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Abstract

In this paper a control structure based on feedback (Input-State)
linearization has been applied to the elevation subsystem of a
laboratory double rotor helicopter. This system is multivariable
with 2 inputs and 4 outputs, highly nonlinear and strongly cou-
pled. This article focuses on the elevation subsystem which, in
turn, is underactuated with 1 input and 2 outputs. A switch-
ing control law between exact and approximate input-state lin-
earization is proposed, which presents good result.

1 Introduction

In this paper a study about feedback linearization applied to the
elevation subsystem of a double rotor helicopter is made. The
double rotor system is a highly nonlinear, multivariable, un-
deractuated, strongly coupled and non-minimum phase system.
The elevation system, in turn, is a nonlinear and underactuated
system.

In previous works, see [7] and [8] for details, the control struc-
ture was based in partial feedback linearization. Concretely,
the computed torque technique was used to linearize the slow
dynamics of the system (the body dynamics)[2]. The rotor dy-
namics was considered to be fast enough to separate both dy-
namics. In this way the angular velocity of the rotor was con-
sidered as constant from the point of view of the body dynam-
ics.

In this paper a complete linearization for the elevation subsys-
tems is searched, taking into account ideas such as approximate
linearization, exposed in [5].

This paper is structured as follows: In Section 1 a brief in-
troduction is given. In section 2 the system is described and
a model is presented. In the third section the control strate-
gies carried out are described, that is, the full state linearization
and an approximate input-state linearization. The next section
shows a switching control based on the two linearization laws,
in order to control the system in the whole working range. In
section 5 simulation results are presented. The last section has
concluding remarks and possible future developments.

2 System Description and Model

The laboratory helicopter consists of a 2 DOF mechanism
thrusted by two rotors resembling a helicopter. The degrees
of freedom are the orientation and the elevation angles. This
equipment has the following characteristics: It is multivari-
able, underactuated, nonlinear, strongly coupled and with non-
minimum phase behaviour.

Figure 1: Double Rotor Laboratory Helicopter

In this analysis, the orientation angle is fixed(θ = const), and
the angular velocity of the tail rotor is null(ωg = const = 0).
The elevation movement will be controlled by the main rotor.
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Figure 2: Elevation Subsystem

The equations of the elevation subsystem are as follows

Iϕϕ̈ + GsS(ϕ) + GcC(ϕ) + Kϕ·ϕ̇ = L̂g |ωg |ωg (1)

Igω̇g = Pm − (Bg + D̂g |ωg |)ωg (2)

where:



ϕ: Elevation Angle measured from the horizontal plane.
Iϕ: Inertia of the elevation system with respect to its

rotation axis.
ωg: Angular Velocity of the main rotor.
Ig: Inertia of the propeller with respect to its rotation axis.

L̂gωg: Torque due to the aerodynamic force of impulsion
in main rotor.

Kϕ·ϕ̇: Friction Torque.
GsS(ϕ): Gravity Torque 1.(S(ϕ) = sin(ϕ))

GcC(ϕ): Gravity Torque 2.(C(ϕ) = cos(ϕ))

Pm: Engine Torque.
Bg: Friction constant of the engine.
D̂g: Drag Constant of the propeller.

Rewriting the equations 1 and 2

[
Iϕ 0

0 Ig

][
ϕ̈

ω̇g

]
+

[
GsS(ϕ) + GcC(ϕ) + Kϕ·ϕ̇ − L̂g|ωg|ωg

(Bg + D̂g|ωg|)ωg

]
=

[
0

Pm

]
(3)

It can be seen that there is only an engine (Pm) and 2 DOF, the
elevation angle (ϕ) and the angular velocity of the rotor (ωg).
Therefore it is an underactuated system.

3 Control Strategies: Input-State Linearization

In this section the control structure is presented, which is based
on two control loops. The inner one will carry out a feedback
input-state linearization in such a way that the resultant system
is equivalent to three integrators. The outer loop has to fulfill
the specifications imposed on the system.

In the development of the linearization loop it will be seen that
such a law is not suitable near the static equilibrium point of
the system. In order to control the system in a region around
this point, the model of the system will be modified (see [5])
and a new law will be obtained, which will be suitable only in
this region. Next, a switching control based on the two laws
will be studied and applied depending on the working point.

On the other hand, the outer loop will be closed using an LQR
controller that will be designed to control a chain of three in-
tegrators. In practice, due to uncertainties, the linearization is
not exact. In this way a fourth integrator will be added to en-
sure the system to be, at least, of type one. In this situation the
LQR controller will be designed for an augmented system (See
figure 3).

To obtain the linearization law, and taking into account that this
system is underactuated, the input-state linearization technique
explained in [1] will be applied, which consists of:

1. Expressing the system in the form

Ẋ = f(X) + g(X)·u

2. Verifying that the system is input-state linearizable apply-
ing the following theorem:
Theorem: The nonlinear system

Ẋ = f(X) + g(X)·u
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Figure 3: Resultant chain of Integrators controlled by a LQR
controller with integral effect

with f(X), g(X) smooth vector fields andf(0) = 0, is feed-
back linearizableif and only if there exists a regionD,
containing the origin, inR3 in which the following con-
ditions are satisfied:

(a) the vector fields{g, adf (g), ad2
f (g)} are linearly inde-

pendent

(b) the set{g, adf (g)} is involutive inD, that is, all the
Lie brackets of each pair of the vector fields of the
set have to be a linear combination of themselves.

3. Finding a new state vectorT(x) = [T1(x), T2(x), T3(x)]
T , that

satisfies that the scalar products of the gradient ofT1(x),
T2(x) andg(x) are nulls,< dT1, g >=< dT2, g >= 0 with
< dT3, g > 6= 0, and such that a transformation as follows
can be obtained:

u = α(X) + β(X)·V =
− < dT3, f >

< dT3, g >
+

V

< dT3, g >

where

• u: is the control signal applied to the actuator.

• V: is the control signal coming from the outer control loop
and the input signal to the linearized system, which will be
equivalent to a number of cascade integrators equal to the
dimension of the state vector.

In order to achieve this, the first stateT1(x) has to be
found, which will be obtained from the solution with the
following equations:

< dT1, g >= 0 (4)

< dT1, adf g >= 0

< dT1, ad2
f g >6= 0

The new state vector will be created using the first state.

T(x) = [T1(x), T2(x), T3(x)] = [T1(x), Łf T1(x), Ł2
f T1(x)]

The problem can be solved following the steps mentioned be-
fore:

1. Definition of the state vector:

X =

[
ϕ − ϕeq

ϕ̇
ωg

]
=

[
x1

x2

x3

]
(5)



2. Expressing the equation (5) as

Ẋ = f(X) + g(X)·u

[
ẋ1

ẋ2

ẋ3

]
=


x2

−GsS(ϕeq+x1)−GcC(ϕeq+x1)−Kϕ·x2+L̂g|x3|x3
Iϕ

−(Bg+D̂g|x3|)x3
Ig

+

 0

0

1
Ig

Pm

(6)

3. Verify that the feedback linearization is possible. In order
to do this, the cases in whichx3 is positive or negative will
be studied separately.

casex3 > 0 :
ad0

f (g) = g

adf (g) =


0

− L̂g

IgIϕ
2x3

1
I2
g
(Bg + 2x3D̂g)


and

ad2
f (g) =


2L̂g

IgIϕ
x3

− 2KϕL̂g

IgI2
ϕ

x3 −
2L̂gD̂g

I2
gIϕ

x2
3

− 2D̂g

I3
g

(Bg + D̂gx3)x3 + 1
I3
g
(Bg + D̂g2x3)2


It can be easily seen that the vector fields
{g, adf (g), ad2

f (g)} are linearly independent.

Next, the Lie brackets of each pair of the vector fields of
the set{g, adf (g)} will be verified to be a linear combi-
nation of themselves, and therefore the set{g, adf (g)} is
involutive inD.

[g, adf g] =

(
∂

∂x
(adf g)

)
g −

∂g

∂x
adf g = λ1g + λ2adf g

and
∂g

∂x
= 0

yields

(
∂

∂x
(adf g)

)
g =


0

− 2L̂g

I2
gIϕ

2D̂g

I3
g

 = λ1


0

0

1
Ig

+λ2


0

− L̂g
IgIϕ

2x3

1
I2
g

(Bg + 2x3D̂g)


It can be seen that there exists the pairλ1 andλ2 when
x3 6= 0, and therefore the set of vector fields is involutive
if and only if x3 6= 0.

Since the two conditions are satisfied, it can be said that
the system is input-state linearizable, except next to a re-
gion in whichx3 = 0.

4. Find a functionT(X):

Substituting in the system equations (4) is obtained:

< dT1, g >=
∂T1

∂x1
·0 +

∂T1

∂x2
·0 +

∂T1

∂x3
·
1

Ig
=

∂T1

∂x3
·
1

Ig
= 0

< dT1, adf g >=
∂T1

∂x1
·0 +

∂T1

∂x2
·adf gc2 + 0·adf gc3 = 0

< dT1, ad2
f g >=

∂T1

∂x1
·ad2

f gc1 + 0·ad2
f gc2 + 0·ad2

f gc3 6= 0

That demonstrate thatT1(X) = T1(x1)

Choosing the simplest functionT1(X) = x1, yields

< dT3(X), g >= ∇T3·g = ŁgT3 = ŁgŁ2
f T1 =

L̂g

IϕIg

2x3 6= 0 ⇐⇒ x3 6= 0

< dT3, f >= ∇T3·f = Łf T3 = Ł3
f T1 = (7)

=

(
Kϕ (GsS(ϕeq + x1) + GcC(ϕeq + x1))

I2
ϕ

)
+

+

(
GcS(ϕeq + x1)−GsC(ϕeq + x1)

Iϕ

+

(
Kϕ

Iϕ

)2)
·x2−

−

(
L̂g

Iϕ

(
Kϕ

Iϕ

+
2(Bg + D̂gx3)

Ig

))
·x3·x3

Next, the general case will be written including the case
x3 < 0. The equations results:

< dT3(X), g >= ∇T3·g = ŁgT3 = ŁgŁ2
f T1 =

L̂g

IϕIg

2|x3| 6= 0 ⇐⇒ |x3| 6= 0

< dT3, f >= ∇T3·f = Łf T3 = Ł3
f T1 = (8)

=

(
Kϕ (GsS(ϕeq + x1) + GcC(ϕeq + x1))

I2
ϕ

)
+

+

(
GcS(ϕeq + x1)−GsC(ϕeq + x1)

Iϕ

+

(
Kϕ

Iϕ

)2)
·x2−

−

(
L̂g

Iϕ

(
Kϕ

Iϕ

+
2(Bg + D̂g|x3|)

Ig

))
·x3·|x3|

5. Finally, the control signal to apply to the actuator is ob-
tained through the law:

u =
− < dT3, f >

< dT3, g >
+

V

< dT3, g >
=

V − Ł3
fT1

ŁgŁ2
fT1

It can been seen that the diffeomorphism obtained is well-
defined for all values of the state X except for the value
x3 = 0. Therefore, the control law will be well-defined if
and only if< dT3, g > is well-defined for all values of the
state X, which is not satisfied whenx3 = 0. In this way,
the linearization that has been obtained is not global for
all X. So a region around thex3 = 0 has to be studied and
find what values ofx3 = ωg make ŁgŁ2

fT1 be too small
and makeu be too high, and therefore cause a saturation
phenomenon in the actuator without having null velocity.

The minimum velocities of the rotors that do not cause
saturation of the law have to be determined.

6. The outer controller will have to be designed for a linear
system equivalent to three cascade integrators.



Approximate Input-State Linearization

In this section a simplified model of the aerodynamic
forces applied to the system has been used. It is well-
known, from the dimensional analysis of these forces, that
they vary proportionally with the square of the angular ve-
locity. The simplification consists in linearizing this force
in a region that containsx3 = 0, that is, linearize the
force when the angular velocity is next to zero. In this
region, the constantLg will have a value proportional to
the medium value of the angular velocity, concretely, the
angular velocity when switching between both laws. This
fact will be demonstrated in next section.

The equations of the elevation subsystem are the follow-
ing:

Iϕϕ̈ + GsS(ϕ) + GcC(ϕ) + Kϕ·ϕ̇ = Lgωg (9)

Igω̇g = Pm − (Bg + Dg)ωg (10)

where the constantsLg andDg are different from those of
the quadratic forceŝLg andD̂g.

Applying the same procedure than before, it is noticed
that the vector fields{g, adf (g), ad2

f (g)} are linearly inde-
pendent and also constant. Therefore, the Lie brackets of
each pair of vector fields are nulls, and can be expressed
as a linear combination of themselves. In this way, the set
{g, adf (g)} is involutive inD.

Since the two conditions are satisfied, it can be said that
the system is input-state linearizable.

Choosing the simplest functionT1(X) = x1, yields

< dT3(X), g >=
Lg

IϕIg
6= 0

as desired.

On the other hand

< dT3, f >=

(
Kϕ (GsS(ϕeq + x1) + GcC(ϕeq + x1))

I2
ϕ

)
+

(11)

+

(
GcS(ϕeq + x1) − GsC(ϕeq + x1)

Iϕ
+

(
Kϕ

Iϕ

)2
)

·x2−

−
(

Lg

Iϕ

(
Kϕ

Iϕ
+

Bg + Dg

Ig

))
·x3

Finally, the control signal to apply to the actuator is the
following one:

u =
− < dT3, f >

< dT3, g >
+

V

< dT3, g >

It can be noticed that this diffeomorphism is well-defined
for all value of the state vector X. Furthermore, the control
law is also well-defined due to the fact that the value of
< dT3, g > is a non-null constant. Therefore, the obtained
linearization is global for all X.

4 Switching between Exact and Approximate
Input-State Linearization

In previous sections, exact feedback linearization has been
demonstrated to be valid far from the point of static equilibrium
of the system, in which engine saturation ensues. It has been
also shown that in a region next to this point an approximate
linearization law is valid using a linear model of impulsion.

To follow up, in this section, a switching law between the ex-
act and the approximate laws, will be carried out. The election
of the switching velocity depends only on the saturation phe-
nomenon, taking into account a non-abrupt switching.

Next, the conditions to ensure a soft switching will be devel-
oped.

Linear Impulsion Model

To sum up, the control law applied to the actuator will follow
the law

u1 =
V − Ł3

f T1

ŁgŁ2
f T1

=
V − α1

β1
=

V

β1
− ξ1

where

β1 =
Lg

IϕIg
(12)

α1 = K1 + K2 −
(

Lg

Iϕ

(
Kϕ

Iϕ
+

Bg + Dg

Ig

))
·x3 (13)

and

K1 =

(
Kϕ (GsS(ϕeq + x1) + GcC(ϕeq + x1))

I2
ϕ

)
(14)

K2 =

(
GcS(ϕeq + x1)−GsC(ϕeq + x1)

Iϕ

+

(
Kϕ

Iϕ

)2)
·x2 (15)

therefore

ξ1 =
α1

β1
=

K

Lg
− Mx3 − Bgx3 − Dgx3 (16)

with
K = (K1 + K2)IϕIg (17)

M =
IgKϕ

Iϕ
(18)

Quadratic Impulsion Model

u2 =
V − Ł3

f T1

ŁgŁ2
f T1

=
V − α2

β2
=

V

β2
− ξ2

where

β2 =
2L̂g|x3|

IϕIg

(19)

α2 = K1 + K2 −

(
L̂g

Iϕ

(
Kϕ

Iϕ

+
2(Bg + D̂g|x3|)

Ig

))
·x3·|x3|(20)



andK1 y K2 are the same that in the fore mentioned case, and
therefore

ξ2 =
α2

β2
=

K

2L̂g |x3|
−

M

2
x3 − Bgx3 − D̂g |x3|x3 (21)

with K y M the same mentioned before.

Non-Abrupt Switching Conditions

In order to ensure a soft switching between both laws, the fol-
lowing condition has to be imposed, that is,u1 = u2 at the
switching instant. SimilarlyV will be imposed to be the same
at the switching instant. Due to this, it can be obtained that

u1 =
V

β1
− ξ1 = u2 =

V

β2
− ξ2

then

−
β1 − β2

β1β2
V = ξ1 − ξ2

Since this equality has to be valid for allV , the following two
conditions are taken out.

β1 = β2 =⇒ ξ1 = ξ2

Analyzing these conditions, the following relations are ob-
tained. From the first condition,

Lg = 2L̂g |x3|

From the second condition,

Dg = D̂g |x3| −
M

2

5 Simulation Studies

Switching Linearizing Laws with an external LQR

Taking into account the non-abrupt switching conditions, an
appropriate value ofωs has to be chosen in such a way that the
exact linearizing law does not generate a control signalu that
makes the engine saturate. The value ofωs = 0.08·ωmax has
been chosen, whereωmax is the maximum velocity of the rotor.

Figures 4, 5 and 6 show respectively the signalsV , u andϕ of
this controller.

Figure 5 shows the quadratic linearization signalsu2 versus the
linear oneu1. It can be seen that the linear one is smooth near
the zero and sharp for higher values. In the quadratic one the
opposite occurs. Due to this fact the resultant switching signal
U is always smooth, as can be seen in figure 6 and the same
happens to the angular velocity of the rotorw.

Figure 7 shows the system response in the elevation angle using
a square wave as reference, which serves to demonstrate the
quality of the control performance achieved.
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Figure 4: Control signal generated by the external controller
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Figure 5: Quadratic linearizing signal versus the linear one
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Figure 7: Elevation angle of the system

Switching Linearizing Controller with external integral-
LQR

The difference with respect to the previous case is the inclu-
sion of an additional integral term of the error in the outer loop
to ensure that the steady state error is null. This structure is
necessary when the linearization law is applied to the real set,
where, due to uncertainties in the model, there exists a non-null
steady-state error. In simulation the results obtained in this case
are similar to those of the previous section, so the figures will
be omitted.

6 Conclusions

In this paper an input-state linearization law has been applied
to the elevation subsystem of a laboratory double rotor heli-
copter. As the exact input-state linearization provides a law
that cannot be applied in the whole operating range, a switch-
ing law has been developed. The second law applied, has been
obtained using an approximation of the model in the working
range, in which the exact law made the engine sature. Both
laws have been simulated using external LQR and integral-
LQR controllers designed for a chain of three integrators. The
best results have been obtained with the switching law.

As a possible future development, a suitable linearizing law
will be searched out for the complete laboratory helicopter, us-
ing new results for non-minimum phase MIMO systems and
taking into account [3] and [4].
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