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Abstract

In this paper, a nonlinear output feedback control method
is proposed for a magnetic bearing system which has a
strong nonlinearity in the magnetic actuator. The basic
idea is to make full use of the feature that the dynam-
ics part is linear and hence can be stabilized by output
feedback when the output of the actuator is regarded as
a virtual input. Then it is shown that the backstepping
and completing square techniques enable the construction
of the real input using measured output only.

1 Introduction

In magnetic bearing systems the magnetic force has a
strong nonlinearity, which is proportional to the square of
electric current and inversely proportional to the square
of distance between the magnetic bearing and the rotor.
For this reason, in conventional magnetic control systems
using linear control approaches large current biases have
to be applied to a pair of electromagnets in order to guar-
antee that the magnetic force acting on the rotor can be
approximated as a linear function of the currents. This
large current bias does not contribute to control of mag-
netic bearing, thus is a waste of power. More importantly,
the control system designed based on linear approximation
works only in a very narrow range. To overcome this prob-
lem, a so-called ”zero-power” control method is proposed
in references[1, 2] which uses nonlinear state feedback so
as to achieve zero-bias current. Further, [8] makes some
improvements to the zero-power method. However, the
designed nonlinear state feedback control law has a sin-
gularity at the equilibrium and for this reason asymptotic
stability is not achieved. Meanwhile, in [10] a zero-bias
nonlinear control method is proposed which guarantees
asymptotic stability. [9] discussed a control method with
exponentially decaying bias and [7] discussed low bias con-
trol. All these works are based on state feedback. How-
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ever, when the rotor is flexible there is no way to measure
all states and output feedback control becomes imperative.
As the first step towards this goal, output feedback stabi-
lization of a rigid rotor is treated in this paper. Extension
to flexible rotor control will be published in forthcoming
papers.

For this purpose, attention is focused on the dynamics
property of this system, i.e. the magnetic bearing system
is composed of a rotor and an actuator of electromagnets.
The rotor is controlled by the magnetic force and the dy-
namics from this magnetic force to the states of rotor is
linear. Therefore if this magnetic force is regarded as a
virtual control input, linear feedback can be applied eas-
ily. Specifically, output feedback can be applied by using
any known linear control theory. Meanwhile, the mag-
netic force is produced by a pair of electromagnets and
is highly nonlinear, it is an open problem how to design
an output feedback controller by backstepping. In this
paper, it is first shown that the singularity in the control
laws of [8, 1, 2] is due to the fact that the relative degree
of the magnetic actuator is undefined if the bias current
is zero and thus nonzero bias has to be applied in order
for the backstepping technique[5] to be applicable. Then
it is shown how one can design an output feedback con-
troller by selecting suitable quadratic Lyapunov function
and using the completing square technique. Also the con-
dition on the structure of the linear part of the controller
is analyzed and clarified.

Control of one-degree-of-freedom (1DOF) magnetic bear-
ing system will be exposed in detail. Then the result on a
4DOF magnetic bearing system will be presented briefly.

2 Model of Magnetic Bearing System

Let us consider the 1DOF magnetic bearing system shown
in Fig.1 first. In this figure, x denote the displacement of
the rotor axis from the center, X0 the gap between bearing
and rotor at the equilibrium state, i1, i2 are the currents
flowing through electromagnets 1 and 2 respectively. The
voltage inputs applied to each electromagnet circuit are
ū1 and ū2. Only the displacement x and currents i1, i2



are measured.

To express the dynamics in state space form, the state
variables are chosen as

x̄1 = x, x̄2 = ẋ, ξ̄1 = i1, ξ̄2 = i2. (1)

Then, the state space model is described by

˙̄x1 = x̄2 (2)

˙̄x2 =
1

M
f (3)

y = x̄1 (4)

˙̄ξ1 =
1

L1

[

−Rξ̄1 −
∂L1

∂x̄1
ξ̄1x̄2 + ū1

]

(5)

˙̄ξ2 =
1

L2

[

−Rξ̄2 −
∂L2

∂x̄1
ξ̄1x̄2 + ū2

]

(6)

in which the electromagnetic force f and the inductances
L1, L2 are given by

f = k

{

ξ̄2
1

(X0 − x̄1)2
−

ξ̄2
2

(X0 + x̄1)2

}

. (7)

L1 =
2k

X0 − x̄1
, L2 =

2k

X0 + x̄1
(8)

In the above equations, M is the mass of rotor, R the
resistance of each circuit and k a constant. Eqs. (2),
(3) describe the dynamics of rotor, Eqs. (5), (6) are the
state equations of electric circuits of the two electromag-
nets. These model can be easily found in any standard
textbooks on magnetic dynamics, such as [3, 6].

It is worth noting that L1, L2 > 0 holds in the working
range. There also holds equations

∂L1

∂x1
=

1

2k
L2

1,
∂L2

∂x1
= −

1

2k
L2

2. (9)

Moreover, since the electromagnetic force f is a function
of ξ2

i (i = 1, 2), it is sufficient only to use positive currents
in control.

x

x0
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u1u2
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M

Figure 1: Model of 1DOF magnetic bearing system

2.1 Relative Degree of The Acuator

The equilibrium of the system is found to be

x̄1 = 0, x̄2 = 0, ξ̄1 = ξ̄2 = ε, ū1 = ū2 = Rε

in which ε is arbitrary. Note the equilibrium is not an
isolated point, it is a set which corresponds to the fact
that this system can have any electricity bias at the equi-
librium. Now let us look at the effect of bias on stabiliza-
tion technique. In backstepping, the relative degree of the
actuator must be well defined. Since the output of the
actuator is f and the coefficient of the input ūi is 1/Li
(i = 1, 2), there holds

∂f

∂ξ̄i

1

Li
=

1

2k
Liξ̄i.

So if the current at equilibrium is ε = 0, the relative degree
is not 1 at the equilibrium. Continuing the calculation
on the relative degree, it is discovered that the relative
degree is not defined at all. This means that in order for
the backstepping technique to be applicable, some bias
current has to be applied, i.e. ε > 0. In this case, the
actuator has a relative degree of 1 around the equilibrium.
It is assumed that the bias is chosen as such in the sequel.

For convenience, the equilibrium is shifted to the origin as
follows

x1 = x̄1, x2 = x̄2

ξ1 = ξ̄1 − ε, ξ2 = ξ̄2 − ε

u1 = ū1 − Rε, u2 = ū2 − Rε.

Then the state equations in the new coordinate become

ẋ1 = x2, ẋ2 =
1

M
f (10)

y = x1 (11)

for the linear dynamics and

ξ̇1 =
1

L1

[

−Rξ1 −
∂L1

∂x1
ξ̄1x2 + u1

]

(12)

ξ̇2 =
1

L2

[

−Rξ2 −
∂L2

∂x1
ξ̄2x2 + u2

]

(13)

f =
1

4k

(

L2
1ξ̄

2
1 − L2

2ξ̄
2
2

)

(14)

for the actuator.

3 Control Design

As is clear from the state equation, if the magnetic force f
is regarded as a virtual control input, then the dynamics of
the rotor subsystem becomes linear. So linear control can
be applied to stabilize this subsystem. After that, voltage
input needs to be designed so as to realize the magnetic
force designed in the 1st step. That is, the design process
can be decomposed into 2 steps as follow.



1. Construct f∗ by linear dynamic output feedback of y

2. Use backstepping and completing square technique to
find ū1, ū2 using only the measureed output(y, ξ̄1, ξ̄2)

They are described in the following subsections respec-
tively.

3.1 Structural Requirement on Linear Controller

First of all, the condition on the linear dynamic output
feedback controller K(s) is discussed such that the input
of nonlinear actuator can be realized by dynamic output
feedback.

Lemma 1 The relative degree of K(s) must be greater
than or equal to that of the actuator in order for dynamic
output feedback to be realizable.

(Proof) Suppose the relative degree of the actuator is γ,
then derivatives of f∗ up to f∗(γ) will be used in the back-
stepping design. Let a state space realization of K(s) be

ẋk = Ak + bky, f∗ = ckxk + dky. (15)

Then

f∗(i) = ckA
i
kxk + ckA

i−1
k bky + ckA

i−2
k bkẏ

+ · · ·+ ckbky
(i−1) + dky

(i).

So the derivatives of f∗ up to f∗(γ) are independent of
derivatives of y iff

dk = ckbk = ckAkbk = · · · = ckA
γ−2
k bk = 0

holds. That is the relative degree of K(s) must not be
lower than γ. �

3.2 Output Feedback Design of Magnetic Force

Let us assume that the magnetic force f can be manip-
ulated directly and consider the control of rotor by this
virtual input first. Let x = [x1, x2]

T
denote the state

vector, then the state equation of the rotor can be written
as

ẋ = Ax + bf, y = cx (16)

in which

A =

[

0 1
0 0

]

, b =

[

0
1/M

]

, c = [1 0].

Obviously, this system is controllable and observable, thus
can be stabilized by linear dynamic output feedback. The
relative degree of K(s) must not be lower than 1 because
the relative degree of the electromagnetic actuator is 1.

Assume that this linear stabilizing controller K(s) is given
by

ẋk = Ak + bky, f∗ = ckxk. (17)

To find a state space realization for this linear closed sub-
system, let us define some notations as follows

fe = f − f∗, ζ = [xT , xTk ]T . (18)

Then it is easy to verify that the state equation of the
closed loop subsystem is

ζ̇ = Acζ + bcfe (19)

in which

Ac =

[

A bck
bkc Ak

]

, bc =

[

b
0

]

.

Before proceeding to the next step of control design, we
need to construct a Lyapunov function for this linear
closed subsystem and compute the desired currents. Both
will be used in the backstepping design.

Since Ac is stable, there exists a matrix P > 0 satisfying
the Lyapunov equation below

AT
c P + PAc + I = 0. (20)

Now set a quadratic function as

V1(ζ) = ζTPζ. (21)

Its derivative is given by

V̇1 = ζ̇TPζ + ζTP ζ̇

= ζT (ATc P + PAc)ζ + ζT (Pbcfe) + (Pbcfe)
T ζ

= −‖ζ‖2 + ζT (Pbcfe) + (Pbcfe)
T ζ. (22)

When f = f∗, V̇1 is a negative function. So V1 is a Lya-
punov function for this subsystem.

Next, let us find the electric currents (ξ∗1 , ξ∗2) correspond-
ing to f∗. It is clear from Eq. (7) that the currents ξ1, ξ2

can not be determined uniquely. So let us find ξ∗1 , ξ∗2 that
minimize the index

J = min{ξ2
1 + ξ2

2}

subject to the constraint

f∗ =
1

4k
[L2

1(ξ
∗

1 + ε)2 − L2
2(ξ

∗

2 + ε)2].

This can be interpreted as the minimization of the devia-
tion of current power from the bias. It is easy to see that
the optimal solution must satisfy

ξ1 = 0, f∗ = 1
4k

[

L2
1ε

2 − L2
2(ξ2 + ε)2

]

(f∗ < 0)
ξ1 = ξ2 = 0 (f∗ = 0)
ξ2 = 0, f∗ = 1

4k

[

L2
1(ξ2 + ε)2 − L2

2ε
2
]

(f∗ > 0).

From these equations, the required currents ξ∗1 , ξ∗2 are
obtained as:

ξ∗1 =

{

−ε + 1
L1

√

4kf∗ + L2
2ε

2, f∗ > 0

0, f∗ ≤ 0
(23)

ξ∗2 =

{

0, f∗ ≥ 0

−ε + 1
L2

√

−4kf∗ + L2
1ε

2, f∗ < 0
(24)



This control law is a switching control law and is physically
extremely natural. f∗ acts as the switching surface. It is
also noted that

ξ̄∗1 = ξ∗1 + ε ≥ ε > 0, ξ̄∗2 = ξ∗2 + ε ≥ ε > 0. (25)

3.3 Design of Voltage Inputs

As in standard backstepping, the error between real cur-
rents ξ1, ξ2 and required currents ξ∗1 , ξ∗2 are defined as

e1 = ξ1 − ξ∗1 , e2 = ξ2 − ξ∗2 .

Their dynamics are given by

ė1 = ξ̇1 − ξ̇∗1

=
1

L1

[

−Rξ1 −
∂L1

∂x1
ξ̄1x2 + u1 − L1ξ̇

∗

1

]

(26)

ė2 = ξ̇2 − ξ̇∗2

=
1

L2

[

−Rξ2 −
∂L2

∂x1
ξ̄2x2 + u2 − L2ξ̇

∗

2

]

(27)

It is noted that fe can be expressed as

fe =
1

4k

[

L2
1(ξ̄1 + ξ̄∗1)e1 − L2

2(ξ̄2 + ξ̄∗2)e2

]

(28)

in terms of e1, e2. There also holds

∂L1

∂x1

(

1

2
e1 − ξ̄1

)

e1 +
∂L2

∂x1

(

1

2
e2 − ξ̄2

)

e2

= −
1

4k

[

L2
1(ξ̄1 + ξ̄∗1)e1 − L2

2(ξ̄2 + ξ̄∗2)e2

]

= −fe.

The key point in obtaining a simple output control law is
to use the following quadratic function

V (ζ, e1, e2) = V1 +
1

2
L1e

2
1 +

1

2
L2e

2
2 (29)

as a candidate of control Lyapunov function for the whole
system.

Theorem 1 Define the following parameters

P = P −
M

2
I, λ = ‖Pbc‖

2, κ = bTc Pbc

and signals

w1 =

{

0, f∗ ≤ 0

−M
2k

(

L2
1ξ̄

∗

1 + ε2
L3

2

L1ξ̄∗1

)

, f∗ > 0

v1 =

{

0, f∗ ≤ 0

2k ḟ∗

L1ξ̄∗1
, f∗ > 0

w2 =

{

M
2k

(

L2
2ξ̄

∗

2 + ε2
L3

1

L2ξ̄∗2

)

, f∗ < 0

0, f∗ ≥ 0

v2 =

{

−2k ḟ∗

L2ξ̄∗2
, f∗ < 0

0, f∗ ≥ 0

w = w1e1 + w2e2.

Then the following dynamic output feedback control input

ẋk = Ak + bky, f∗ = ckxk

u1 = Rξ∗1 −
λ

4k
L2

1(ξ̄1 + ξ̄∗1)fe + v1 + κw1fe

−
1

4M 2
w2

1e1 − c1e1, c1 > 0

u2 = Rξ∗2 +
λ

4k
L2

2(ξ̄2 + ξ̄∗2)fe + v2 + κw2fe

−
1

4M 2
w2

2e2 − c2e2, c2 > 0 (30)

achieves global asymptotic stability of the magnetic bearing
system.

(Proof) Differentiation of the quadratic function V of (29)
along the trajectory yields

V̇ = −‖ζ‖2 + ζT (Pbcfe) + (Pbcfe)
T ζ

+L1ė1e1 +
1

2

∂L1

∂x1
e2
1x2 + L2ė2e2 +

1

2

∂L2

∂x1
e2
2x2

= −‖ζ‖2 + ζT (Pbcfe) + (Pbcfe)
T ζ

+
∂L1

∂x1

(

1

2
e1 − ξ̄1

)

e1x2 +
∂L2

∂x1

(

1

2
e2 − ξ̄2

)

e2x2

+e1

(

u1 − Rξ1 − L1ξ̇
∗

1

)

+ e2

(

u2 − Rξ2 − L2ξ̇
∗

2

)

= −‖ζ‖2 + ζT (Pbcfe) + (Pbcfe)
T ζ − x2fe

+e1

(

u1 − Rξ1 − L1ξ̇
∗

1

)

+ e2

(

u2 − Rξ2 − L2ξ̇
∗

2

)

.

Since x2 = MbTc ζ, completion of square yields

V̇ = −‖ζ‖2 + ζTPbcfe + feb
T
c P

T
ζ

+e1

(

u1 − Rξ1 − L1ξ̇
∗

1

)

+ e2

(

u2 − Rξ2 − L2ξ̇
∗

2

)

= −‖ζ − Pbcfe‖
2 + ‖Pbcfe‖

2

+e1

(

u1 − Rξ1 − L1ξ̇
∗

1

)

+ e2

(

u2 − Rξ2 − L2ξ̇
∗

2

)

.

As ‖Pbcfe‖
2 = λf2

e is equal to

λ

4k
fe

[

L2
1(ξ̄1 + ξ̄∗1 )e1 − L2

2(ξ̄2 + ξ̄∗2 )e2

]

,

there holds

V̇ = −‖ζ − Pbcfe‖
2 −

(

e1L1ξ̇
∗

1 + e2L2ξ̇
∗

2

)

+e1

[

u1 − Rξ1 +
λ

4k
feL

2
1(ξ̄1 + ξ̄∗1 )

]

+e2

[

u2 − Rξ2 −
λ

4k
feL

2
2(ξ̄2 + ξ̄∗2 )

]

. (31)

Further, straightforward but tedious computation based
on (9) yields

L1ξ̇
∗

1 = w1b
T
c ζ + v1, L2ξ̇

∗

2 = w2b
T
c ζ + v2.



Noting w1w2 = 0, it is obtained that

e1L1ξ̇
∗

1 + e2L2ξ̇
∗

2

= wbTc (ζ − Pbcfe) + κwfe + e1v1 + e2v2

= −‖ζ − Pbcfe‖
2 + ‖ζ − Pbcfe +

1

2
bcw‖2

−‖
1

2
bcw‖2 + e1[v1 + κw1fe] + e2[v2 + κw2fe]

= −‖ζ − Pbcfe‖
2 + ‖ζ − Pbcfe +

1

2
bcw‖2

+e1[v1 + κw1fe] + e2[v2 + κw2fe]

−
1

4M 2
(w2

1e
2
1 + w2

2e
2
2).

So finally, substitution of the control input (30) into (31)
yields

V̇ = −‖ζ − Pbcfe +
1

2
bcw‖2

−(c1 + R)e2
1 − (c2 + R)e2

2

≤ 0.

Moreover, V̇ ≡ 0 iff

ζ − Pbcfe +
1

2
bcw = 0, e1 = e2 = 0.

As e1 = e2 = 0 implies fe = 0 and w = 0, this condition
is equivalent to

ζ = 0, e1 = e2 = 0.

Further,

ζ = 0 ⇒ xk = 0 ⇒ f∗ = 0 ⇒ ξ∗1 = ξ∗2 = 0,

and

e1 = e2 = 0 ⇒ ξ1 = ξ∗1 = 0, ξ2 = ξ∗2 = 0.

Therefore, the global asymptotic stability is guaranteed
by LaSalle’s invariance principle. �

Note that wi, vi are finite since ξ̄∗i > 0. Therefore, the
control input given in the theorem is also finite.

4 4DOF Magnetic Bearing System

Next, consider a multi-DOF magnetic bearing system
shown in Fig.2 which has 8 elctromagnets. It is as-
sumed that the rotor rotates at a constant speed, that
is ωz = const. Then the DOF of motion is 4.

The motion equations of this rotor for this system are
given by

mẍG = fx (32)

mÿG = fy (33)

Jrθ̈y − Jaωz θ̇x = τy (34)

Jr θ̈x + Jaωz θ̇y = τx (35)

u2

x

y

z

u5

u6

u7

u8

Rotor

Stator

u1

u3

u4

u9

u10

o

Figure 2: mDOF magnetic bearing system

in which m denotes mass of the rotor, Jr is the inertial
moment around x and y axes and Ja the inertial moment
around z axis. The gaps between the rotor and the 8
electromagnets are given by

xu = l sin θy − xG, xl = l sin θy + xG

yu = l sin θx − yG, yl = l sin θx + yG.

Then the electric circuit dynamics are described by

ξ̇i =































1
Li

(

−Rξi −
∂Li

∂xu

ξ̄ix2 + ui

)

, i = 1, 3

1
Li

(

−Rξi −
∂Li

∂xl

ξ̄ix2 + ui

)

, i = 5, 7

1
Li

(

−Rξi −
∂Li

∂yu

ξ̄ix2 + ui

)

, i = 2, 4

1
Li

(

−Rξi −
∂Li

∂yl

ξ̄ix2 + ui

)

, i = 6, 8

in which ξi/j = ξ̄i/j − ε, ui/j = ūi/j − Rε. The forces and
torques are given by

fx =
1

4k

[

L2
1ξ̄1

2
− L2

3ξ̄3
2
+ L2

5ξ̄5
2
− L2

7ξ̄7
2
]

(36)

fy =
1

4k

[

L2
2ξ̄2

2
− L2

4ξ̄4
2
+ L2

6ξ̄6
2
− L2

8ξ̄8
2
]

(37)

τy =
l

4k

[

L2
1ξ̄1

2
− L2

3ξ̄3
2
− L2

5ξ̄5
2
+ L2

7ξ̄7
2
]

(38)

τx =
l

4k

[

−L2
2ξ̄2

2
+ L2

4ξ̄4
2
+ L2

6ξ̄6
2
− L2

8ξ̄8
2
]

(39)

Define X = [xG, ẋG], Y = [yG, ẏG], Ψ = [θy, θ̇y, θx, θ̇x] and
T = [τy, τx], then the state equation becomes

Ẋ = AxX + bxfx (40)

Ẏ = AyY + byfy (41)

Ψ̇ = AψΨ + BψT. (42)

The measured output in the rotor dynamics is

y = [xG, yG, θy, θx]



which is determined from the gaps xu, xl, yu, yl that are
measured by laser sensors.

Since these three state equations are decoupled, decen-
tralized output feedback f∗

x , f∗

y , T ∗ can be designed to
stabilize X, Y, Ψ respectively. Further, from the designed
f∗

x , f∗

y , T ∗ and the equations above, the desired currents
ξ∗i can be computed. As in the 1DOF case, ξ∗1 , . . . , ξ∗8 are
determined in such a way that minimizes the total power.
Each of them switches between a positive function and 0
according to the signs of the following switching functions

s1 = f∗

x + τ∗

y /l, s2 = f∗

y − τ∗

x/l

s3 = f∗

x − τ∗

y /l, s4 = f∗

y + τ∗

x/l.

The desired currents are listed below.

ξ∗1 =

{

1
L1

√

2ks1 + L2
3ε

2 − ε, s1 > 0

0, s1 ≤ 0

ξ∗2 =

{

1
L2

√

2ks2 + L2
4ε

2 − ε, s2 > 0

0, s2 ≤ 0

ξ∗3 =

{

0, s1 ≥ 0
1
L3

√

−2ks1 + L2
1ε

2 − ε, s1 < 0

ξ∗4 =

{

0, s2 ≥ 0
1
L4

√

−2ks2 + L2
2ε

2 − ε, s2 < 0

ξ∗5 =

{

1
L5

√

2ks3 + L2
7ε

2 − ε, s3 > 0

0, s3 ≤ 0

ξ∗6 =

{

1
L6

√

2ks4 + L2
8ε

2 − ε, s4 > 0

0, s4 ≤ 0

ξ∗7 =

{

0, s3 ≥ 0
1
L7

√

−2ks3 + L2
5ε

2 − ε, s3 < 0

ξ∗8 =

{

0, s4 ≥ 0
1
L8

√

−2ks4 + L2
6ε

2 − ε, s4 < 0

By using the following Lyapunov function

V = ζTPζ +
1

2

8
∑

k=1

Lke
2
k (43)

an output feedback control law u = [u1, · · · , u8]
T can

be obtained which has a structure similar to the 1DOF
case. This control voltage guarantees global asymptotic
stability of the whole system. The detail is omitted due
to space limitation.

5 Conclusion

In this paper, a nonlinear dynamic output feedback con-
trol method for magnetic bearing systems has been pro-
posed. This method guarantees asymptotic stability of
the closed loop system and uses only a slight bias current.

This approach can be extended to systems with uncertain
linear dynamics and/or distributed linear dynamics. Also,

the extension to magnetic levitation systems is straight-
forward. These extensions will be reported in forthcoming
papers.

Simulation results will be shown in the conference, if time
permitting.
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