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Abstract

In this paper, we study the problem of modelling a given
stationary stochastic process using a hidden Markov model
(HMM). In particular, we show how to construct a HMM for an
arbitrary stochastic process so as to match perfectly its statis-
tics up to a prespecified order, and to match optimally its statis-
tics of higher order. This approach is applied to two problems
in computational biology, namely: distinguishing between the
coding and non-coding regions of a Prokaryote genome, and
classifying a protein into a small family of proteins.

1 Introduction

In the past, hidden Markov models (HMM’s) have been suc-
cessfully applied to the problem of classifying a new protein
into one of several previously determined groups of proteins;
see for example [5]. However, this approach leads to HMM’s
with very large-sized state spaces. Specifically, in order to ap-
ply this method one first has to carry out a so-called optimal
gapped alignment of the protein family. The complexity of op-
timal gapped alignment isexponentialin the number of strings
being aligned, so usually this step is carried out “by hand.”1 If
the length of the optimally gap-aligned sequences isN , then
the method of [5] results in a HMM with a state space of size
3N + 2. A part of the reason for the large-sized state spaces
is that the approach in some sense attempts to realize a non-
stationary process using a stationary HMM. As a result, in this
approach one attempts to estimate something like72N param-
eters based on a comparable number of data points. Hence it is
desirable to have an alternate approach that results in a smaller-
sized state space.

In this paper, we take an entirely different approach to the
problem of synthesizing a HMM to model a given stationary
stochastic process. In [1], a procedure is presented for synthe-
sizing a HMM for a stochastic process assuming values in a

1See a companion paper in this conference for background material on com-
putational biology.

finite output space, provided theentirestatistics of the stochas-
tic process are known, andassumingthat the process is gen-
erated by a HMM. Thus the results of [1] do not answer the
fundamental question, namely: When does a given stationary
stochastic process have a HMM realization? The results of [1]
are akin to aprocedure, rather than a solution to the realization
problem.

The solution to the full realization problem is not presented
here. Rather, we study the problem ofpartial realizationof a
stochastic process using a HMM. That is, we present a proce-
dure for matching thek-tuple frequencies of the output process,
wherek is some prespecified integer. Since in practice the only
thing available is afinite-lengthsample path of a stochastic pro-
cess, such an approach more closely mirrors the actual mod-
elling problems in realistic situations. In case the quantities be-
ing matched are theexactfrequencies of variousk-tuples, then
the problem being solved here can be thought of as the “partial
realization” problem for the given stochastic process. On the
other hand, if (as often happens in practice), the quantities be-
ing matched are theempiricalfrequencies ofk-tuples based on
a finite-length sample path of the given stochastic process, then
it does not make any sense to attempt matching these empirical
frequencies beyond a certain lengthk. Moreover, even for the
specified integerk, there is no sense in matching these empir-
ical frequenciesexactly. Rather, one should explore ways of
matching these frequencies onlyapproximately, in the process
greatly reducing the size of the state space. Such a procedure
is presented here.

The method presented here will be applied to two problems in
computational biology, namely: distinguishing between coding
and non-coding regions of a Prokaryote genome, and classify-
ing a protein. The results will be presented in the conference.

2 Problem Formulation

SupposeM := {1, . . . ,m} is a finite set, and that{Yt}t≥0

is a stationary stochastic process assuming values inM. It is
desired to construct a hidden Markov model (HMM) for the
stochastic process. Thus, it is desired to find an integern, a
state spaceX := {1, . . . , n}, a state transition matrixA ∈
[0, 1]n×n, and an output transition matrixB ∈ [0, 1]n×m such



that the following statements are true:

1. A is nonnegative and a column-stochastic matrix. In other
words, if en denotes the column vector of all1’s with n
rows, thenAen = en. In such a case, it is known (see
e.g., [3]) that there exists at least one stationary probability
vectorπ. Thusπ ∈ [0, 1]n,

∑n
j=1 πj = 1, andπA = π.

2. Suppose{Xt} is a stationary Markov process evolving on
the finite setX = {1, . . . , n}, with transition probability
matrixA and initial distributionπ. Thus{Xt} satisfies the
following properties:

• Pr{Xt|Xt−1, . . . ,X0} = Pr{Xt|Xt−1}, ∀t ≥ 0.
(Markov property)

• Pr{Xt|Xt−1} = Pr{X1|X0}, ∀t ≥ 0. (Stationarity
of the Markov chain)

• Pr{X1 = j|X0 = i} = aij . (A is the state transition
matrix)

3. Pr{Yt|Xi, i ≤ t,Yj , j < t} = Pr{Yt|Xt}, ∀t ≥ 0.

4. Pr{Yt = j|Xt = i} = bij , ∀i, j.

Up to now we have just defined a HMM with state transition
matrixA and output transition matrixB; we have not said what
it means for this HMM to “model” the given stochastic process.
For this purpose, suppose the Markov process{Xt} is started
off with the initial distributionπ. ThusPr{X0 = i} = πi, ∀i.
The stationarity ofπ implies thatPr{Xt = i} = πi, ∀i, ∀t.
Now letM := {1, . . . ,m}, and define the matricesM (l), l ∈
M, as follows:

M
(l)
ij = Pr{X1 = j,Y1 = l|X0 = i}.

It is obvious thatm(l)
ij = aijbjl. Therefore we have that

m
(l)
ij ≥ 0 ∀i, j, l, and

m∑
l=1

M (l) = A.

Now we can define what it means for the stochastic process
{Yt} to be modelled by the HMM. As is customary, letM∗

denote the set of all strings (including the empty string) over
the finite alphabetM. Supposeu ∈ M∗, and to be specific,
suppose thatu = u1u2 . . . us. Then the frequency of the string
u occuring in any sample path of the stochastic process is de-
noted byfu. Now the stochastic process{Yt} is said to be
modelled by the HMM if

fu = πM (u1)M (u2) . . .M (us)en, ∀u ∈M∗, (2.1)

whereen denotes the column vector consisting ofn one’s.
In other words, the HMM models{Yt} if it faithfully repro-
duces the frequency ofall strings. Thus the HMM realization
problem is simply this: Given the stationary stochastic process
{Yt}, find conditions under which there exists a HMM that
models it.

The preceding can be thought of as the problem of “perfectly”
realizing the stochastic process{Yt} using a HMM. The “par-
tial realization” problem can be defined as follows: Suppose
that an integerk is specified, and it is desired to construct a
HMM for the given stochastic process{Yt} such that the fre-
quencies ofk-tuples of the HMM matches those of the stochas-
tic process. Note that there is no requirement that the frequen-
cies of strings longer thank match in the two cases. Is it possi-
ble to find such a HMM, and if so, how would one go about it?
Before proceeding further, it should be noted that if frequen-
cies ofk-tuples in both cases match, then so do frequencies of
s-tuples for alls ≤ k.

3 Motivation

There are two motivations for studying this problem. First, sup-
pose that one is in possession of the frequencies ofall strings
of arbitrary length; that is, one has perfect knowledge of the
statistics of a stochastic process. By opting to match only the
first so many frequencies, it might be possible to obtain HMM’s
of greatly reduced order, i.e., state spaces with a much smaller
number of states than is produced by a HMM that perfectly
reproduces all the statistics. This problem is referred to here
as the “partial realization problem” for HMM’s. Second, and
more important in practice, suppose that the so-called frequen-
cies of various strings are computed empirically on the basis
of a sample path offinite length, sayT . Then (assuming that
m � T ), the empirical frequency of ans-tuple is computed
on the basis of approximatelyT samples. Eventually, ask be-
comes larger and larger, the quantitymk becomes comparable
toT . When this happens, empirical frequencies ofk-tuples will
cease to be meaningful, and it makes no sense to try and match
them. Thus it makes sense to attempt a match of only thek-
tuple frequencies such thatmk � T . But there is an additional
twist here. In the partial realization problem, the underlying as-
sumption is that the statistics of the underlying stochastic pro-
cess are known perfectly, and we are opting to reproduce them
perfectly only up to orderk. However, in the present prob-
lem, the empirical frequencies need not be the same as the true
frequencies, and it is therefore not necessary to match them
exactly. By matching the empirical frequencies onlyapproxi-
mately, it may be possible to reduce the dimension of the state
space still further.

A very specific practical motivation for studying the above
problem is that of protein classification. Hidden Markov mod-
els have been applied with some success to the problem of
classifying a new protein into one of several families, each of
which consists of several similar proteins. See [5] for details.
In this application, one begins withr distinct families of pro-
teins. Now a new protein is specified in terms of its amino acid
sequence (i.e., its primary structure), and it is desired to clas-
sify it as belonging to one of theser families. To solve this
problem, the following approach is adopted in [5]. For each
of the r families, a corresponding HMM is set up. Now for
the new protein to be classified, the likelihood that each of the
r HMM’s could have produced this particular amino acid se-



quence is computed. The protein is assigned to the family for
which the likelihood is the highest.

To synthesize the HMM, letN denote the length of the gap-
aligned sequences within a particular family. Then the HMM
constructed in [5] is shown below.

Figure 1: Hidden Markov Model of [5]

Now let us look at the kinds of numbers involved. Actually,
each family of proteinsSi consists of “optimally gap-aligned”
versions of all the amino acid sequences of proteins belong-
ing toSi. Since there are 20 amino acid symbols and one gap
symbol, the output space in this instance has 21 symbols, i.e.,
m = 21. Typically there might be 500 to 1,000 proteins in
a given family, with the gap-aligned length being of the order
of 200. In such a case, the HMM of [5] would consist of 602
states.

There are several other noteworthy features of the above HMM.
In most papers on HMM’s, it is assumed that the underlying
Markov process is irreducible. In contrast, in the present in-
stance the Markov process is most definitelyreducible, since
there is no possibility of a transition from any of the three states
in positioni to any states in positions prior toi. This structure
is adopted because the likelihoods of insertion, deletion and
mutation are in general different at different locations along
the amino acid chain. Thus it appears that the approach of [5]
actually attempts to model anonstationarystochastic process
using a stationary HMM but with a very large-sized state space.

The second thing to notice about the HMM is that it has ahuge
number of parameters to be estimated. Since the number of
states is3N + 2, and there are three successor states at each
time (except for the end state), the total number of transition
probabilities to be estimated is9N + 3. Similarly, the number
of output probability vectors to be estimated is63N . Hence the
total number of constants to be estimated is about72N . On the
other hand, if there arek proteins within a given family, then
the total number of data points is aboutkN .

Let us take some typical values. IfN ≈ 1, 000 which is the
typical length of a multiple gapped alignment, then the total
number of quantities to be estimated is about72N , or about
72,000. On the other hand, the number of proteins within a
given family could be as small as 500, meaning that the num-

ber of sample points is just about 500,000. It is not always
desirable to try and estimate so many probabilities on the basis
of so few data points.

4 The Complete Realization Problem

Given integersk, l, let us define the matrixFk,l ∈ [0, 1]m
k×ml

as follows. Supposei ∈ Mk, j ∈ Ml. Then the(i, j)-th ele-
ment ofFk,l is the frequency of the(k + l)-tuple ij. The con-
vention is that the rows ofFk,l are numbered in lexicographical
order starting from thebeginning, whereas the columns ofFk,l

are numbered in lexicographical ordering starting from theend.
If eitherk or l equals zero, the corresponding setMk orMl is
deemed to consist of the empty string.

To illustrate this definition, supposem = 2. Then

F1,2 =
[

f111 f112 f121 f122

f211 f212 f221 f222

]
.

Similarly,

F0,3 = [f111 f112 f121 f122 f211 f212 f221 f222].

Note that bothF1,2 andF0,3 consist of triplet frequencies, since
1 + 2 = 0 + 3. However, the arrangement of the entries is
different.

Next, we introduce the matrix

Hk,l :=

 F0,0 F0,1 . . . F0,l

...
...

...
...

Fk,0 Fk,1 . . . Fk,l

 .

Note thatF0,0 is taken as the number 1. The matrixHk,l has
1+m+ . . .+mk rows and1+m+ . . .+ml columns. If we do
not put any bounds onk, l and simply form the above matrix
for arbitrarily large values ofk, l, we will get an infinite matrix,
which we denote byH. If i ∈ Mk for somek, then there is a
unique row ofH whose left-most element is the frequency of
the stringi. We call this thei-th row of H. Similarly, we can
also speak of thej-th column ofH for eachj ∈Ml for eachl.

Theorem 4.1 For each k, we have thatRank(Hk,k) =
Rank(Fk,k).

Proof: Fix i ∈ Mr, and observe that, for eachj ∈ Ms, we
have

fij =
m∑

l=1

flij.

Therefore thei-th row of H is the sum of rows1i, 2i, . . . ,mi.
This argument shows that, for eachk, we have

Rank(Hk,k) = Rank

 F0,0 F0,1 . . . F0,k

...
...

...
...

Fk,0 Fk,1 . . . Fk,k


= Rank[Fk,0 Fk,1 . . . Fk,k].



Now the above argument can be applied columnwise. Fori ∈
Mr, j ∈Ms we have

fij =
m∑

l=1

fijl.

Therefore column j of Fk,s is the sum of columns
j1, j2, . . . , jm of Fk,s+1. This shows that

Rank[Fk,0 Fk,1 . . . Fk,k] = Rank(Fk,k)

and leads to the desired conclusion thatRank(Hk,k) =
Rank(Fk,k).

Corollary 4.1 SupposeH has finite rank, sayr. Then there
exists a smallest integerk such that

Rank(Fk,k) = Rank(Fk+l,k+l) = r, ∀l > 0. (4.1)

Proof: This result is a direct corollary of the theorem. Let us
examine the sequence of integersRank(Hk,k) ask increases.
SinceHk,k is a submatrix ofHk+1,k+1, this sequence is non-
decreasing. Now supposeH has finite rank, sayr. Then we
can haveHk+1,k+1 > Rank(Hk,k) only finitely many times.
This shows that there exists a smallestk such that

Rank(Hk+l,k+l) = r, ∀l > 0.

Now Theorem 4.1 shows thatRank(Hk+l,k+l) =
Rank(Fk+l,k+l). This leads to the desired conclusion.

Theorem 4.2 SupposeH has finite rank, sayr, and choose the
smallest integerk such thatRank(Fk,k) = r. Then there exists

a matrixC ∈ Rmk×mk+1
such that

Fk,k+1 = Fk,kC. (4.2)

Proof: Define the matrixH̄k,l as follows.

H̄k,l :=

 Fk,l Fk,l+1 . . .
Fk+1,l Fk+1,l+1 . . .

...
...

...

 .

SinceH̄k,k is a submatrix ofH, it follows thatRank(H̄k,k) ≤
r. On the other hand, sinceFk,k is a submatrix ofH̄k,k, it is
clear that equality must hold, i.e.,Rank(H̄k,k) = r. In partic-
ular, it follows that

r = Rank([Fk,k Fk,k+1]) = Rank(Fk,k).

This is another way of stating the conclusion, i.e., that there
exists a matrixC ∈ Rmk×mk+1

such that (4.2) holds.

Note that ifFk,k has full rank, thenC is unique, but otherwise
there might exist more than oneC such that the above holds.
The following results hold whether or notC is unique.

Theorem 4.3 SupposeH has finite rank, sayr, and choosek
as in Theorem 4.2. ChooseC such that (4.2) holds, and parti-
tion C as

C ∈ Rmk×mk+1
= [C1 . . . Cm], Cj ∈ Rmk×mk

∀j. (4.3)

Then

Fk,k+2 = Fk,k[C1C1 C1C2 . . . CmCm−1 CmCm],

and in general, for eachl > 0, we have

Fk,k+l = Fk,k[C1C1 . . . C1 . . . CmCm . . . Cm], (4.4)

where the matrices arel-fold products arranged in lexico-
graphic order with respect to the last component.

Theorem 4.4 SupposeH has finite rank, and chooseC such
that (4.2) holds. Letu = u1 . . . ul ∈Ml. Then

fu = F0,kCu1 . . . Culemk , (4.5)

whereemk denotes themk × 1 column vector consisting of all
one’s.

To state the next theorem we introduce the notion of mixing.

Definition 4.1 The stochastic process{Yt} is said to bemix-
ing if

max
u,v∈Mk

∣∣∣∣∣∣fu · fv −
∑

w∈Ml

fuwv

∣∣∣∣∣∣ → 0 asl →∞. (4.6)

The above definition can be interpreted as follows: Clearly the
summation is the frequency of a string of length2k + l be-
ginning with u and ending withv (and we are indifferent as
to what is in-between). The condition (4.6) states that asymp-
totically this frequency approaches the product offu andfv.
Thus, asymptotically, the beginning and the end of a string be-
come independent.

Theorem 4.5 Suppose the matrixH has finite rank, and in ad-
dition, the stochastic process{Yt} is mixing in the sense of
Definition 4.1. ChooseC to be the minimum-norm solution of
the equationFk,k+1 = Fk,kC. PartitionC as above and define
S =

∑m
i=1 Ci. Then

1. The spectral radius ofS equals 1.

2. Themk-dimensional row vectorF0,k is a row eigenvector
of S corresponding to the eigenvalueλ = 1.

3. The matrixS has only one eigenvalue of magnitude1, and
that is a simple eigenvalue atλ = 1.

Thus the matrixS behaves almost like the state transition ma-
trix of a Markov chain, except that it is not necessarily a non-
negative matrix. Compare the expressions (2.1) and (4.5). If
the matricesCi were all to be nonnegative and if their sum
S were to be column-stochastic, then in fact we would have
solved the HMM realization problem. For this reason, we refer
to the set of matricesC1, . . . , Cm as a “proto-realization” of
the process{Yt}.



5 The Partial Realization Problem for HMM’s

5.1 Partial Realization with Perfect Matching

The preceding developments assume that the complete statis-
tics of the stochastic process{Yt} are known, that the matrix
H has finite rank, and that it is desired to construct a HMM for
the stochastic process. Now let us focus on the so-called ‘par-
tial realization’ problem. Suppose that the frequencies of all
k-tuplesfij, i, j ∈Mk are given.2 The objective is to construct
a HMM that perfectly reproduces these frequencies. It turns
out that the choice of such an HMM is not unique. So while we
are at it, in case the frequencies of(k +1)-tuples are also spec-
ified, it is possible to choose the HMM so as to approximate
these frequencies optimally.

Recall that we are specified the frequencies of allk-tuples.
Equivalently, we are given themk-dimensional row vector
F0,k. Thus, if we choose nonnegative matricesC1, . . . , Cm

such that (i) the sumS :=
∑m

i=1 Ci is column-stochastic, and
(ii) S hasF0,k as a row eigenvector corresponding to the eigen-
valueλ = 1, then we have a solution to the partial realization
problem. We can turn this around and do the following: Choose
S to be anarbitrary nonnegative and column-stochastic matrix
of ordermktimesmk, which hasF0,k as a row eigenvector cor-
responding to the eigenvalueλ = 1. ChooseC1, . . . , Cm to be
any nonnegativemk × mk matrices that add up toS. Then
thesem matrices constitute a solution to the HMM realization
problem.

Note that there are infinitely many choices forS, leading in turn
to infinitely many HMM realizations, all with a state space of
dimensionmk. Let {Zt} denote the output process of such a
HMM. Then the statistics of{Zt} match those of the original
process{Yt} only up to orderk, but not necessarily beyondk.
One of these HMM’s will correspond to the rather uninterest-
ing case where the output process{Zt} is k-dependent, that is,
whereZk+1 is independent ofZ0. But in general the output of
the model will not bek-dependent.

We can actually use the freedom to choose the matricesCi so
that we not only match thek-tuple frequenciesperfectly, but
also match the(k + 1)-tuple frequenciesoptimally. Suppose
we are also given the vectorF0,k+1. Then we can solve the
following quadratic programming problem:

min
C

‖ F0,k+1 − F0,kC ‖2,

subject to the following constraints:

Cl
i,j ≥ 0 ∀l ∈M, i, j ∈Mk,

F0,k

[
m∑

l=1

Cl

]
= F0,k,

m∑
l=1

∑
j∈Mk

Cl
i,j = 1, ∀i ∈Mk.

2Note that the frequencies of thek-tuples uniquely determine the frequen-
cies of all tuples of shorter length.

It is also possible to match higher-order statistics optimally,
but the resulting optimization problem would no longer be a
quadratic programming problem.

5.2 Partial Realization with Imperfect Matching

The partial realization procedure described above always re-
sults in a HMM with a state space of sizemk. With the pre-
ceding background, we can see how it is possible to reduce the
size of the state space further. Specifically, suppose the fre-
quency vectorF0,k is given. Then we can set some threshold,
and simply throw away all components that are smaller than
this threshold, and assign those weights to the remaining com-
ponents. In this way, we would obtain a nonnegative vectorπ
with n rows wheren is less thanmk. Of course, the smaller
we maken, the greater the mismatch between the approximate
vectorπ and the true frequency vectorF0,k. Now we simply
find a column-stochastic matrixS of dimensionn×n that hasπ
as a row eigenvector corresponding to the eigenvalueλ = 1 and
proceed as above. Note that the above procedure can be incor-
porated into the quadratic programming approach (and thereby
match the frequencies of(k + 1)-tuples) by constraining some
components ofC to be zero.

6 Discussion

In this paper, we have studied the problem of constructing hid-
den Markov models (HMM’s) for a stochastic process taking
values over a finite alphabet. We have shown how to construct
HMM’s that match the observed frequencies of a single sam-
ple path, either perfectly or imperfectly. This approach can be
applied to the problems of protein classification and to distin-
guishing between coding and non-coding regions of a Prokary-
ote genome. Actual results will be presented in the conference.

In the final conference version of the paper, complete results
will be presented.
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