

HM&

Since {¢,, ; |j =1,2---my},>1 iscompletein H, the above
impliesthat B;,u, = —z. The proof is complete.

Remark 1. Takez = 0in (12), that is By,u, = 0, we have
Q. (\,) = 0for al n > 1. By (14), we see that

/ t]ef)\nt
0

u(t)dt=0,v0<j<m,—1,n>1

Now we make the following assumption: for someh > 0

0 < inf,, ReM, < sup,, ReA, < h,Vn>1

inf s | An — Am| >0, SUpy,>1 My < 00. (15)

In the sequel, we need some properties of family of exponential
functions

€ = {Gn(t)}%ozl = {(gn,l(t)v gn,z(t), e,

G )T IS0, gn i (1) = S50

e (19

The following Proposition is key to the proof of our main re-
sults of this paper.

Proposition 1. Under the assumption (15), there ex-
ists an t, > 0 (and hence for all ¢ > t3) such that ¢
forms a Riesz basis for spane in L?(0,t,). In particular, if
Folt) = (faa (8), fa2(),-++, fam, (£)7 isthebi-orthogonal
sequence of € in Spang, then for any v € Spane,u =
Yot Un Ga(t), 3202, [|UR]I? < oo, there are constants Oy
and C so that

c Z 10l < ||ZUTG

whereU,, = (< u, fp1 >, -

||L2(0 to) < Cs Z ||U ||2
n=1
17)
) < u, fn,mn >)T'
Proof. Suppose that we have arranged \,, so that Im\, 1 >

ImA,foradln > 1. Let pnj = A, 1 < j<my,n>1A=
{ptnj|l < j < my,n > 1}. We use the same notations of [1]:

nt(r) = sup #{ImAN[z,z +r)},DT(A) = lim n*(r)'

zelR T—00 T

Letd = inf, 2, [N — A |. FOrany z € IR, supposethere are
M number of ballswith radius § /2, which covers the compact
region Q(z) = {|Re\| < h,Im\ € [z,z + 1]} of IR?. Note
that M isindependent of = by unit shift. Then there are at most
kM number of A inside Q(z),k = sup,, m,. Hence for any
r > 0, we have

nt(r) = sup #{ImAN[z,z+7)}
z€R

< sup #{ImA 1 [r,2 -+ (] + 1)} < (] + DEM

where [r] denotes the maximal integer not exceeding r. There-
fore, DT (A) < kM. Theresult then followsfrom the Theorem
3of [1] by taking any to > 27D+ (A).

Remark 2. Assume that ¢, is taken as that in Proposition 1
which makes > (A, b) be exactly controllablein [0, ¢o]. Then
fromRemark 1, we havethe explicit representation of U defined

by (5), U = spane.
Remark 3. Assume that ¢, is taken as that in Proposition 1

which makes > (A, b) be exactly controllablein [0, ¢o]. Then
for any x € H, motivated from (13), we define

o0

ug(t) = =Y (B Un (@) Fa(h).

n=1



By (12) and (8), >_.° , || B,  ¥n(2)||* < oo and henceu, €
L?(0,tp). Define

we(A) = /0 " =My, (1)t

Then (12) is satisfied. As we mentioned after the proof of
Lemma 2 that such a u,(t) is nothing but the control which
drives z into zero.

Remark 4. Assume that ¢, is taken as that in Proposition 1
which makes > (A, b) beexactly controllablein [0, to]. Let By,
is defined by (4). Then a direct computation shows that

Bto (fn,l;fn72; o '7fn7mn)T
B;, W, = B,G(t), n > 1.

= B, F,(t) = BI'®,,

(18)

Lemma 3. Assumethat X( A, b) isexactly controllablein [0, ¢o]
and condition (15) is satisfied. Then

< b; /‘/}n,l >
[¢n.1ll

‘ < inf || By|| < sup ||Bnl| < oo.
n n

Proof. Thefirst inequality comes from [4]. The second oneis
trivial. For the third inequality, we first show that there existsa
M > 0, such that for any \,,, it holds

A= )
k!

Indeed, by Lemma 1,

EQw, A<M VYEk>0n>1 (19

Al
R(\, A)dA
27TZ ‘)\7)\”|:E ( )

is uniformly bounded for some small ¢ > 0. Since b is admis-
sible, B;,u = Oto T (—s)bu(s)ds isbounded from L?(0, ) to
H.Sois

E(An, A) =

B, A)Byyu = / (8B, AYbu(s)ds
0
_ - fo 67)\ s( )
- ;/o = )-
Set k = sup,, m,,. Since
{17 (_8)7 (_8)27 (_8)37 T (_

is linearly independent in LZ2(0,to),
orthogonal sequence

S)kfl}

there exists its hi-

{Ul,’U/Q,’U,g )

/Oto(—t)i'lu t

uk}

such that

u(3)ds(A — An) "LE(\n, A)D.

Now, we choose function u,, j(s) = e***u;(s). It has

to to
sl = [ uns(6)Pds = [ ¥ <us () Pds < s .
0 0

Hence

sup [[un, 4| < e"o"

max flujl| < oc.
n,j <k

Under this group of functions

i
G-

< e MBOwn, DBy llllusll < 00, ¥ > 1,1 < j < mp.

E(An, bl = |E(An, A) Brounj|

Next, notice that

mp

IBall? <mn | < btuy > .
j=1

We need only show that for any n

M
Z| < b’djnvj > |2

j=1

is uniformly bounded. Since

(A* - E)mn 7j/‘/}n,mn = djmj

we have

Z|<b¢m>|2<2|<b

)mn_J¢n Mn > |2

< Z| < (A - )‘)mnijE()‘mA)bﬂ/Jmmn > |2
j=1

ye (A= Xy .
< b, [P 30 120 i, g
j=1

— i)

Mn
< M 4 2] E oy AP B3 [l
j=1

which is uniformly bounded since as we mentioned in the be-
ginning of this section that we can choose sup ,, ||%,m,, || to be
uniformly bounded. The proof is complete.

Theorem 3. Assume that ) (A, b) is exactly controllable and
the multiplicities of eigenvalues of A have finite upper bound:
sup m,, < oo. Then the following conditions are equivalent:

(). inf ot [ — Am| > 0.

(II){¢TL,J | .7 = 172737"'7
H. Thatis, foranyz = Y-

n=1
ZII‘I’ 0* < IIZ‘I’

My }n>1 forms a Riesz basis for
U(z)l'®,, ishas

) @|* < ZII‘I’ (@)



(iii).{¢n; | 5 = 1,2,3,---,my}n>1 forms a Riesz basis for
H.

Proof. The equivalent between (ii) and (iii) is from general
basis theory (see e.g. [6]).

(i)=(ii). Taket, asin Proposition 1 whichmakes Y (A, b) be
exactly controllablein [0, ¢o]. Then By, is bounded invertible
from U to H. By formulae (4.12) of [2], pp.28,

[|Bn ™

)[R A L E—
R Ry

(20)
where « is independent of n. From Lemma 3, there exists
M > 0 such that ||B; || < M,||B | < M fordln > 1.
Furthermore, by Remark 4, ®,, = (B;')TB;, F,(t) for al
n > 1. Smce( HTB,, is un|formly bounded with respect
ton, {®,}5° 1formsaRlesz basisfor H.

(il)=(i). Taket, asin Proposition 1 which makes > (A, b) is
exactly controllablein [0, ¢o]. Then By, is bounded invertible
from U to H. From Remark 4, weknow that B, (B;;1)T F, (t)
forms a Riesz basis for Spane of L?(0,ty). Since from
(20) By, (B;HT is uniformly bounded with respect to n,

F,(t) forms a Riesz basis for spane of L?(0,ty). There-
fore {e *»t}2° ;| forms a Riesz basis for the closed subspace
span {e~ = t} of L?(0,tp). Thus, {\,}52, is separated by the
necessary condition of Riesz basis for the functions of expo-
nentials.

Our final result of following generalizes Theorems 12.1, 12.2
of [3] to the case of multiple eigenvalues.

Theorem 4. Assume that (15) is satisfied. Then the following
conditions are equivalent:

(i). £(A4,b) isexactly controllable.

<b, ¢n71 >
|nall

Z 1B, . (

where || B, 1, ()| denotes the Euclidean normof € ™=

(ii).0<i%f‘ ‘SsupHBnH < o0 and
n

z)||* <oo,Vaz € H

» Yn,1 >
(iii). 0 < mf‘ HJ} |1| ‘ < sup||Byl| < oo and {¢; |
n,1 n
j=1,2,3,--,mp}p>1 formsaRieszbasisfor H.
. < b >
(iv). 0 < mf‘ﬁ‘ < sup ||Bal| < oo and {¢n,; |
n n,1 n
j=1,2,3,--,mp}p>1 formsaRieszbasisfor H.

Proof. The equivalence between (ii:) and (iv) is ensured by
the general Riesz basis theory (seee.g. [6]).

(i) = (i1). Thefirst part followsfrom Lemma3. The second
part follows from (12) of Theorem 2 and (8).

(i) = (i). Let tp is asin Proposition 1. For any z € H,
define control u, and w, asin Remark 3, we see that (12) is
satisfied. The result then follows from Theorem 2.

(i) = (4i3). The first part follows from Lemma 3. Again
let to be that in Proposition 1 which makes > (A,b) be ex-
actly controllablein [0, to]. Then the second part follows from
Proposition 1 and Remark 4.

(i5i) = (i). Take to as that in Proposition 1. Then
{Gn(t)}>2, forms a Riesz basis for the closed subspace
spanned by {g,, ;(t),1 < < m,,n > 1}in L*(0,t0). Since
{®,}52, formsaRiesz basisfor H, it has

ZII‘I’ (@)|” <

This, together with (20), gives

ZIIB M ()7 <

For any « € H, define function

(o)

uz(t) = =Y (B Un (@) Fu(t)

n=1

and B,, as before with respect to ¢, and above defined u,. A
direct computation as before, we obtain

E(\, A)Byu, = —(¥,,(2)1 ®,.
Therefore,
—z = Z —(Wp(2)T®, = Z E(\n, A)Byyug, = Byyug.
n=1 n=1

Thatis, > (A, b) isexactly controllable. The proof iscomplete.
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