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Abstract

Several applications in computational biology have large run-
time and memory requirements either because of large data
sizes or the inherent time and memory complexity of the un-
derlying algorithms. Parallel computing is an effective way
to address both these concerns - run-time can be reduced by
the use of multiple processors to solve the same problem and
the scaling of memory with processors enables the solution of
larger problems than otherwise possible. In this paper, we de-
scribe efficient parallel solutions for three important applica-
tions in computational biology: 1) Computing alignments of
large stretches of genomes, 2) clustering Expressed Sequence
Tags and 3) Computing the accessible surface area of protein
molecules. We report experimental results on a 64-processor
IBM xSeries parallel computer. We conclude the paper by ar-
guing thatparallel computational biologyis an important sub-
discipline that merits significant research attention.

1 Introduction

The field of computational molecular biology is replete with
applications that require processing large amounts of data. The
basic problem of finding DNA sequences that exhibit homol-
ogy to a given query sequence requires searching databases
containing over tens of billions of nucleotides, and still grow-
ing at an exponential rate. The recent assembly of the mouse
genome required processing over 33 million fragments of a to-
tal size of over 17 billion bases to assemble the genome of
size over 3 billion bases. In comparative genomics, two or
more genomes of such enormous sizes must be compared to
discover common genes and interesting evolutionary relation-
ships among species. In order to construct trees representing
evolutionary relationships among species, algorithms explore a
large search space of potential trees. Biomolecular simulations
such as protein structure determination require a large number
of iterations, making it important to accelerate the run-time per
iteration. In these and many other applications, parallel pro-
cessing can enable the solution of realistic problem instances.

In this paper, we present parallel solutions for three impor-
tant problems in computational biology− 1) Computing align-
ments of large stretches of genomes, 2) clustering Expressed
Sequence Tags and 3) Computing the accessible surface area of
protein molecules. For each problem, we describe the motivat-
ing biological application and why parallel processing is useful
in solving the problem. We then present an efficient parallel al-
gorithm to solve the problem and demonstrate its performance
with experimental results on a 64-processor IBM xSeries par-
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allel computer.

2 Syntenic Alignments

2.1 Problem Formulation

It is widely recognized that evolutionary processes tend to con-
serve genes. Along a chromosome, genes are interspersed by
large regions with no known function. A gene itself is com-
prised of alternating regions known asexonsand introns, and
the introns are intervening regions that do not participate in the
translation of a gene to its corresponding protein. Homologous
DNA sequences from related organisms, such as the human
and the mouse, are usually similar over the exon regions but
different over other regions. Because the different regions are
much longer than similar regions, conserved sequences cannot
be identified through global alignment. This results in the prob-
lem of aligning two sequences where an ordered list of subse-
quences of one sequence is highly similar to a corresponding
ordered list of subsequences from the other sequence. We refer
to this problem as thesyntenic alignmentproblem. This is an
important computational problem in the emerging field of com-
parative genomics. Given two syntenic sequences of lengthsm
andn respectively, this problem can be solved inO(mn) time.
Because the sequences are large, parallel processing can enable
the alignment of large syntenic regions.

2.2 Parallel Algorithm

An alignment of two sequencesS = s1s2 . . . sk and T =
t1t2 . . . tl over an alphabetΣ is obtained by inserting gaps in
chosen positions and stacking the sequences such that each
character in a sequence is either matched with a character in
the other sequence or a gap. The quality of an alignment is
computed as follows: A scoring functionf : Σ×Σ → IR spec-
ifies the score for matching a character in one sequence with a
character in the other sequence. Gaps are penalized by using
an affine gap penalty function that charges a penalty ofh + gr
for a sequence ofr maximal gaps. Here,h is referred to as gap
opening penalty andg is referred to as gap continuation penalty.
An optimal alignment ofS andT is an alignment resulting in
the maximum possible score over all possible alignments. Let
score(S, T ) denote the score of an optimal alignment.

Let A = a1a2 . . . am andB = b1b2 . . . bn be two sequences.
A subsequenceA′ of A is said to precede another subsequence
A′′ of A, written A′ ≺ A′′, if the last character ofA′ occurs
strictly before the first character ofA′′ in A. An ordered list of
subsequences ofA, (A1, A2, . . . , Ak) is called a chain ifA1 ≺
A2 ≺ . . . Ak. The syntenic alignment problem for sequences
A andB is to find a chain (A1, A2, . . . , Ak) of subsequences



in A and a chain (B1, B2, . . . , Bk) of subsequences inB such
that the score

{
k∑

i=1

score(Ai, Bi)

}
− (k − 1)d

is maximized. The parameterd is a large penalty aimed at
preventing alignment of short subsequences which occur by
chance and not because of any biological significance.

We solve this problem by computing the syntenic alignment
between every prefix ofA and every prefix ofB. We compute
4 tablesC, D, I andH of size(m + 1)× (n + 1). Entry [i, j]
in each table corresponds to the optimal score of a syntenic
alignment betweena1a2 . . . ai and b1b2 . . . bj , subject to the
following conditions: 1) InC, ai is matched withbj , 2) In D,
ai is matched with a gap, 3) InI, gap is matched withbj , and
4) In H, eitherai or bj is part of an unmatched subsequence.

It follows from these definitions that the tables can be com-
puted using the following recurrence equations:

C[i, j] = f(ai, bj)
+max {C[i− 1, j − 1], D[i− 1, j − 1],

I[i− 1, j − 1], H[i− 1, j − 1]}

D[i, j] = max {C[i− 1, j]− g′, D[i− 1, j]− g,

I[i− 1, j]− g′, H[i− 1, j]− g′}

I[i, j] = max {C[i, j − 1]− g′, D[i, j − 1]− g′,

I[i, j − 1]− g, H[i, j − 1]− g′}

H[i, j] = max {C[i− 1, j]− d, I[i− 1, j]− d,

C[i, j − 1]− d, D[i, j − 1]− d,

H[i− 1, j], H[i, j − 1]}
whereg′ = (g + h).

Prior to computation, the top row and left column of each ta-
ble should be initialized. These initial values can be directly
computed. After computing the tables, the optimal score of a
syntenic alignment is given by the maximum score inC[m,n],
D[m,n], I[m,n], orH[m,n]. Thus, the problem can be solved
in O(mn) time and space. If we draw links from each table
entry to an entry which gives the maximum value in equa-
tion (1), (2), (3) or (4), the optimal syntenic alignment can
be retrieved by tracing backward in the tables starting from
the largest[m,n] entry and ending atC[0, 0]. Using the now
standard technique of space-saving, introduced originally by
Hirschberg [5], the space required can be reduced toO(m+n),
while increasing the run-time by at most a factor of2.

Let p denote the number of processors, withid’s ranging from
0 to p− 1. Without loss of generality, assume thatm ≤ n. We
compute the four tablesC, D, I andH together in parallel. We
use a columnwise decomposition to partition the tables to the
processors. For simplicity, assumem andn are multiples ofp.

Processori receives columnsin
p +1, . . . , (i+1)n

p of each table,
and is responsible for computing the table entries allocated to
it. The tables are computed one row at a time, in the orderC,
D, H andI.

Consider computing theith row of the tables. The recurrence
relation forD uses entries from the already computed(i−1)th

row and in the same column. These are readily available on the
same processor. In computingC, entries that are in the previ-
ous row and previous column are needed. These are available
on the same processor, except in the case of the first column
assigned to each processor. After computing the(i− 1)th row,
each processor sends the last entry it computed in each of the
four tables to the next processor. This is sufficient to compute
the next row ofC, and requires communicating just four en-
tries per processor irrespective of the problem size. Next, we
compute theith row of H. Let

v[j] = max{C[i− 1, j]− d, I[i− 1, j]− d,
C[i, j − 1]− d, D[i, j − 1]− d,
H[i− 1, j]}

Because theith rows of C andD are already computed, the
vectorv can be computed directly in parallel using the infor-
mation available within each processor. Then,H[i, j] can be
written asmax {v[j],H[i, j − 1]}. It is easy to see that the
computation ofH[i, j] can be done using theparallel prefix1

operation with ‘max’ as the binary associative operator.

Now, let us turn to the computation of theith row of tableI.

Let w[j] = max {C[i, j − 1], D[i, j − 1],
H[i, j − 1]} − g′

Then, I[i, j] = max {w[j], I[i, j − 1]− g}

Let x[j] = I[i, j] + gj

= max {w[j] + gj, I[i, j − 1] + gj − g}
= max {w[j] + gj, I[i, j − 1] + g(j − 1)}
= max {w[j] + gj, x[j − 1]}

Let z[j] = w[j] + gj
Then, x[j] = max {z[j], x[j − 1]}

Since thez[j]’s can be easily computed from theith row of C,
D, andH, x[j]’s can be computed using parallel prefix with
‘max’ as the binary associative operator. In turn,I[i, j] can be
computed fromx[j] by simply subtractinggj from it.

As mentioned before, processori is responsible for computing
columnsin

p + 1 through(i + 1)n
p of the tablesC, D, I and

H. Distribution of sequenceB is trivial becausebj is needed

1Givenx1, x2, . . . , xn and a binary associative operator⊗, parallel prefix
is the problem of computings1, s2, . . . , sn, wheresi = x1 ⊗ x2 ⊗ . . .⊗ xi

(or equivalently,si = si−1 ⊗ xi). Its run-time isO
(

n
p

+ log p
)

. This is a
well-known primitive operation in parallel computing, and is readily available
on most parallel computers. For example, the function MPIScan computes
parallel prefix.



only in computing columnj. Therefore, processori is given
bi n

p +1 . . . b(i+1) n
p

. Eachai is needed by all the processors at
the same time when rowi is being computed. SequenceA is
stored in each processor.

To summarize, each processor computesn
p entries per row of

each of the four tables. The run-time is dominated by paral-

lel prefix, which takesO
(

n
p + log p

)
time. To achieve opti-

malO
(

n
p

)
run-time, the number of processors used should be

O
(

n
log n

)
. To enable using as large a number of processors

as possible, and more importantly because practical efficien-
cies are better when the problem size per processor is large, we
choose the larger sequence to represent the columns of the ta-
ble (i.e.,n ≥ m). The parallel run-time for computing all the

tables isO
(

mn
p

)
, optimal with respect to the sequential algo-

rithm. The space required is alsoO
(

mn
p

)
. The algorithm can

be improved to reduce the memory usage toO
(
m + n

p

)
with

a parallel traceback capability to retrieve the actual alignment,
and the details are omitted here for lack of space.

2.3 Experimental Results

We implemented the parallel syntenic alignment algorithm in
C and MPI and experimentally evaluated its performance using
an IBM xSeries cluster. The cluster consists of 64 Pentium pro-
cessors each with a clock rate of 1.26GHZ and 512MB of main
memory, connected by Myrinet, supporting peak bidirectional
communication rates of 2Gb/sec. To study the scalability of
the algorithm, the program is run using sequences of the same
length and varying the number of processors. Note that the
communication required in computing a row depends only on
the number of processors and is independent of the problem
size. Thus, it is interesting to determine the smallest problem
size per processor (grain-size) that gives good scaling results.
This can be used to calculate the largest number of processors
that can be beneficially used to solve a given problem. On the
IBM cluster, we determined that the grain-size required for ef-
ficient parallel execution is about500− 1000 per processor.

The speedups as a function of the number of processors for
a syntenic alignment of two sequences of length30, 000 are
shown in Figure 1. Notice that superlinear speed up is ob-
served in several cases, due to the typical beneficial effect of
caching. On16 processors, each processor has an approximate
row size of2, 000 entries per table. We need to store 4 tables, 2
rows per table, and need 3 memory words (12 bytes) per entry.
Thus, the memory required in the problem decomposition stage
is 192KB per processor, which will nicely fit into the256KB
cache. On8 processors, the rows will have to be continually
swapped between cache and main memory, causing significant
slowdown.

The program is used to compare two syntenic human and
mouse sequences containing17 genes [2]. The human se-
quence is of length222, 930 bp (GenBank Accession U47924)
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Figure 1: Speedup as a function of the number of processors
for syntenic alignment of two sequences of length30, 000.

and the mouse sequence is of length227, 538 bp (GenBank Ac-
cession AC002397). The following parameters are used based
on our prior experiences with standard alignment programs:
match= 10; mismatch= −20; gap opening penalty,h = 60;
gap continuation penalty,g = 2. A value for the parameter
d was selected on the basis of internal exon lengths, often of
length at least50 bp. The score of50 matches at10 per match
is 500. The value of300 was used for the parameterd. The
human and mouse sequences were screened for repeats with
RepeatMasker [9]. The masked sequences are then used as in-
put. The program produced a syntenic alignment of the two
sequences in23.32 minutes on64 processors. The alignment
consists of154 ordered subsequence pairs separated by un-
matched subsequences. The alignment fully displays the sim-
ilar regions but omits most of the dissimilar regions. The 154
similar regions are mostly coding exon regions and untrans-
lated regions. Gaps occur much more frequently in alignments
of untranslated regions than in alignments of coding exon re-
gions. The total length of the154 similar regions is43, 445
bp and their average identity is79%. The154 similar regions
constitute about19% of each of the two sequences.

3 EST Clustering

3.1 Problem Formulation

Gene is a contiguous stretch of genomic DNA that encodes the
information necessary for building a protein. The first step in
protein production process is transcription, in which a copy of
the gene is made on an RNA molecule known as pre-mRNA.
Genes are composed of alternating segments calledexonsand
introns. The introns are spliced out from the pre-mRNA and
the resulting molecule is calledmRNA. The mRNA is later
used as a template for building a protein. Molecular biologists
capture such mRNA and convert it to the corresponding DNA
molecule, known as complementary DNA, orcDNA for short.
Due to the limitations of the experimental processes involved
and due to breakage of sequences in chemical reactions, sev-
eral cDNAs of various lengths are obtained instead of just full-
length cDNAs. Part of the cDNA fragments of average length
about500 − 600 can be sequenced. The sequencing can be
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Figure 2: A simplified diagrammatic illustration of genomic DNA, mRNA and ESTs.

done from either end. The resulting sequences are calledESTs
(Expressed Sequence Tags). For a simplified diagrammatic il-
lustration, see Figure 2.

An EST collection will contain ESTs from expressed genes
in proportion to their expression levels.the EST clustering
problem is to partition the ESTs into clusters such that ESTs
from each gene are put together in a distinct cluster. A wide
range of biological applications require EST clustering includ-
ing gene identification, studies of gene expression and differ-
ential gene expression, identification of disease-causing sin-
gle nucleotide polymorphisms (SNPs) and the design of mi-
croarrays. A repository of ESTs collected from various organ-
isms is maintained at the National Center for Biotechnology
Information (http://www.nicb.nlm.nih.gov/dbEST). At present,
there exists a two orders of magnitude gap between the largest
EST data sets and the size of data set that can be clustered with
serial EST clustering software. The human EST collection is
over 4.9 million and the mouse EST collection is over 3.6 mil-
lion currently, and these data sets are continually growing.

3.2 Parallel Algorithm

The fundamental information available for EST clustering is
the potential overlaps between ESTs expressed from the same
gene. A naive solution would take each pair of ESTs and com-
pute if they have significant overlap. This can be done by
using a dynamic programming algorithm, similar to sequence
alignment discussed in the previous section. Once significant
pairwise overlaps are determined, this knowledge can be used
to perform EST clustering. The run-time of this approach is
O(n2k2), wheren is the number of ESTs andk is the average
length of an EST, which is prohibitively expensive for largen.

In order to reduce the run-time, the following approach is used:
Because the percentage of positions where two overlapping se-
quences differ is small (allowing both for sequencing errors and
naturally occurring variations), any overlapping region must
also contain significantly long exact matching regions. Thus,
a filter is applied to determine pairs of ESTs that share an exact
matching region (common substring) of length at least a thresh-
old value. The dynamic programming algorithm is run only on
those pairs, which we refer to aspromising pairs. Experimen-
tation with current software indicates that pairwise alignment

using dynamic programming is the run-time intensive part and
generation of promising pairs is the memory intensive part. The
worst case scaling of both the memory and run-time with the
number of ESTs is quadratic.

We developed a solution that 1) reduces the memory require-
ment from quadratic to worst-case linear, 2) reduces the num-
ber of pairwise alignments without affecting quality of cluster-
ing, and 3) employs parallel processing to enable clustering of
larger EST data sets. The approach is explained in detail below:
Initially, each EST can be thought of as a cluster by itself. Two
EST clusters can be merged provided an EST from each clus-
ter can be identified that show strong overlap using the pairwise
alignment algorithm. This process is continued until no further
merges are possible. If a pair of identified ESTs does not show
strong overlap, the corresponding clusters cannot be merged,
and the effort in testing is wasted. However, there may be an-
other pair of ESTs from these clusters that may have strong
overlap, causing the clusters to merge when this pair of ESTs
is aligned. The order in which promising pairs are processed
does not affect the final set of clusters formed. However, the
order does have significant influence on the run-time it takes to
compute the clusters, as explained below.

Significant savings in run-time can be achieved by fast identifi-
cation of pairs that would likely yield a positive outcome when
the pairwise alignment algorithm is run. A positive outcome
helps in merging of two clusters. As a result, it is no longer
necessary to test pairs of ESTs where each is drawn from one
of the two clusters. Hence, by early identification of promising
pairs of ESTs that cause clusters to merge, it becomes unnec-
essary to align many promising pairs generated at later stages.
Thus, instead of merely finding all pairs that meet certain test
criteria (such as sharing a substring of length 20 or more), we
generate pairs in decreasing order of overlap quality, as mea-
sured by an efficiently computable measure. As the measure,
we use maximal common substring length. A maximal com-
mon substring of a pair of sequences is a substring common
to both the sequences that cannot be extended at either end
to result in a longer match. The rationale for using the mea-
sure is that pairs of ESTs with larger length exact matches are
more likely to pass the alignment test. To eliminate the large
memory required for storing the promising pairs, we designed
an on-demand algorithm that remembers its state and produces



the next set of pairs as and when required. We also address
the important problem of avoiding generation of the same pair
multiple times, even though it is nontrivial to do so because we
do not store previously generated pairs. Our algorithm uses the
generalized suffix tree (GST) data structure [4].

The organization of our software is as follows: We first build
a distributed representation of the generalized suffix tree data
structure in parallel. This data structure is used for on-demand
generation of promising pairs in decreasing order of maximal
common substring length. The pair generation itself is done
in parallel. Maintaining and updating of the EST clusters is
handled by a single processor, which acts as a master proces-
sor directing the remaining processors to both generate batches
of promising pairs and perform pairwise alignment on promis-
ing pairs. It is not mandatory to perform pairwise alignment
of each generated pair because the current set of EST clusters
may obviate the need to do so. Hence, the master processor
is also responsible for the selection of pairs to be aligned and
is a necessary intermediary between pair generation and align-
ment. In order to reduce communication overhead, the master
processor dispatches the selected pairs in batches of size batch-
size, a configurable parameter. To provide an added degree of
flexibility in balancing the load, we do not require that a pair
generated on a processor be allocated to the same processor if
a pairwise alignment is needed.

The main idea behind the on-demand pair generation algorithm
is the following: A suffix tree of all the ESTs is a compacted
trie of all the suffixes of all the ESTs. An internal node in a
suffix tree corresponds to a substring common to all the ESTs
represented as leaves in the subtree of the node. The length
of this common substring is called the string depth of the node
in the suffix tree. In order to general pairs in decreasing order
of maximal common substring length, we sort all the internal
nodes in decreasing order of string depth and process them in
that order. While at a particular node, pairs of ESTs where
each is drawn from one of the leaves in the node’s subtree are
generated. A number of algorithmic strategies are developed to
avoid duplicate generation of promising pairs. The key here is
that we report the presence of a maximal common substring for
a pair directly from the suffix tree, without having to look at all
the smaller length non-maximal common substrings contained
within it.

3.3 Experimental Results

We ran our software onArabidopsis thalianaESTs using dif-
ferent numbers of processors. The total run-time as a function
of the number of processors is shown in Figure 3(a). As can
be observed, the run-times show near perfect scaling with the
number of processors. The total number of promising pairs
generated and the number of these pairs assigned for pair-
wise alignment as a function of the data size are shown in
Figure 3(b). This clearly explains the reduction in run-time
achieved as a consequence of generating the promising pairs
in decreasing order of maximal common substring length, as
opposed to the traditional way of generating them in an arbi-

trary order. As an illustration of the capability of our software
to solve large problems, we clustered 327,632 rat ESTs on 64
processors in under 47 minutes. The preprocessing phase took
about 15 minutes while the clustering phase took about 32 min-
utes. This problem is beyond the computational capabilities of
any current serial software. We estimate that the human EST
collection can be easily clustered using a 256 processor system
with 1GB of memory per processor.

4 Protein Accessible Surface Area Computation

4.1 Problem Formulation

The accessible surface area of a protein molecule is the cu-
mulative surface area of the individual atoms that is accessi-
ble to a solvent molecule. Two atoms of the protein may be
close enough that the solvent molecule cannot access the sur-
face area of the atoms completely. The atoms and the solvent
molecules are modelled as spheres using their van der Waals’
radii. The problem can be further simplified by reducing the
solvent molecule to a point and increasing the van der Waals’
radii of all the atomic spheres by the van der Waals’ radius of
the solvent molecule. The problem is now abstracted as: Given
n spheres, find the total surface area of the spheres that is ac-
cessible, i.e. the surface area that does not lie inside any other
sphere.

Protein ASA computation is used in computational methods for
protein folding, for estimating the interaction free energy of a
protein with solvent, in studies on protein stability and protein-
protein interactions. Because proteins are relatively small, with
a typical protein containing only several hundred amino acids,
it may appear that the problem is not large enough for parallel
computation. However many applications require ASA calcu-
lation for many structures with the ASA calculation for one
structure influencing the next structure. Thus, parallel com-
putation of the ASA can significantly speed up such compu-
tations. A noteworthy example of such an application is the
protein structure determination using molecular dynamics sim-
ulation, where ASA is one of the terms used in energy calcula-
tion.

4.2 Parallel Algorithm

Protein ASA computation can be decomposed into two parts:
Firstly, the set of spheres that intersect each sphere have to be
determined. Secondly, we have to find the accessible surface
area of each sphere, knowing the spheres that intersect it. For
the first part, a naive algorithm checks all pairwise intersec-
tions and takesO(n2) time. As the spheres in ASA calculations
correspond to atoms in proteins, prior information is available
which can be used to devise more efficient algorithms. For in-
stance, the atoms are of a few types (such as Carbon, Nitrogen
etc..) whose radii information is known.

Number the atoms (and the corresponding spheres)1, 2, . . . , n
and letri denote the radius andCi = (xi, yi, zi) denote the
center of theith atom. Let r be the radius of the solvent
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Figure 3: The graph to the left shows parallel run-times for EST clustering as a function of the number of processors. The number
of generated pairs, pairs which are aligned, and pairs that pass the alignment test are shown in the graph to the right.

molecule. Letrmax = max{maxn
i=1{ri}, r} and rmin =

min{minn
i=1{ri}, r}. From the knowledge of atoms that oc-

cur in amino acids and taking the solvent to be water,rmax is
2Åand rmin is 1.2Å. It is reasonable to assume that the ratio
of rmax to rmin is bounded by a small constant. By a simple
geometric argument, it is easy to see that the number of spheres
intersecting a given sphere must be a constant. Thus, the total
number of sphere intersections is bounded byO(n).

Without loss of generality, let[0, Xmax]×[0, Ymax]×[0, Zmax]
be the smallest parallelepiped containing the protein and that
Xmax, Ymax andZmax are all divisible by4rmax. This is the
domain relevant to computation of the accessible surface area.
Consider an implicit partitioning of the domain into cubes of
side length4rmax. Each cube can be identified with an integer
3–tuple (u, v, w), where (u∗4rmax, v∗4rmax, w∗4rmax) is the
corner of the cube having the minimumx, y andz co-ordinates.
We say a cube contains a sphere if it contains the center of the
sphere. The main idea behind the decomposition is that all
the spheres that intersect a given sphere lie either in the cube
containing the sphere or in one of its26 neighboring cubes.

Use an arrayA of sizen stored in a distributed manner over the
p processors such that processorPi hasA[in

p . . . (i+1)n
p − 1].

EntryA[i] stores theith sphere (Ci, ri) and the cube (ui, vi, wi)
containing the centerCi. Note that, the latter can easily be cal-
culated given the former as input, by each processor inO(n

p )
time. The algorithm then sortsA in parallel using cube 3-tuples
as keys. As a result, spheres whose centers are contained in the
same cube now occupy consecutive positions inA. Each pro-
cessor will now compute the ASA of the spheres stored in its
section of sortedA. The general idea behind sorting is to let the
same processor handle all spheres whose centers belong to the
same cube, to potentially reduce the communication required.
For largen, sortingA requiresO(n log n

p ) parallel time.

To compute its portion of the ASA,Pi requires information
about spheres intersecting any sphere stored atPi. To accom-

plish this task efficiently, the following strategy is adopted:
Build an auxiliary arrayB of size2p by gathering from each
processor the 3-tuple of the cubes containing the centers of its
first and last spheres. ProcessorPi then composes a message
for each processor, requesting the information needed from it,
as follows: for each distinct cubec at Pi, compute the set of
cubes,D, whose spheres may intersect spheres in cubec. For
eachd ∈ D, use a binary search inB to identify all the pro-
cessorsPj that contain spheres fromd. Append cubed to the
request message being sent to all suchPj ’s. The duplication
in the request message can be easily avoided (for example, by
using local sorting). All requests from all processors are com-
municated using oneall-to-all communication. For each cube
request that a processorPj receives, it retrieves the spheres in
this cube using a binary search in its portion ofA. In this fash-
ion, it composes an answer message for each processor. All
answers are communicated using a singleall-to-all communi-
cation.

Each processor now concatenates, in an arrayC, all the in-
formation received and its own information according to the
processor ids. This ensures that each processor has all the re-
quired spheres arranged in sorted order according to their cube
3-tuples. Now each processor can calculate the set of spheres
intersecting each of the spheres it is responsible for by doing bi-
nary searches in arrayC. Since the size of the arrayC is O(n

p )
and the total number of spheres that might potentially be tested
for intersection with each sphere is bounded by a constant,
the total computation time required in this step isO(n

p log n
p ).

Putting together the run-times from the various components of
the algorithm above, it is clear that the total runtime for the
algorithm is dominated by sorting and isO(n log n

p ).

Any ordering of the cube 3-tuples can be used to sort arrayA.
Irrespective of the ordering, the algorithm has the same optimal
worst-case performance. However, the practical performance
of the algorithm can be improved significantly by employing a
distribution that preserves locality. Suppose we use an order-



Number Total m = 200 m = 2000
Protein of surface Confidence Confidence

Molecule atoms area ASA that error ASA that error
(in Å2) (in Å2) is≤ 1% (in Å2) is≤ 1%

DNAse I 4945 584107 25578 81% 25584 98%
HIV-I RT 11647 1377740 67930 94% 67996 99%

DNA helicase 13284 1564523 74610 93% 74792 99%
Cyclooxygenase-2 17896 2123492 86145 94% 86292 99%

Table 1: Information about the four proteins used for testing. Also shown are the estimated accessible surface areas and error
bounds.
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Figure 4: The left and the right graphs show the run-times in seconds for computing sphere intersections and Monte Carlo ASA
estimation, respectively, as a function of the number of processors for the four proteins used in testing. A sample size of200 is
used.

ing that attempts to assign spheres in nearby cubes to the same
processor. With such an ordering, most of the spheres that in-
tersect spheres in a processor’s portion of sortedA are found
on the same processor. This reduces computation, communi-
cation and storage in the subsequent steps of the algorithm.
We achieve this by using aZ-space filling curve [7]. Space-
filling curves are mappings from multidimensional points with
integer coordinates to a one-dimensional ordering. The path
implied in the multidimensional space by the linear ordering,
i.e. the sequence in which the multidimensional points are vis-
ited according to the linear ordering, forms a non-intersecting
curve.

We now turn to the computation of the ASA itself. Once all
the spheres intersecting a given sphere are known, the ASA
of that sphere can be computed. The total ASA is simply the
sum of the ASAs of the individual spheres. Thus, this phase is
trivially parallelizable. Several methods have been proposed to
compute the ASA of an individual sphere including numerical
integration [6], a direct analytical method [8], using predeter-
mine sample points on a sphere to estimate surface area [10],
and a Monte Carlo method based on random sampling [3].

4.3 Experimental Results

We implemented the parallel algorithm for ASA computation,
using the Monte Carlo method for ASA estimation. To gen-
erate random points on the surface of a sphere for the Monte

Carlo method, a random value between−r and+r (r denotes
the radius of the sphere under consideration) is selected for
thez-coordinate, followed by a random angle between−π and
+π. The software is written in C and MPI, and run using an
IBM SP-2 containing 4-way SMP nodes. It is evaluated using
the following four proteins, whose structure data is taken from
the Protein Data Bank (http://www.pdb.org): DNAse complex
I with actin (1ATN), HIV-1 Reverse Transcriptase (2HMI),
Gp4D helicase From Phage T7 (1E0K) and uninhibited mouse
cyclooxygenase-2 (5COX). The PDB identifiers of each protein
are given in parenthesis next to it. For convenience, these pro-
teins will be referred to as DNAse I, HIV-I RT, DNA helicase
and cyclooxygenase-2, respectively. As is standard practice,
hydrogen atoms are ignored in computing the ASA. Table 1
summarizes the protein data used in testing, their total surface
areas and the estimated accessible surface areas using sample
sizes of200 and 2000. For each sample size, the minimum
probability that the estimated ASA is within1% of the correct
ASA is shown.

To evaluate the run-time performance of the software, we con-
sider the two stages: 1) Computing sphere intersections, and 2)
Monte Carlo ASA estimation. This is because a different ASA
estimation algorithm can be substituted, if desired. The total
run-times for each of the two stages as a function of the num-
ber of processors for the four proteins are shown in Figure 4.
As can be observed, both stages exhibit very good scaling. For
the Monte Carlo estimation, a sample size of200 is used. For
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Figure 5: Run-times of the three components of our algorithm
for computing sphere intersections.

this sample size, the run-time spent in Monte Carlo estimation
is about the same as the run-time spent in computing sphere in-
tersections. The run-time for Monte Carlo estimation is linear
in the sample size.

The three components of the run-time for computing sphere

intersections, namely, a) parallel sorting, b) communica-
tion and incorporation of the received communication to lo-
cally contain information about spheres intersecting allocated
spheres, and c) intersection computation, are shown in Fig-
ure 5. The run-time is dominated by the intersection computa-
tion. Of the three components, intersection computation shows
near perfect scaling, communication shows good scaling and
parallel sorting shows poor scaling. The poor scaling of par-
allel sorting is due to the small size of the problem (number
of atoms to be sorted) relative to the number of processors.
However, parallel sorting is a negligible percentage of the run-
time, and hence does not affect the overall scaling. The run-
time of the Monte Carlo method shows near perfect scaling for
all four proteins. Note that this need not be the case because
the actual number of intersecting spheres may vary consider-
ably from sphere to sphere, even though the number of spheres
intersecting each sphere is bounded by a large constant. Our
experimental results indicate that allocating equal number of
spheres per processor is sufficient to ensure near perfect load
balancing. Adjusting the load based on the number of inter-
secting spheres of each sphere is unlikely to yield any benefit,
especially in light of the overhead that will be incurred in doing
so.

5 Conclusions

In this paper, we present efficient parallel algorithms for three
important problems in computational biology and demon-
strate their effectiveness through experimental results on a 64-
processor parallel computer. As data sizes continue to grow
and more computationally demanding biological questions are

being asked, parallel processing is becoming more and more
important in computational biology. While numerical simula-
tions have long driven the need for high performance parallel
computers, we believe that life sciences applications will be-
come equally important in the design, development and appli-
cation of high performance parallel computers.

References

[1] S. Aluru, N. Futamura and K. Mehrotra, Biological se-
quence comparison using prefix computations,Proc. In-
ternational Parallel Processing Symposium(1999) 653-
659.

[2] M.A. Ansari-Lari, J.C. Oeltjen, S. Schwartz, Z. Zhang,
D.M. Muzny, J. Lu, J.H. Gorrell, A.C. Chinault, J.W. Bel-
mont, W. Miller and R.A. Gibbs, Comparative sequence
analysis of a gene-rich cluster at human chromosome
12p13 and its syntenic region in mouse chromosome 6,
Genome Research, 8(1998) 29-40.

[3] N. Futamura, S. Aluru and D. Ranjan, Efficient parallel
algorithms for solvent accessible surface area of proteins,
IEEE Transactions on Parallel and Distributed Systems,
13(6), (2002) 544-555.

[4] D. Gusfield.Algorithms on strings, trees and sequences:
computer science and computational biology. Cambridge
University Press, Cambridge, London, 1997.

[5] D.S. Hirschberg, A linear space algorithm for computing
maximal common subsequences,Communications of the
ACM, 18(6)(1975) 341-343.

[6] B. Lee and F.M. Richards, The interpretation of protein
structures: Estimation of static accessibility,Journal of
Molecular Biology, 55(1971) 379-400.

[7] G.M. Morton, A computer oriented geodetic data base
and a new technique in file sequencing, IBM Technical
Report, Ottawa, Canada (1966).

[8] T.J. Richmond, Solvent accessible surface area and ex-
tended volume in proteins− Analytical equations for
overlapping spheres and implications for the hydrophobic
effect,Journal of Molecular Biology, 178(1984) 63-89.

[9] A. Smit and P. Green,
http://ftp.genome.washington.edu/RM/RepeatMasker.html,
1999.

[10] A. Shrake and J.A. Rupley, Environment and exposure to
solvent of protein atoms, Lysozyme and Insulin,Journal
of Molecular Biology, 79(1973) 351-371.


	Session Index
	Author Index



