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coding regions, protein classification tic process are known, araksuminghat the process is gen-
erated by a HMM. Thus the results of [1] do not answer the
Abstract fundamental question, namely: When does a given stationary

stochastic process have a HMM realization? The results of [1]
In this paper, we study the problem of modelling a givere akin to grocedure rather than a solution to the realization
stationary stochastic process using a hidden Markov mog&pblem.

(HMM). In particular, we show how to constructa HMM for a ‘he solution to the full realization problem is not presented

arbitrary stochastic process so as to match perfectly its Staﬁﬁ're. Rather, we study the problempztrtial realizationof a
t?cs up t(.) a prespecified_ order, and t9 matc_h optimally its Stall§schastic process using a HMM. That is, we present a proce-
F'CS of hlghgr order.. This approach IS app“?d _to two problen&%re for matching th&-tuple frequencies of the output process,
n cpmputa‘uonal b|o!ogy, na_lmely: distinguishing between thﬁ erek is some prespecified integer. Since in practice the only
codln'g and non-ch!ng regions of a Prokaryo'ge genome, gy g available is dinite-lengthsample path of a stochastic pro-
classifying a protein into a small family of proteins. cess, such an approach more closely mirrors the actual mod-
elling problems in realistic situations. In case the quantities be-
1 Introduction ing matched are thexactfrequencies of various-tuples, then

) , the problem being solved here can be thought of as the “partial
In the past, hidden Markov models (HMM's) have been sugsgjization” problem for the given stochastic process. On the

cessfully applied to the problem of classifying a new proteigyher hand, if (as often happens in practice), the quantities be-
into one of several previously determined groups of proteingy matched are thempiricalfrequencies of:-tuples based on
see for example [5]. However, this approach leads to HMMsfinite-length sample path of the given stochastic process, then
with very large-sized state spaces. Specifically, in order t0 §pgoes not make any sense to attempt matching these empirical
ply this method one first has to carry out a so-called optimgbquencies beyond a certain lengthMoreover, even for the
gapped alignment of the protein family. The complexity of oRspecified integek;, there is no sense in matching these empir-
timal gapped alignment isxponentialn the number of strings 4| frequenciesxactly Rather, one should explore ways of
being aligned, so usually this step is carried out *by hanl.” a¢ching these frequencies origproximatelyin the process

the length of the optimally gap-aligned sequenced/isthen greaily reducing the size of the state space. Such a procedure
the method of [5] results in a HMM with a state space of sizg presented here.

3N + 2. A part of the reason for the large-sized state spaces

is that the approach in some sense attempts to realize a nbe method presented here will be applied to two problems in
stationary process using a stationary HMM. As a result, in tHi@mputational biology, namely: distinguishing between coding
approach one attempts to estimate something7ti¢ param- and non-coding regions of a Prokaryote genome, and classify-
eters based on a Comparab|e number of data points_ Henceifﬂ%a protein. The resu|tS W|” be presented in the Conference.
desirable to have an alternate approach that results in a smaller-

sized state space. 2 Problem Formulation

In this paper, we take an entirely different approach to t%euppose/\/l .— {1,...,m} is a finite set, and thaf):}i>o
problem of synihesizing a HMM to model a given stationan a stationary stoéhaétic process assuming valugginlt is
stochastic process. In [1], a procedure is presented for Symﬁgéired to construct a hidden Markov model (HMM) for the
sizing a HMM for a stochastic process assuming values ing,qpyaqtic process. Thus, it is desired to find an integex

state spaceX := {1,...,n}, a state transition matrixl €

1sSee a companion paper in this conference for background material on ccrml]nxn and an output transition matri® [O 1}n><m such
putational biology. ’ ! ’




that the following statements are true: The preceding can be thought of as the problem of “perfectly”
realizing the stochastic proce&¥; } using a HMM. The “par-

1. Ais nonnegative and a column-stochastic matrix. In othéfl realization” problem can be defined as follows: Suppose
words, ife,, denotes the column vector of dlls with n  that an intege is specified, and it is desired to construct a
rows, thenAen =e,. In such a case, it is known (SEé_”VIM for the given stochastic prOCEiS)t} such that the fre-

e.g., [3]) that there exists at least one stationary probabilfijencies of-tuples of the HMM matches those of the stochas-
vectorr. Thusr € [0,1]", Y27, 7, = 1, andw A = 7. tic process. Note that there is no requirement that the frequen-

=1 cies of strings longer thatlimatch in the two cases. Is it possi-
2. Supposd X} is a stationary Markov process evolving orble to find such a HMM, and if so, how would one go about it?

the finite setX = {1,...,n}, with transition probability Before proceeding further, it should be noted that if frequen-
matrix A and initial distributionr. Thus{X} } satisfies the cies ofk-tuples in both cases match, then so do frequencies of
following properties: s-tuples for alls < k.
[ ] Pr{Xt‘thl,...“X‘O} = PI‘{Xt|Xt,1}, Vt Z 0. . .
(Markov property) 3 Motivation
o Pr{X,|X,_1} = Pr{X1|Ap}, V¢t > 0. (Stationarity There are two motivations for studying this problem. First, sup-
of the Markov chain) pose that one is in possession of the frequenciesl aftrings
o Pr{X| = j|X, = i} = a,;. (A s the state transition of a_rb?trary length; tha_t is, one has perfe_ct knowledge of the
matrix) statistics of a stochastic process. By opting to match only the
first so many frequencies, it might be possible to obtain HMM’s
3. Pr{|X;,i < t,Y;,7 <t} =Pr{|X:}, V> 0. of greatly reduced ordeii.e., state spaces with a much smaller
_ _ o number of states than is produced by a HMM that perfectly
4. Pr{dy = j|X; = i} = by, Vi, J. reproduces all the statistics. This problem is referred to here

as the “partial realization problem” for HMM's. Second, and
Up to now we have just defined a HMM with state transitiomore important in practice, suppose that the so-called frequen-
matrix A and output transition matri®; we have not said what cies of various strings are computed empirically on the basis
it means for this HMM to “model” the given stochastic processf a sample path diinite length sayT. Then (assuming that
For this purpose, suppose the Markov procgss} is started m <« T), the empirical frequency of asrtuple is computed
off with the initial distributionw. ThusPr{X;, = i} = m;, Vi. on the basis of approximately samples. Eventually, dsbe-
The stationarity ofr implies thatPr{X; = i} = m;, Vi, V&. comes larger and larger, the quantity becomes comparable
Now let M := {1,...,m}, and define the matrice¥(),1 € toT. When this happens, empirical frequencies-afiples will

M, as follows: cease to be meaningful, and it makes no sense to try and match
0 . . them. Thus it makes sense to attempt a match of only:the
M;;" = Pr{X) = j, )1 = l|X =i} tuple frequencies such that® < T'. But there is an additional
twist here. In the partial realization problem, the underlying as-
It is obvious thatmf.é.) = a;;b;. Therefore we have that sumption is that the statistics of the underlying stochastic pro-

cess are known perfectly, and we are opting to reproduce them
perfectly only up to ordek. However, in the present prob-

lem, the empirical frequencies need not be the same as the true
frequencies, and it is therefore not necessary to match them

Now we can define what it means for the stochastic procé®ctly By matching the empirical frequencies ordpproxi-
{V;} to be modelled by the HMM. As is customary, lst* Mmately it may be possible to reduce the dimension of the state

denote the set of all strings (including the empty string) ovépace still further.

the finite alphabefM. Supposer € M, and to be specific, A very specific practical motivation for studying the above
suppose thatt = u,us . . . u,. Then the frequency of the stringproplem is that of protein classification. Hidden Markov mod-
u occuring in any sample path of the stochastic process is s have been applied with some success to the problem of
noted by f,. Now the stochastic proceg9/;} is said to be ¢|assifying a new protein into one of several families, each of
modelled by the HMM if which consists of several similar proteins. See [5] for details.
w“ w w. Y In this application, one begins withdistinct families of pro-
fu=aMIME) M ey, Ya € M, (2.1) teins. Now a new protein is specified in terms of its amino acid
sequence (i.e., its primary structure), and it is desired to clas-
sify it as belonging to one of thesefamilies. To solve this

In other words, the HMM model$),} if it faithfully repro- . . .
duces the frequency @il strings sgiI'htjs the HMM r):aaligation problem, the following approach is adopted in [5]. For each
) %fl the r families, a corresponding HMM is set up. Now for

problem is simply this: Given the stationary stochastic process

, e . . e new protein to be classified, the likelihood that each of the
;{njgjelgr:td conditions under which there exists a HMM thai HMM'’s could have produced this particular amino acid se-

ml(.? > 0Vi, 74,1, and Z MO = A,
=1

where e,, denotes the column vector consisting rofone’s.



guence is computed. The protein is assigned to the family foer of sample points is just about 500,000. It is not always
which the likelihood is the highest. desirable to try and estimate so many probabilities on the basis

To synthesize the HMM, lelv denote the length of the gap-Of S0 few data points.

aligned sequences within a particular family. Then the HMM o
constructed in [5] is shown below. 4 The Complete Realization Problem

Given integersk, [, let us define the matri}, ; € [0, 1]mkxml
as follows. Suppose € M* j € M. Then the(i, j)-th ele-
ment of Fy, ; is the frequency of thék + [)-tupleij. The con-
vention is that the rows df}, ; are numbered in lexicographical
order starting from théeginning whereas the columns &, ;
are numbered in lexicographical ordering starting fromethé

If either k or [ equals zero, the corresponding 34t or M' is
deemed to consist of the empty string.

To illustrate this definition, suppose = 2. Then

Flo= fiir fiiz fizn fize
’ foir forz faor  fooe

Figure 1: Hidden Markov Model of [5] Similarly,

Now let us look at the kinds of numbers involved. Actually, .
each family of proteinsS; consists of “optimally gap-aligned” Foa=1fn fuz frzr fize Jou foiz for fomol:

versions of all the amino acid sequences of proteins belomgpte that both¥) , andF, 5 consist of triplet frequencies, since

ing to S;. Since there are 20 amino acid symbols and one gap 2 = ( + 3. However, the arrangement of the entries is
symbol, the output space in this instance has 21 symbols, i¢gfferent.

m = 21. Typically there might be 500 to 1,000 proteins in ) )
a given family, with the gap-aligned length being of the ordd/€Xt, we introduce the matrix

of 200. In such a case, the HMM of [5] would consist of 602 Foo Foi ... Foy

states. ’ h ’
Hyp = : : : :

There are several other noteworthy features of the above HMM. Foo Fei ... Fuy

In most papers on HMM's, it is assumed that the underlying

Markov process is irreducible. In contrast, in the present iNote thatFy  is taken as the number 1. The matfi ; has
stance the Markov process is most definitagucible since 1+m+...+m* rows andl +m+...+m! columns. If we do
there is no possibility of a transition from any of the three statest put any bounds oh, ! and simply form the above matrix
in positions to any states in positions prior {0 This structure for arbitrarily large values o, I, we will get an infinite matrix,

is adopted because the likelihoods of insertion, deletion awtlich we denote byd. If i € MP* for somek, then there is a
mutation are in general different at different locations alongnique row of H whose left-most element is the frequency of
the amino acid chain. Thus it appears that the approach of {bé¢ stringi. We call this thei-th row of H. Similarly, we can
actually attempts to model @onstationarystochastic process also speak of thgth column of H for eachj € M! for eachi.
using a stationary HMM but with a very large-sized state space.

The second thing to notice about the HMM is that it hamge 'heorem 4.1 For each k, we have thatRank(H ) =
number of parameters to be estimated. Since the numbeRenk(Fi k).

states i3V + 2, and there are three successor states at each

time (except for the end state), the total number of transitiétroof: Fix i € M", and observe that, for eaghe M?*, we
probabilities to be estimated $V + 3. Similarly, the number have

of output probability vectors to be estimatedV. Hence the o = .

total number of constants to be estimated is alfanf. On the fis = lz; Juig

other hand, if there ark proteins within a given family, then -

the total number of data points is abdu. Therefore thd-th row of H is the sum of rowdi, 2i, ..., mi.

This argument shows that, for eakhwe have
Let us take some typical values. N ~ 1,000 which is the

typical length of a multiple gapped alignment, then the total Foo Fou1 ... Fox
number of quantities to be estimated is ab@2iv, or about Rank(Hy i) = Rank : : :
72,000. On the other hand, the number of proteins within a ' Fk . Fk ) ' Fk i

given family could be as small as 500, meaning that the num-
= Rank[Fk,o Fk71 Fk,k]~



Now the above argument can be applied columnwise.ikor Theorem 4.3 Supposéd has finite rank, say, and choosé:

M".j e M?® we have as in Theorem 4.2. Choose such that (4.2) holds, and parti-
. tion C as
fi=Y fi CeR™ M oo™, 07 e R™ v (4.3)

=1 Then

Therefore columnj of Fy, is the sum of columns Fipio = Frp[CtCt C'c?...cmc™t cmem,

j1,j2,...,jmof Fj ¢11. This shows that )
and in general, for each> 0, we have

Rank[Fk)o Fk@ ce Fk,k] = Rank(Fk)k) Fk,k+l —_ Fk,k[chl L Cl L cmom .. Cm], (44)
and leads to the desired conclusion thaink(H; ;) = Where the matrices aré-fold products arranged in lexico-
Rank(Fj, ;). m graphic order with respect to the last component.

- Theorem 4.4 Supposed has finite rank, and choos€ such
Corollary 4.1 SupposeH has finite rank, say. Then there that (4.2) holds. Lett = u; ... w; € M. Then

exists a smallest integérsuch that

fu=ForC" ...C"eppx, (4.5)
wheree,,,» denotes then* x 1 column vector consisting of all
one’s.
Proof: This result is a direct corollary of the theorem. Let us
examine the sequence of integ®snk(H}, ) ask increases. To state the next theorem we introduce the notion of mixing.
Since Hy, , is a submatrix of;1 141, this sequence is non-
decreasing. Now suppogé has finite rank, say. Then we Definition 4.1 The stochastic proceq9)/,} is said to bemix-
can haveH, 1 11 > Rank(Hy ;) only finitely many times. ing if
This shows that there exists a smallestuch that

Rank(Hyspp1) = 1, V1 > 0. u,r\?ea/\)fw fufv— ;Al Sfuwv| — 0asl — oo. (4.6)

Rank(Fk,k) = Rank(Fk;Jrl}k»Jrl) =r, VI >0. (41)

II\I{:yk ( 11; rlelirflr; 4.'|.1hissr|]§¥ss :Qazlr?:nl;(eg%gkﬂgnclusionThe abo_ve o!efinition can be interpret_ed as follows: Clearly the
- ’ Summation is the frequency of a string of len@h + [ be-
ginning with u and ending withv (and we are indifferent as
to what is in-between). The condition (4.6) states that asymp-
Theorem 4.2 Supposéi has finite rank, say, and choose the totjcally this frequency approaches the productfgfand f..

smallest integek such thatRank(Fy ) = r. Then there exists Thys, asymptotically, the beginning and the end of a string be-

amatrixC € R™" *m""" sych that come independent.
Fy ky1 = Fi . C. (4.2) Theorem 4.5 Suppose the matrik has finite rank, and in ad-
dition, the stochastic process);} is mixing in the sense of
Proof: Define the matrixd}, ; as follows. Definition 4.1. Choosé€’ to be the minimum-norm solution of
the equatiorn¥y, ;1 = F 1 C. Partition C' as above and define
FkJ Fk,l+1 e S = er;l C*. Then
Hyy = Friip Fry1m

1. The spectral radius of equals 1.

2. Them*-dimensional row vectoFy , is a row eigenvector
SinceH), ;. is a submatrix of, it follows thatRank(Hy, ;) < of S corresponding to the eigenvalue= 1.
r. On the other hand, sincg,  is a submatrix offfy x, it is
clear that equality must hold, i.Rank(Hj, ;) = r. In partic-
ular, it follows that

3. The matrixS has only one eigenvalue of magnitudend
that is a simple eigenvalue at= 1.

Thus the matrixS behaves almost like the state transition ma-
trix of a Markov chain, except that it is not necessarily a non-
This is another way of stating the conclusion, i.e., that thefg9ative matrix. Compare the expressions (2.1) and (4.5). If
. . s b+ the matricesC* were all to be nonnegative and if their sum

exists a matrixC € R such that (4.2) holdsm . .

S were to be column-stochastic, then in fact we would have
Note that if F}, 5, has full rank, therC is unique, but otherwise solved the HMM realization problem. For this reason, we refer
there might exist more than orte such that the above holds.to the set of matrice€§’s, ..., C,, as a “proto-realization” of

The following results hold whether or n6tis unique. the procesg), }.

r= Rank([Fk’k Fk,k:+1]) = Rank(Fk,k).



5 The Partial Realization Problem for HMM’s It is also possible to match higher-order statistics optimally,

) o ) ] but the resulting optimization problem would no longer be a
5.1 Partial Realization with Perfect Matching quadratic programming problem.

The preceding developments assume that the complete statis- _ o _ _
tics of the stochastic proce$d;} are known, that the matrix 5.2 Partial Realization with Imperfect Matching

H has finite rank, and that it is desired to construct a HMM fqg ial lizati d d ibed ab |
the stochastic process. Now let us focus on the so-called ‘p p_e partial realization procedure described above always re-
Its in a HMM with a state space of size®. With the pre-

tial realization’ problem. Suppose that the frequencies of . L .
k-tuplesfy;, i,j € M" are giver? The objective is to construct cgdmg background, we can see how it is possible to reduce the

a HMM that perfectly reproduces these frequencies. It turR¥® of the state space further. Specifically, suppose the fre-

out that the choice of such an HMM is not unique. So while wuency Vectoly ; IS given. Then we can set some threshold,

are at it, in case the frequencies(éf+ 1)-tuples are also spec—and simply throw away all components that are smaller than
[gls threshold, and assign those weights to the remaining com-

ified, it is possible to choose the HMM so as to approxima . - .

these frequencies optimally. pc_)nents. In this way, we would oEtaln a nonnegative vettor
with n rows wheren is less thann®. Of course, the smaller

Recall that we are specified the frequencies ofkatliples. we maken, the greater the mismatch between the approximate

Equivalently, we are given the:*-dimensional row vector vectorz and the true frequency vectdp . Now we simply

Fyx. Thus, if we choose nonnegative matrig@s, ..., C™ find a column-stochastic matriof dimensiom x n that hasr

such that (i) the suny := Y~ | C* is column-stochastic, and as a row eigenvector corresponding to the eigenvalgel and

(i) S hasFy i, as a row eigenvector corresponding to the eigeproceed as above. Note that the above procedure can be incor-

value\ = 1, then we have a solution to the partial realizatioporated into the quadratic programming approach (and thereby

problem. We can turn this around and do the following: Choosgatch the frequencies ¢k + 1)-tuples) by constraining some

S to be ararbitrary nonnegative and column-stochastic matrisomponents o’ to be zero.

of orderm*timesm®, which hasFy i, as a row eigenvector cor-

responding to the eigenvalue= 1. ChooseC, ..., C™ to be

any nonnegativen® x m”* matrices that add up t§. Then

thesem matrices constitute a solution to the HMM realization this paper, we have studied the problem of constructing hid-

problem. den Markov models (HMM’s) for a stochastic process taking

Note that there are infinitely many choices fifeading in turn values over a finite alphabet. We have shown how to construct

to infinitely many HMM realizations, all with a state space offMM's that match the observed frequencies of a single sam-
dimensionm*. Let {Z,} denote the output process of such gle path, either perfectly or imperfectly. This approach can be

HMM. Then the statistics ofZ;} match those of the original appligd to the problems of protein cIa;sificati'on and to distin-
process| ), } only up to orderk, but not necessarily beyorid guishing between coding and non-coding regions of a Prokary-

One of these HMM's will correspond to the rather uninterespte genome. Actual results will be presented in the conference.

ing case where the output proces } is k-dependent, that is, |n the final conference version of the paper, complete results
whereZy . is independent oZ,. But in general the output of will be presented.
the model will not bek-dependent.

6 Discussion

We can actually use the freedom to choose the matfiteso References
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