ALIGNMENT ALGORITHMS REVISITED: ALIGNMENT ALGORITHMS
FOR LOW SIMILARITY PROTEIN SEQUENCE COMPARISONS?

Michael J. Wise
Department of Genetics
University of Cambridge

Cambridge CB2 3EH, UK
mw263@cam.ac.uk

Abstract

The Smith-Waterman local alignment algorithm is the
method of choice for protein database searches because it
is often able to detect remote homologues for a query
protein sequence. However, it is also well known that the
reliability of this algorithm degrades sharply for proteins
with low similarity to a given query - so-called "twilight
zone" matches. In these situations, global alignments are
often employed, based largely on anecdotal evidence. This
study re-examines the efficacy of local versus global
alignment algorithms. Among other results, the Smith-
Waterman algorithm is found to be most effective when
two proteins have a common domain (i.e. belong to the
same subgroup) or have the same function. However,
when only weak relationships exist, global methods are
more effective than local ones. In addition, global methods
provide a somewhat different point of view to local
methods and can therefore be used in addition to local
methods to improve search accuracy, even when higher
level matches are possible.

1. Introduction

Viewed abstractly, the alignment of two protein
sequences is a mathematical mapping from the two
sequences (represented by strings of ITUPAC codes) to a
score which is a measure of the strings’ similarity; the
scores allow matches to be ranked from most similar to
least. Viewed this way, the process is little different from
other approximate matching database searches, e.g. when
using one of the Internet search engines. However, in the
case of sequence alignments one further assumption is also
made: high similarity scores are taken to imply that the
sequences are evolutionarily related. In other words, high
similarity scores imply homology and the associations
between pairs of amino acids from the two sequences form
a biologically meaningful alignment. The assumption of
evolutionary relatedness finds expression, for example, in
the amino acid substitution matrices (e.g. the PAM
matrices). However, one significant problem remains:
what is to be inferred when similarity scores are low, in
which case homology cannot be inferred and alignments

1. A longer wversion of this paper may be found at

www.hio.cam.ac.uk/"mw263/ftp/doc/align_full.pdf.

are meaningless? Bork and Koonin suggest that global
alignments can be employed to reduce "noise" and improve
"signal" [2] - advice that is common anecdotally but for
which evidence is scarce.

This study examines the efficacy of a number of
different algorithms for use in protein database searches.
However, rather than the conventional search for
homology, a different, somewhat weaker question will be
addressed: which algorithm is better able to predict
whether two sequences have some property in common,
such as structure-class or function.

The basis for these judgements is the protein structure
domain database SCOP [8], in which proteins are
understood as sequences of "domains", i.e. polypeptides
which can fold independently.

There have been three distinct generations of sequence
alignment algorithms, viz. those based on: Longest
Common Subsequence Algorithm, Needleman-Wunsch
Algorithm and the Smith-Waterman Algorithm

The first system to address the sequence alignment
problem - the Needleman-Wunsch algorithm [9] - used
dynamic programming. A similar approach evolved in the
computer science literature, where the problem came to be
known as the Longest Common Subsequence. (LCS)
problem. Summarising the LCS problem, if Sis a string, a
subsequence of string S is formed by taking elements in
order from S, where zero or more elements are ignored
before another is taken. (In contrast, substrings allow no
gaps.) The LCS of two strings Sand T is the sequence of
elements common to the two strings such that no longer
sequence is available (though there may be multiple
sequences with the same, maximal length). There are
many discussions of LCS in the literature, e.g. [5]. Note
that the use of "sequence"” in LCS should not be confused
with the biologist’s use of the same term, which is a string
nucleotides or amino acids. Except in the case of the LCS
algorithm, "sequences" are of the biological sort.

The Needleman-Wunsch approach differs from the
standard definition of LCS in that it adds the concept of
scoring matrices. That is, rather than only scoring 1 for an
exact match, and O for anything else, both exact matches
and close mismatches (conservative substitutions) are
scored. The algorithm is therefore inherently less efficient

than LCS because alternate paths must be examined. It is
also worth noting that the original Needleman-Wunsch
matrix only used positive values, based on the number of
base changes in each codon, as opposed to more recent
scoring matrices, which use both positive and negative
values. Ref. [9] also details experiments with both zero
and non-zero gap penalties. Both LCS and Needleman-
Wunsch algorithms produce global alignments, i.e. the
alignments span the entirety of both input sequences.

The form of alignment algorithm currently in use,
Smith-Waterman algorithm [11], comes from the
observation that the Needleman-Wunsch algorithm returns
biologically implausible alignments; they simply contain
too many gaps. While the Needleman-Wunsch algorithm
added scoring matrices and pay-once gap penalties to the
LCS framework, the Smith-Waterman algorithm further
added the notion of alignment scoring threshold - typically
zero - below which an alignment is terminated. With affine
gap penalties and/or scoring matrices which include
negative values for mismatches, alignment scores may be
reduced to zero part way through an alignment. The
Smith-Waterman algorithm therefore produces local
alignments. The choice of gap creation and gap extension
penalties can have a substantial bearing on the results
returned by the Smith Waterman algorithms.

Previous projects have compared a number of alignment
implementations, though usually based solely on the
Smith-Waterman algorithm. For example, [3] compares a
direct implementation of the Smith-Waterman algorithm,
SSEARCH3, distributed as part of FASTA3.0 suite of
programs, and the approximate Smith-Waterman
implementations, FASTA3, BLAST and a revision of
BLAST, WU-BLAST2. Although the methodologies used
in [3] are entirely different to those employed here, some
interesting correspondences occur.

2. Systemsused in the Study

2.1 The Databases

The databases against which tests have been run were
drawn from SCOP, which is a classification of (mainly)
protein structures found in the PDB structures database.
The SCOP database, as of May 1997, had 7,015 entries,
each of which provides information about one domain in a
particular structure described in PDB. When the non-
protein references were removed and the different domains
for multi-domain proteins are set against their
corresponding proteins, the SCOP database covered 5,226
proteins. For each of these proteins, the corresponding
sequence was obtained. A minor problem is that PDB (and
hence SCOP) contains many sequences which are identical
for all but a very small number of amino acids. (Such
entries typically record mutations.) While it has been

important in this study to have the full range of possible
matches represented - from very closely related to totally
unrelated - the results would be skewed if the many
duplicates or near duplicates were retained. For this
reason, the database was pruned in the following ways:
after accepting only the 20 naturally occurring amino acids
sequences less than 30aa were removed. In addition,
duplicate sequences differing by fewer than three amino
acids where removed. This scheme is more permissive
than the most permissive of the PDB-select series of
databases [7]. Nonetheless, when the sieving was
completed only 2,390 sequences remained. It should also
be noted that the final database included multi-domain
proteins.

The SCOP database records the following information
about each domain: its Class (CL), Common Fold (CF),
Super Family (SF), Family (FA) and Protein Domain
(PR). The arrangement of this information is hierarchic
(from the most general CL to the most specific PR), so |
shall refer to them as descriptors and refer to descriptor
levels.

Corresponding to the reduced sequence database, a
domains database was created listing the CL/CF/SF/FA/PR
memberships for the (distinct) domains in each protein. To
save space, the descriptions used by SCOP were
(consistently) replaced with unique integers and the 5
integers concatenated into string. Numbering is unique
with respect to a given descriptor level, CL, CF, etc. For
example:

lall_A
3sdp_A

1.1.1.2.13
1.2.5.6.20 4.230.335.506.20

2.2 Algorithms and Smilarity Measures

The alignment algorithms examined in this study are
listed below. Notice that each calculates one or more
similarity measures which are equal to or less than the
number of amino acids in the shorter of the two input
sequences. While much sophisticated work has been done
on the statistical distributions underlying the Smith
Waterman algorithm, little is known about the properties of
the other similarity measures to be described below, so in
order to compare like quantities, only raw scores have been
used in these experiments.

2.2.1 Smith-Waterman The Smith-Waterman
implementation used was SSEARCH3. The default gap
creation and gap elongation penalties were used, namely:
-12 and -2, respectively, together with the default
substitution matrix, BLOSUMb50. Parts of the program not
relevant to the present study were removed, and the output
was modified to return two results: The number of exact
matches (identities) in the highest scoring (local) alignment
(referred to later as SW_idents or SWI in tables), and the
count of identities (as above) plus the number of

conservative substitutions (SW_matches or SWM).

2.2.2 Needleman-Wunsch SSEARCH3 was also used
for these computations, except that the gap penalties were
both set to zero. The use of zero gap penalties
differentiates this implementation from other Needleman-
Wunsch implementations, including the commonly used
program GAP (part of the GCG suite of sequence analysis
tools). Zero gap penalties were chosen in the belief that
this is closer in spirit to the Needleman-Wunsch algorithm
as described in [9], with its use of zero penalties or pay
once penalties. Contrast this with GAP which, like the
Smith-Waterman implementation, has both gap creation
and gap elongation penalties. The only difference between
GAP and the Smith-Waterman algorithm is that the latter
has a threshold below which matching ceases. The
Needleman-Wunsch algorithm used in this study therefore
implements one option studied by Needleman and Wunsch
and provides a greater contrast between the Needleman-
Wunsch and Smith-Waterman algorithms.

Corresponding to the two results being returned for the
Smith-Waterman implementation, the Needleman-Wunsch

implementation returned NW_idents (NWI) and
NW_matches (NWM).
2.2.3 Longest Common Subsequence The

implementation of the LCS algorithm used in this study is
due to [10] and is extremely efficient. A single result is
returned: the number of identities in an LCS alignment
(LCS idents, or LCS1). A second, slightly altered
implementation of the Rick algorithm was used to produce
the LCS of sequences which have been converted to
overlapping dipeptides. That is, the lexicon now contains
400 elements and matching substrings therefore involve a
minimum of 2 amino acids. The resulting similarity
measure is called LCS_ 2aa_idents, (or LCS2).

2.2.4 Alignment of Structure Tokens Because at least
one level of judgement involves considerations of protein
structure, another possible source of similarity measures
when one only has sequence information are mappings of
amino acids into tokens representing secondary structure
elements. In particular, the GORIV suite [6], among many
others, takes input protein sequences and returns sequences
containing the structure-tokens H (corresponding to a part
of an alpha-helix), E (beta-strand) and C (coil). Two
similarity measures were computed based on alignments of
sequences of structure-tokens.

GOR_match_LCS (abbreviated GLCS)
An LCS alignment is done between the pairs of structure-
token sequences.

GOR_match_SW (abbreviated GSW).
Recognising that genuine secondary structure elements

generally span several amino acids, a SW alignment was
undertaken using a gap creation penalty of 0 and gap
elongation penalty of -4. The zero gap creation penalty
was chosen because GOR often introduces spurious single
secondary structure elements, while the -4 elongation
penalty was chosen to force a preference for contiguous
alignments.

In both cases the unit matrix was used (i.e. exact matches
only).

2.2.5 Lengths of the Sequences It has long been known
that the length of the input sequences can be a factor in the
resulting alignment scores. The two sequence lengths were
therefore also reported: Length_S1 (abbreviated L1), and
Length S2 (L2), with Length_S1 always the longer of the
two.

2.3 Experimental Methodology

The experimental methodology has been to assume that
we do not know anything about the sequences in the
database described above, and to align each sequence
against every other using a number of different algorithms,
in order to determine which algorithm, or combination of
algorithms, is better able to predict whether two sequences
have domains with the same Class, Common Fold, Super
Family, Family or Protein Domain. That is, are matches
(identical ~ descriptors) and non-matches (differing
descriptors) for the various descriptor levels in the
domains database correctly predicted by sequence
alignment scores. Note that, while SCOP is structured on
the understanding that the five description levels form a
hierarchy, for these experiments the five levels were treated
independently.

To test a particular sequence similarity measure’s ability
to predict matches at the various descriptor levels, a
classifier was constructed for each similarity measure.
That is, each sequence was compared with every other
using the algorithms described earlier and values recorded
for the wvarious similarity measures. The machine-
learning/classification system Ripper [4], a rule induction
system, was then applied to the similarity measures to
construct rules. However, being unnormalised, the rules
themselves are of no interest. More important are the
error-rates produced when the rules were tested; the error-
rate for the rules derived for a given similarity measure
provides evidence for the predictive power of the similarity
measure once the error-rate, due to the classifier itself, has
been discounted.

In order to construct classifiers, the 2,390 sequences in
the sequence database (and the corresponding domains
database) were first divided into a training and a test
subset. To balance the subsets, the sequences were sorted
by length and allocated alternately to the subsets. Then,

within the respective subsets, each sequence was aligned
with all the others and the numbers of matches and non-
matches were recorded. A significant problem was the
great imbalance in numbers of non-matches versus
matches. To counter this bias, stratified samples have been
used in building and testing the classifiers. That is, the
number of matches is balanced by an equal number of non-
matches, randomly chosen from descriptor levels lower in
the hierarchy. For example, 4,497 training set matches at
the SF level are balanced by an equal number of non-
matches drawn from the CF, CL and total-non-match
levels. Without stratification, the classifiers would only
ever return the highly over-represented decision-class, non-
match.

In other words, the rules generated by application of the
classifier to the training set similarity measure values (for a
given algorithm) were then tested using the similarity
measures due to the same algorithms applied to the
corresponding disjoint testing database, and the error-rates
reported.

3. Experiment 1: Basic Tests

This experiment examines the basic efficacy of each
metric at predicting a shared domain for the various
descriptor levels. At the same time, the issue of variability
in the results is examined.

There are two sources of variability in the methodology
used in this study: variability due to the use of stratification
(i.e. descriptor-level training and testing databases can vary
with the samples taken), and variability inherent in the
construction of classifiers based on noisy data.

3.1 Methods

To get an estimate of the impact of the two sorts of
variability, each similarity measure was used singly to
predict each of the descriptor levels, 50 experiments in all.

To examine the impact of classification variability, the
experiments were run on a stratified database in which the
training and testing sets were pooled, and 10-fold cross
validation was used for the CF, SF, FA and PR descriptor
levels. Because of its much larger size, only 5-fold cross
validation was used for the CL descriptor level. In k-fold
cross validation, the set is split into k partitions; k-1 are
used to construct the classifier while the remaining
partition is used to test the classifier. The classification
error is averaged over the K trials, together with estimates
of the variability in the classification error. These values
are reported in the second and third columns of the table
below.

The other source of variability is due to stratification. In
the second pair of results columns below, the experiments
were repeated with independent training and test sets each

time drawn from restratified databases. The restratification
was repeated 10 times (and was independent of the
database used for the cross-validation experiments).

3.2 Results

For compactness, in the results table below, and those on
following pages, only the top three results are generally
shown.

Experiment Xval Strat.
Mean | SD | Mean | SD

%Error %Error

CL L2 4047 | 0.10 | 41.46 | 0.4
GLCS | 41.22 | 0.04 | 41.2 0.03
GSW | 4150 | 0.03 | 41.55 | 0.06
CF L2 28.24 | 0.56 | 37.9 1.39
L1 30.23 | 0.35 | 39.13 | 0.99
GLCS | 37.19 | 0.66 | 36.96 | 0.76
GSW | 3742 | 041 | 37.66 | 0.58
SF L1 29.02 | 042 | 320 0.67
L2 29.13 | 0.25 | 35.07 | 1.03
LCS1 | 30.88 | 0.38 | 32.36 | 0.6
NWM | 31.01 | 0.33 | 32.28 | 0.83
FA SWiI 19.31 | 056 | 18.01 | 0.42
SWM | 2232 | 0.38 | 21.31 | 0.56

L2 3254 | 031 | 3553 | 21
PR SWI 459 | 0.22 528 | 0.14
SWM 6.46 | 0.30 7.45 | 0.38
LCS2 | 1041 | 0.42 | 10.87 | 0.28
NWI 18.49 | 0.43 | 18.92 | 0.38
LCS1 | 18.80 | 0.47 | 19.59 | 0.42

Looking first at the results themselves, the following
picture emerges. When the matches are weak (scores are
low), particularly at the CL and CF levels, none of the
algorithms work very well as predictors, although the
global methods, specifically GOR_match_LCS and
GOR_match_SW, seem to work slightly better than the
local methods. This trend is accentuated for the SF level,
but is totally reversed in the FA and PR levels, where the
local methods are significantly better and only
LCS 2aa idents is competitive among the global
methods. The reason for the latter reversal is that at the
higher match levels the global methods tend to saturate,
particularly when comparing sequences of very different
lengths. That is, the scores rapidly approach the length of
the shorter sequences. LCS_ 2aa idents is most
competitive because saturation is limited. Notice also that,
particularly at low match levels, the lengths of the
sequences are a significant predictor. This is marked for
Length_S2, the lengths of the shorter sequences.

Turning to the question of variability, it is clear from the
above table that, while the variability is largely a result of
differing samples due to stratification, the total variability

is small compared to the results. The worst case is 5.91%
(FA_L2), and the average is 1.98%. The large difference
between the cross-validation and stratification error values
for CL_L1, CF_L1 and CF_L2 are anomalous and arise
because of the complicated rule-sets generated for these
classifiers based on length. (Averaged over 10
restratifications, the average number of rules for CL_L1,
CL_L2, CF L1 and CF_L2 are respectively 26.3, 27.0,
25.4 and 20.4, versus an average for the remaining
experiments of 4.06 rules.) In general, these results
indicate that basing further experiments on a single
stratification sample and separate training and test sets is a
feasible methodology.

4. Experiment 2: Pairwise Combinations

In this set of experiments, classifiers are constructed for
all pairs of the non-length similarity measures.

4.1 Results

Expt Pair Testing | Testing
%Error SD

CL NwI GLCS 39.73 0.09
NWM GLCS 39.78 0.09
LCS1 GSW 39.91 0.09
NWM GSW 39.92 0.09

CF LCS1 GSW 34.07 0.56
NWM GLCS 34.18 0.56
LCS1 GLCsS 34.59 0.56
NWI GLCS 35.17 0.56

SF LCS1 GLCS 26.83 0.48
LCS1 GSW 28.41 0.49
NWM GSW 28.46 0.49

FA Swi NWI 16.67 0.54
SWi GLCS 16.82 0.54
SWi LCs1 16.91 0.55
SWi SWM 16.99 0.55

PR SWI NWM 3.74 0.22
SWi LCs1 3.74 0.22
SWi NWI 3.81 0.22
SWi LCSs2 4.08 0.23
SWi GsSwW 4.09 0.23
SWi SWM 4.13 0.23

From the above table it can be seen that combining
similarity measures results in somewhat improved
predictive accuracy. Notice that it is not necessarily the
combination of the best single similarity measures that
produces a better combined similarity measure. (This is
most evident in the higher descriptor levels).

5. Experiment 3: Comparing Local versus
Global Alignments

The results reported above suggest that global methods
are preferable when only low-level alignments (e.g. same
structure class) are possible, but local methods are
preferable when the sequences have common functions or
domains. The explanation for the relative strength of
global methods at low similarity values is that, due to the
action of gap penalties matching scores degrade rapidly
with falling match levels, so for the alignments where only
class matches are possible, alignments may be reduced to a
number of islands, none of which are significant. By
contrast, global methods have the entire sequence in their
purview, so are more likely to find a match if one exists.
At the other extreme, as suggested earlier the global
methods tend to saturate when faced with a strong
alignment.

Further evidence for the differing nature of local and
global alignment strategies can be obtained by taking the
pairwise correlations between the the eight non-length
similarity measures.

Metric1 Metric2 r?
NW_idents LCS_idents 0.9967
NW_matches LCS_idents 0.9827
GOR_match_SW | GOR_match_LCS | 0.9783
NW_idents NW_matches 0.9748
NW_matches GOR_match_LCS | 0.9284
LCS idents GOR_match_LCS | 0.8955
NW_matches GOR_match_SW | 0.8878
NW_idents GOR_match_LCS | 0.8842
LCS idents GOR_match_SW | 0.8507
NW_idents GOR_match_SW | 0.8393
NW_idents LCS 2aa_idents 0.7405
LCS idents LCS 2aa_idents 0.7282
NW_matches LCS 2aa_idents 0.6583
SW_idents LCS 2aa_idents 0.6188
SW_idents SW_matches 0.6165
LCS_2aa_idents GOR_match_LCS | 0.5434
GOR_match_SW | LCS_2aa_idents 0.523
SW_matches LCS 2aa_idents 0.3767
SW_matches NW_idents 0.34
SW_matches LCS_idents 0.3364
SW_matches NW_matches 0.3206
SW_matches GOR_match_LCS | 0.2911
SW_matches GOR_match_SW | 0.2854
SW_idents NW_idents 0.2436
SW_idents LCS_idents 0.2323
SW_idents NW_matches 0.1882
SW_idents GOR_match_SW | 0.1436
SW_idents GOR_match_LCS | 0.1408

While most of the correlations conform to one’s

expectations, there are some surprises.

While NW_idents, NW_matches and LCS_idents are
extremely well correlated the same cannot be said for
SW _idents versus SW_matches, which are only
moderately well correlated. In addition, LCS 2aa_idents
is only somewhat better correlated with LCS_idents than
it is with either NW_matches or SW_idents.

6. Conclusions

The principal conclusion is that, in the context of
database searches, global methods and search criteria
based on common domains may be useful for detecting
matches at the point where local search methods are failing
to find anything. On the other hand, when a match is
strong - homology is strongly indicated - local methods not
only have better predictive accuracy but also provide more
biologically — meaningful alignments than global
alignments. However, even then, combining a local
method with a global method may improve sieving for
possible matches.

This suggests the following may be a useful procedure:
if a Smith-Waterman match cannot be found, global
methods may be used to add weight to the candidate
matches found by the Smith-Waterman scan.
Alternatively, the list of matches found by a global-
alignment scan against the SCOP sequences can be
searched for commonalities of class, common fold, etc.
Secondary structure tokenisation of sequences (whether
used in conjunction with LCS or SW) seems to be the most
effective of the global methods under investigation, with
LCS based on single amino acids also being competitive.
Interestingly, while LCS based on overlapping dipeptides
is a global method, it nonetheless seems to be competitive
with the local methods at the FA and PR descriptor levels,
while also being competitive with the other global
methods at the lower descriptor levels. In short, LCS
based on overlapping dipeptides warrants further
investigation.

While it is interesting that a number of the findings from
[3] have been confirmed in this study across both local and
global alignment algorithms, a major finding of [3] is that
statistically-based similarity = measures significantly
outperform either percent-match or raw scores. The
statistically-based scores are founded on the extreme-value
distribution [1]. Unfortunately, this distribution is not
appropriate for global alignments so further work needs to
be done to discover an appropriate background statistical
distribution which can then be used to provide a basis for
decisions about the statistical significance of global
alignment match scores. Overall, the conclusion must be
that global methods deserve further investigation.

7. Acknowledgements

I would like to acknowledge the generous support for
my Fellowship at Pembroke College, Cambridge, provided
by Bristol-Myers Squibb.

8. Bibliography

[1] SF Altschul and W Gish, “Local Alignment Statistics”,
Computer Methods for Macromolecular Sequence
Analysis, ed. Russell F. Doolittle, pp. 460-480,
Academic Press (1996) (Methods in Enzymology 266).

[2] P Bork and EV Koonin, “Predicting Functions from
Protein Sequences - Where are the Bottlenecks?”,
Nature Genetics 18, pp. 313-318 (1998).

[3] SE Brenner, C Chothia and TJP Hubbard, *““Assessing
Sequence Comparison Methods with Reliable
Structurally Identified Distant Evolutionary
Relationships™, Proceedings of the National Academy of
Sciences (USA) 95, pp. 6073-6078 (1998).

[4] WW Cohen, “Fast Effective Rule Induction”, Twelfth
International Conference on Machine Learning, Lake
Tahoe, U.S.A, pp. 115-123, Morgan Kaufmann (July
9-12, 1995).

[5] TH Cormen, CE Leiserson, RL Rivest and C Stein,
Introduction to Algorithms (2€), MIT Press (2001).

[6] J Garnier, J.-F Gibrat and B Robson, “GOR Method for
Predicting Protein Secondary Structure from Amino
Acid Sequence”, Computer Methods for
Macromolecular Sequence Analysis, ed. Russell F.
Doolittle, pp. 540-553, Academic Press (1996) (Methods
in Enzymology 266).

[71U Hobohm, M Scharf, R Schneider and C Sander,
“Selection of Representative Protein Data Sets™, Protein
Science 1, pp. 409-417 (1992).

[8] TJP Hubbard, B Ailey, SE Brenner, AG Murzin and C
Chothia, “SCOP: a Structural Classification of Proteins
Database”, Nucleic Acids Research 27(1), pp. 254-256
(January, 1999).

[9] SB Needleman and CD Wunsch, “A General Method
Applicable to the Search for Similarities in the Amino
Acid Sequence of Two Proteins™, Journal of Molecular
Biology 48, p. 443-453 (1970).

[10] C Rick, “A New Flexible Algorithm for the Longest
Common Subsequence Problem”, Nordic Journal of
Computing 2(4), pp. 444-461 (1995).

[11] TF Smith and MS Waterman, “Ildentification of
Common Molecular Subsequences”, Journal of
Molecular Biology 147, p. 195-197 (1981).

	Session Index
	Author Index

