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Abstract

The problem of decoupling and complete pole assignment
of linear square, and controllable systems by static state
feedback is addressed in this paper. Based on a charac-
terization of the whole set of attainable finite pole-zero
structures of a decouplable system, we present a reliable
numerical algorithm which tests the conditions for decou-
pling and computes the state feedback which decouples the
system with a particular pole-zero finite structure, avoid-
ing unnecessary cancellations of invariant zeros. With the
use of this algorithm, fixed decoupling poles are deter-
mined, non-fixed poles can be arbitrarily located, and no
cancellation of system invariant zeros is produced if this
is not necessary for decoupling.

1 Introduction

We are interested in this work in the row-by-row decou-
pling of linear multivariable systems with the same num-
ber of inputs and outputs (square systems) by static state
feedback. The solution to this problem was obtained in
[6], based on the nonsingularity of a matrix constructed
from the system matrices; the solution in terms of the
infinite structure of the system is presented in [5]. The
decoupling problem with stability of square systems has

been solved in [13] using a geometric approach, and in
[14] using a polynomial equation approach. Even though
there exist many results concerning this problem, most of
the contributions in the literature about decoupling focus
mainly on the necessary and sufficient conditions to solve
the problem, but they usually do not consider neither the
issue of what the structure of the decoupled closed-loop
system may be nor the characteristics of the decoupling
state feedback. Actually, in order to simplify the pro-
blem, a common consideration is that the entries of the
closed-loop transfer function matrix are supposed to be of
the form 1/sj , where j is a positive integer, which is also
referred to as integrator decoupling. Of course, no pole
locations to obtain adequate system dynamics are consi-
dered within this approach, not to speak of the problems
which may be caused by possible pole-zero cancellations.
Achieving first decoupling, for example in integrator de-
coupling form, and after that trying to assign the poles of
the system can be a difficult problem since the state feed-
back designed to solve the pole-assignment will usually
destroy the diagonality of the closed-loop transfer func-
tion matrix. In light of this, a more reasonable approach
seems to be to achieve both objectives using the same
state feedback. Then, a complete pole assignment for the
decoupling problem should provide the whole set of fi-
nite pole-zero structures which can be obtained for the
closed-loop system, avoiding unnecessary cancellations of
invariant zeros.

As far as the structure of a decoupled closed-loop sys-
tem is concerned, a first attempt to study this structure
was presented in [6], where the authors characterized the



class of all feedback matrices which decouple a system,
and the number of closed-loop poles which can be as-
signed. Their conditions, however, are cumbersome and
difficult to apply, there is no connection whatsoever of
these conditions to the structure of the system, and they
show how to assign only a number of poles equal to the
sum of the system infinite zero orders, which is in gene-
ral less than the true number of assignable poles. The
problem of decoupling and pole assignment is tackled in
[19] using a geometric approach, and the authors present
necessary and sufficient conditions to solve this problem
based on the concept of controllability subspaces and their
properties. Fixed decoupling poles are proved in [12] to be
equal to the interconnection transmission zeros, as defined
in this reference. The characterization of the closed-loop
structure of a decouplable system, and the properties of
the decoupling state feedback are presented in [16]. In this
reference, the family of all attainable transfer function ma-
trices for the decoupled closed-loop system is determined,
which also establishes all possible combinations of finite
closed-loop pole and zero structures.

Concerning numerical algorithms related to decoupling, a
reliable numerical algorithm for the computation of the
interactor of a linear multivariable system is presented in
[15]. Avoiding of use of elementary operations, the algo-
rithm is further used to compute the state feedback which
decouples a linear multivariable system, producing the in-
verse of the system interactor as closed-loop transfer func-
tion matrix. In [4], a numerical method for proportional
and derivative state-feedback decoupling controller design
is presented. Solvability conditions of all solutions for the
triangular decoupling problem are presented in [3]. In [2]
it is presented an algorithm for the decoupling problem
with stability, based also on orthogonal transformations
and condensed forms.

We present in this work a reliable numerical algorithm
which tests the conditions for the decouplability of a li-
near, multivariable, square and controllable system, and
computes the corresponding state feedback which decou-
ples the system with a particular pole-zero finite structure.
From the previously mentioned references on numerical al-
gorithms related to decoupling, the closest to our present
work is [2]. Making a comparison, it can be said that the
problem we are considering in this work is more general
than that of [2], in the sense that we provide a numerically
reliable algorithm to compute a state feedback which not
only decouples the system, but also determines the fixed
decoupling poles and allows a complete pole assignment
avoiding unnecessary cancellation of invariant zeros. De-
coupling with stability is indeed a particular case of this
more general setting.

In this work, we first extend the results presented in [16]
to drop the observability assumption. From this result,
fixed decoupling poles can be determined, as well as the
complete finite pole-zero structure which can be obtained

for the decoupled system. We then develop a numerical al-
gorithm based on these results. The relevant information
(global and row infinite zeros, and global and row finite ze-
ros of the system) is obtained in a numerically reliable way
from the Kronecker invariants of suitable matrix pencils.
Given a particular attainable finite pole-zero structure for
the closed-loop system, the algorithm computes the state
feedback which decouples the system from the constant
kernel of a polynomial matrix. The algorithm also deter-
mines the fixed decoupling poles of the system, which are
fundamental, for instance, in the issue of internal stabi-
lity. Cancellation of invariant zeros of the system is com-
pletely avoided if it is not necessary for decoupling. The
algorithm described in the paper will be implemented in
the new release of the Polynomial Toolbox for MATLAB,
see www.polyx.cz.

2 Preliminaries

We consider in this work linear multivariable systems with
the same number of inputs and outputs, described by

(A,B,C)
{
ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

where x ∈ IRn, u ∈ IRm and y ∈ IRm are, respectively, the
state, input and output vectors of the system.

The system (A,B,C) is said to be row by row decouplable
by static state feedback if there exists a state feedback

(F,G) : u(t) = Fx(t) +Gv(t),

where F ∈ IRm×n and G ∈ IRm×m are constant matrices,
with G nonsingular, and v(t) is a new input vector, such
that the input vi(t) controls the output yi(t), i = 1, . . . ,m,
without affecting the other outputs.

The previous formulation is equivalent to the existence
of a state feedback (F,G) such that the transfer function
matrix TF,G(s) of the closed-loop system (A+BF,BG,C)
is a nonsingular diagonal matrix, i.e.,

TF,G(s) = C(sI −A−BF )−1BG
= diag {w1(s), . . . , wm(s)} =: W (s) (1)

where wi(s) 6= 0, i = 1, . . . ,m, are strictly proper rational
functions.

If the stability issue is considered in the problem formula-
tion, then the system (A,B,C) is said to be decouplable
with stability if it is decouplable and the closed-loop sys-
tem (A+BF,BG,C) is internally stable.

The conditions for decoupling a linear multivariable sys-
tem (A,B,C) are intimately connected to the structure of
the system matrix

P (s) =
[
sI −A B
C 0

]
(2)



related to the structure of the matrices

Pi(s) =
[
sI −A B
ci 0

]
, i = 1, . . . ,m, (3)

where ci is the i-th row of matrix C, i = 1, . . . ,m.

Indeed, the system (A,B,C) is decouplable if and only if
the infinite structure of P (s) coincides with the infinite
structure of the matrices Pi(s), i.e., if and only if

m∑
i=1

n′i =
m∑
i=1

ni (4)

where {n′1, . . . , n′m} are the infinite zero orders of P (s)
(infinite zero orders of the system), and {n1, . . . , nm} are
the infinite zero orders of P1(s), . . . , Pm(s) (row infinite
zero orders of the system) [6, 5].

If the system is decouplable, then it is decouplable with
stability if and only if the number of unstable zeros of P (s)
(unstable zeros of the system), multiplicities included, is
equal to the number of unstable zeros of P1(s), . . . , Pm(s)
(row unstable zeros of the system), taken all together [13,
14].

3 Characterization of the closed-
loop structure

It is well known that in the process of decoupling a li-
near system, some of the finite zeros of the system may
be cancelled by assigning closed-loop poles. It is impor-
tant, however, to make the distinction between finite zeros
that must be cancelled in order to achieve decoupling, and
finite zeros which are not necessary to cancel. In practi-
cal designs, cancellation of finite zeros is usually avoided
because of potential internal instability caused by hidden
system dynamics and undesirable pole locations. Thus,
if the main objective is to decouple the system, it is im-
portant at least to know the number of finite poles which
can be freely assigned, and the number of poles which
have to be cancelled with finite zeros in order to achieve
decoupling, i.e., the so-called fixed decoupling poles.1

Concerning non-observable systems, instead of finite zeros
it is necessary to consider the invariant zeros of the system.
Results presented in [16] can be extended to consider this
case as follows.

Lemma 1. Let (A,B,C) be a square controllable system,
and let ci be the i-th row of matrix C, i = 1, . . . ,m. Then,
the matrix

Pi(s) =
[
sI −A B
ci 0

]
1Strictly speaking, cancelled frequency values are not system

poles, since they do not appear in the system transfer function ma-
trix. Then, it should be more appropriate to speak of fixed decou-
pling modes, where poles are a subset of the system modes, and both
sets are equal if the system is controllable and observable.

can have at most one non-unit invariant polynomial.

Proof. The invariant polynomials of Pi(s) can be obtained
as

λj(s) =
∆j(s)

∆j−1(s)
, j = 1, . . . , n+ 1,

where

∆0(s) := 0,

∆j(s) = gcd of all j × j minors of Pi(s),

are the determinantal divisors of Pi(s) (see for instance
[11]). Since the system is controllable, at least the first
n determinantal divisors of Pi(s) are all units. Then, the
only possible non-unit invariant polynomial of Pi(s) is the
last one, which is equal to ∆n+1(s).

Let us denote by zi(s) the last invariant polynomial of
matrix Pi(s), i = 1, . . . ,m. The finite row zeros of the
system is a subset of the roots of zi(s), and both sets
coincide if (A,B,C) is observable. It can be seen that any
finite zero of Pi(s) is also a zero of the matrix P (s) given by
(2), but notice that a zero of P (s) is not necessarily a zero
of Pi(s). Then the product of the polynomials

∏m
i=1 zi(s)

divides exactly
∏n+m
i=1 εi(s), where εi(s) are the invariant

polynomials of P (s).

The family of all attainable transfer function matrices for
the decoupled closed-loop system is characterized by the
following result.

Theorem 1. Let (A,B,C) be a square, controllable, and
decouplable system. Then, there exists a state feedback
(F,G) which decouples the system, such that the transfer
function of the decoupled closed-loop system is of the form

W (s) = C(sI −A−BF )−1BG

=


k1

z1(s)
a1(s)

. . .
kp

zm(s)
ap(s)

 (5)

where k1, ..., km are real numbers, zi(s) is the last invari-
ant polynomial of matrix Pi(s), i = 1, . . . ,m, as intro-
duced before, a1(s), ..., am(s) are monic polynomials with
arbitrary roots, satisfying

deg ai(s)− deg zi(s) = ni, i = 1, . . . ,m, (6)

and n1, ..., nm are the row infinite zero orders of the sys-
tem.

Proof. The proof is essentially the same as in Theorem 1
of [16]. Just observe that if a preliminary state feedback
is applied to render the system observable, then the roots
of zi(s) become the row finite zeros of the system.

Theorem 1 completely characterizes the set of all matri-
ces which can be obtained as closed-loop transfer function
matrices of a decouplable system. Indeed, it can be seen



that the finite zeros and poles of the closed-loop system
are respectively given by the roots of numerator polyno-
mials zi(s) and denominator polynomials ai(s) of W (s).

Theorem 2. Fixed decoupling poles of the system corre-
spond to the roots of the polynomial

δ(s) :=
∏n+m
i=1 εi(s)∏m
i=1 zi(s)

(7)

where ε1(s), . . . , εn+m(s) are the invariant polynomials of
P (s), and zi(s) is the last invariant polynomial of Pi(s),
i = 1, . . . ,m.

Proof. The set of invariant zeros of (A,B,C) are the roots
of the polynomials εi(s), and it is evident from (5) that
the only frequency values that can be finite zeros of the
decoupled closed-loop system are the roots of the polyno-
mials zi(s). If δ(s) is not a unit, then some of the poles of
the system (the fixed decoupling poles) must be located
at the positions of the roots of δ(s) producing cancellation
with finite zeros of the system.

Remark 1. From the previous result, it can be seen that
the fixed decoupling poles correspond to invariant zeros
which are not row invariant zeros of the system.

Remark 2. It follows from Theorem 2 that the number of
poles which can be arbitrarily assigned while decoupling
the system is equal to

n− deg δ(s), (8)

where n is the order of the system and δ(s) is given by
(7).

4 Algorithm for decoupling and
pole assignment

The relevant information to solve the decoupling and com-
plete pole assignment problem is the global and row infi-
nite zeros, and global and row invariant finite zeros of the
system. It is well known that computing the finite or infi-
nite structure of a pencil from its Smith form is not numer-
ically reliable. Instead of that, we will obtain this informa-
tion in a numerically reliable way from the Kronecker in-
variants of suitable matrix pencils. The algorithm for that
purpose is based on the results from [17, 18] and uses only
numerically reliable operations such as Householder trans-
formations or the singular value decomposition (SVD), see
for instance [7, 8].

Let us consider an arbitrary m×n matrix A and compute
its SVD,

PTAQ = Σ

where Σ is an m × n matrix with singular values of A
along its main diagonal. The rank r of A corresponds to

the number of non-zero singular values, and we have that

PTA =
[
Ar
0

]
, (9a)

AQ =
[
Ac 0

]
(9b)

where Ar and Ac have r linearly independent rows and
columns respectively. Operation (9a) is called row com-
pression and operation (9b) column compression of A.

Consider an arbitrary m × n pencil P(s) = sE − L. The
algorithm to obtain the eigenstructure of P(s) is described
as follows (see [17]).

• Let E1 = E, n1 = n, m1 = m and L1 = L.

• Step k: Obtain the SVD Σ = PTEkQ and the rank
ρk of Ek. If vk = mk − ρk is not zero, make the
permuted row compressions.

IpP
TEk =

[
0
Ek

]
, IpP

TLk =
[
L̄k
Lk

]
,

where Ip =
[

0 Iρk
Ivk 0

]
. Obtain the SVD S =

PT L̄kQ and the rank rk of L̄k, and make the column
compressions

L̄kQ = [×|0], EkQ = [×|Ek+1], LkQ = [×|Lk+1].

where irrelevant entries are denoted by ×.

• Update the dimensions

mk+1 = mk − vk, nk+1 = nk − rk

and go to next step k + 1 (notice that in each step
matrices Ek and Lk are updated).

If vk is zero, structural indices at infinity of P(s) can
be recovered from vectors v = [v1, . . . , vk] and r =
[r1, . . . , rk−1]. For i = 1, 2, . . . , k − 1, P(s) has ri − vi+1

zeros at infinity of degree i − 1. In addition, it can be
shown that the mk×nk pencil sEk−Lk contains only the
finite structure and the right null space of P(s).

Now we take the reduced pencil sEk−Lk and apply a dual
process, namely, we start with the column compressions

EkQ = [Ek|0], LkQ = [Lk|L̄k],

and apply the row permuted compressions

IpP
T L̄k =

[
0
×

]
, IpP

TEk =
[
×

Ek+1

]
,

IpP
TLk =

[
×

Lk+1

]
,

update the dimensions

nk+1 = nk − vk, mk+1 = mk − rk



and go to the next step.

When the dual process is finished, the new square reduced
pencil sÊ − L̂ contains only the finite zeros of P(s).

Then, using the well known QZ factorization

QÊZ = Ẽ, QL̂Z = L̃,

the finite zeros can be obtained as ratios of diagonal ele-
ments αi = l̃ii/ẽii. The QZ factorization is also based on
Householder transformations, see [7].

The above method allows to obtain the eigenstructure of
a given pencil in a numerically reliable way. Then, we can
easily obtain the global and row, finite and infinite zeros of
the system (A,B,C) from the eigenstructure of the pencils
given by (2) and (3). In this way, the conditions (4) for
decoupling can be tested, and the whole set of attainable
finite pole-zero structures for the decoupled closed-loop
system can be characterized.

To complete the algorithm, we show how to compute the
state feedback which produces a decoupled closed-loop
system with a particular finite pole-zero structure. It is
shown in [16] that for a particular choice of closed-loop
transfer function matrix from the set (5), say W1(s), the
corresponding state feedback (F,G) producing W1(s) is
unique if and only if the system is controllable. To ob-
tain (F,G) we use the following method, which has the
advantage in comparison to the one of [16] that it is not
necessary to obtain a matrix fraction description N(s),
D(s) of the system with D(s) column reduced.

Let W1(s) be a particular transfer function matrix from
the set (5), and define

Q(s) = T−1(s)W (s) = Q0 + Q̄(s),

where T (s) is the transfer function of the system, Q0 is
a constant matrix, and Q̄(s) is a strictly proper rational
matrix.

Then, we seek matrices F and G such that

Q(s) = [I − F (sI −A)−1B]−1G.

From the last equation, it can be seen that matrix G is
given by

G = lims→∞Q(s) = Q0. (10)

To compute matrix F , let
[
L E

]
be a basis for the left

constant kernel of the matrix[
(sI −A)−1B
I −GQ−1(s)

]
, (11)

where L ∈ IRm×n, E ∈ IRm×m, and E is nonsingular (such
matrices always exist since the system is decouplable).
Observe that the left constant kernel is not modified if
matrix (11) is transformed into[

det(Q) adj(sI −A)B
det(sI −A)(det(Q)I −G adj(Q))

]

using the reliable methods to compute the adjoint of a
polynomial matrix presented in [9, 10]. Thus, this in-
formation can be obtained from the constant kernel of a
polynomial matrix. To this end, we use numerical reliable
routines based on Householder transformations, see [1].

Finally, the matrix F satisfying

C(sI −A−BF )−1BG = W1(s)

is given by
F = −LE−1. (12)

The previously described algorithm is applied to the fol-
lowing example, which illustrates also the issues of pole
assignment and cancellation of invariant zeros.

Example 1. Let the controllable system (A,B,C) be given
by

A =


−2 3 0 −1 1

1 0 0 0 0
−2 −1 −1 3 5

0 0 1 0 0
0 0 0 1 0

 ,

B =


0 1
0 0
−1 1

0 0
0 0

 , C =
[

0 1 0 −1 −1
1 −1 0 0 0

]

whose transfer function is

T (s) =

 1
(s−2)(s+2) 0

s−1
(s−2)(s+2)3

s+1
(s+2)2

 .
Applying the reported algorithm, we obtain the following
results, which can be easily checked: the system is de-
couplable, the set of matrices which can be obtained as
transfer function matrices for the decoupled closed-loop
system is given by

W (s) =

 k1
(s+α1)(s+α2) 0

0 k2(s−1)
(s+α3)(s+α4)

 .
and there exists a fixed decoupling pole at s = −1. Notice
that the system is decouplable with stability. Observe
also that s = 1 is an invariant row and global zero of
the system, which is not evident from the system transfer
function, since the system is not observable.

Let us choose a pole-zero finite structure corresponding to
the following matrix

W1(s) =

 1
(s+1)(s+2) 0

0 s−1
(s+2)2


The unique state feedback producing W1(s) returned by
the algorithm is given by

F =
[
−3 −6 3 9 6
−2 −7 0 1 −1

]
, G =

[
1 0
0 1

]
.



5 Conclusions

We presented in this paper a reliable numerical algorithm
which tests the conditions for decoupling and computes
the state feedback which decouples the system with a
particular pole-zero finite structure, avoiding unnecessary
cancellations of invariant zeros.

It is well known that small variations on the values of the
system matrices of a perfectly decouplable system, due for
instance to rounding errors, can lead to the wrong conclu-
sion that the system is not decouplable, or not decouplable
with a particular structure (see for instance Example 2 in
[2]). This is a problem of the system representation, and
not of the reliability or stability of the algorithm itself.
Concepts of well-posedness, genericity, and “robust de-
coupling” have to be considered to give an answer to this
problem.

Numerical testings, which are not included in this paper,
demonstrated that the algorithm performs quite well. The
stability and computational complexity of the algorithm
remain to be studied.
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