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Abstract allel computer.

Several applications in computational biology have large run- . )

time and memory requirements either because of large déta SYNntenic Alignments

sizes or the inherent time and memory complexity of the U3-1  Problem Formulation

derlying algorithms. Parallel computing is an effective way

to address both these concerns - run-time can be reducedtlywidely recognized that evolutionary processes tend to con-
the use of multiple processors to solve the same problem agglve genes. Along a chromosome, genes are interspersed by
the scaling of memory with processors enables the solutionigfge regions with no known function. A gene itself is com-
larger problems than otherwise possible. In this paper, we geised of alternating regions known asonsandintrons and
scribe efficient parallel solutions for three important applicahe introns are intervening regions that do not participate in the
tions in computational biology: 1) Computing alignments afanslation of a gene to its corresponding protein. Homologous
large stretches of genomes, 2) clustering Expressed SequéniR@ sequences from related organisms, such as the human
Tags and 3) Computing the accessible surface area of protgil the mouse, are usually similar over the exon regions but
molecules. We report experimental results on a 64-processfiferent over other regions. Because the different regions are
IBM xSeries parallel computer. We conclude the paper by afuch longer than similar regions, conserved sequences cannot
guing thatparallel computational biologys an important sub- be identified through global alignment. This results in the prob-

discipline that merits significant research attention. lem of aligning two sequences where an ordered list of subse-
guences of one sequence is highly similar to a corresponding
1 Introduction ordered list of subsequences from the other sequence. We refer

to this problem as theyntenic alignmenproblem. This is an
The field of computational molecular biology is replete witimportant computational problem in the emerging field of com-
applications that require processing large amounts of data. Taative genomics. Given two syntenic sequences of lemgths
basic problem of finding DNA sequences that exhibit homo&ndn respectively, this problem can be solvedifimn) time.
ogy to a given query sequence requires searching databdesause the sequences are large, parallel processing can enable
containing over tens of billions of nucleotides, and still growthe alignment of large syntenic regions.
ing at an exponential rate. The recent assembly of the mouse
genome required processing over 33 million fragments of a9  parallel Algorithm
tal size of over 17 billion bases to assemble the genome of
size over 3 billion bases. In comparative genomics, two &n alignment of two sequenceS = sisy...s; andT =
more genomes of such enormous sizes must be comparetite. . .; over an alphabel is obtained by inserting gaps in
discover common genes and interesting evolutionary relatigiosen positions and stacking the sequences such that each
ships among species. In order to construct trees representihgracter in a sequence is either matched with a character in
evolutionary relationships among species, algorithms explorthe other sequence or a gap. The quality of an alignment is
large search space of potential trees. Biomolecular simulatigrsnputed as follows: A scoring functigh: ¥ x ¥ — IR spec-
such as protein structure determination require a large numbi@s the score for matching a character in one sequence with a
of iterations, making it important to accelerate the run-time peharacter in the other sequence. Gaps are penalized by using
iteration. In these and many other applications, parallel pran affine gap penalty function that charges a penalty 6fgr
cessing can enable the solution of realistic problem instancdsr a sequence of maximal gaps. Herédj is referred to as gap
opening penalty andis referred to as gap continuation penalty.

In this paper, we present parallel solutions for three impoA-n optimal alignment ofS and7" is an alignment resulting in

tant problems in computational biology1) Comput_mg align- the, maximum possible score over all possible alignments. Let
ments of large stretches of genomes, 2) cIu;termg Expresgggr (S,T) denote the score of an optimal alignment.
Sequence Tags and 3) Computing the accessible surface area of

protein molecules. For each problem, we describe the motiveet A = ajaz...a,, andB = b1by ... b, be two sequences.
ing biological application and why parallel processing is usefdl subsequencd’ of A is said to precede another subsequence
in solving the problem. We then present an efficient parallel ad’ of A, written A’ < A”, if the last character ofl’ occurs
gorithm to solve the problem and demonstrate its performargteictly before the first character éf” in A. An ordered list of
with experimental results on a 64-processor IBM xSeries paubsequences df, (4;, As, ..., Ag) is called a chain i4; <

=< ... Ax. The syntenic alignment problem for sequences

nd B is to find a chain 4, A, ..., Ax) of subsequences

Ao
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in A and a chainBy, Bs, ..., By) of subsequences iB such Processoireceives columng®+1, ..., (i+1)2 of each table,

that the score and is responsible for computing the table gntries allocated to
5 it. The tables are computed one row at a time, in the ofder
{Z score(Ai7Bi)} —(k—1)d D, H and.
i=1 Consider computing thé" row of the tables. The recurrence

is maximized. The parameteris a large penalty aimed atrelation forD uses entries from the already computed 1)*"

preventing alignment of short Subsequences which occur W and in the same column. These are readily available on the

chance and not because of any biological significance. same processor. In computidg entries that are in the previ-
ous row and previous column are needed. These are available

We solve this problem by computing the syntenic alignmegf, the same processor, except in the case of the first column
between every prefix ofl qnd every prefix o3. We compute assigned to each processor. After computing(ihe 1) row,

4 tablesC, D, I andH of size(m + 1) x (n +1). Entry[i, j] each processor sends the last entry it computed in each of the
in each table corresponds to the optimal score of a syntefigy taples to the next processor. This is sufficient to compute
alignment betweem,a; ... a; andbibs ... b;, subject to the he next row ofC, and requires communicating just four en-

following conditions: 1) InC', a; is matched wittb;, 2) In D, tries per processor irrespective of the problem size. Next, we
a; is matched with a gap, 3) Ih, gap is matched with;, and compute the' row of H. Let

4) In H, eithera; or b; is part of an unmatched subsequence.

v[j] = max{Cli—1,j]—d, Ili—1,j] —d,
Cli,j—1]—d, D[i,j—1] —d,
Hli —1,j]}

It follows from these definitions that the tables can be com-
puted using the following recurrence equations:

C[Zm}] = f(aiabj)
+max {C[i —1,j — 1], D[i — 1,5 — 1] Because thé'” rows of C' and D are already computed, the
’ ' ' ’ vectorv can be computed directly in parallel using the infor-
mation available within each processor. Théf;, j] can be
written asmax {v[j], H[¢,j — 1]}. It is easy to see that the
D[i,j] = max{C[i—1,j]—¢, D[i—1,j] —g, computation ofH[i, j] can be done using thearallel prefix
Ii—1,5]—¢, Hji—1,§] — ¢} operation with imax’ as the binary associative operator.

Ili—1,j—1], Hli — 1,5 — 1]}

Now, let us turn to the computation of thi& row of tablel.
I[Zv]] = max{C[i,j—l]—g’, D[i7j_1]_g/7 [ ] { [ } [ ]
. . / Let w(j] = max{Ci,j — 1], D[i,j —1
Ii,j—1]—g, H[i,j —1] —g R ’
nim e k=1 =g Hlij 1} g
Then, I[i,j] = max{w[j], I[i,j — 1] — g}

g[l.’j L ! _Ij’. P[Z"i e Let i) = Il +gj

bk = max {wlj] +gj, 1lij =1 +9j — 9)
whereg’ = (g + h). = max{w[j] +gj, I[i,j — 1] +g( — 1)}
Prior to computation, the top row and left column of each ta- = max{w[j] + gj, z[j — 1]}

ble should be initialized. These initial values can be directly

computed. After computing the tables, the optimal score ofl&t  z[j] = w[j] + gj

syntenic alignment is given by the maximum scor€im:, n], Then, z[j] = max {z[j], z[j — 1]}

D[m, n], I|m,n], or H[m,n]. Thus, the problem can be solved

in O(mn) time and space. If we draw links from each tablgince the:[j]'s can be easily computed from tt& row of C,
entry to an entry which gives the maximum value in equa, and H, z[j]'s can be computed using parallel prefix with
tion (1), (2), (3) or (4), the optimal syntenic alignment canyax’ as the binary associative operator. In tuffi, j] can be
be retrieved by tracing backward in the tables starting frogymputed fromz[;] by simply subtracting;j from it.

the larges{m, n] entry and ending af’[0, 0]. Using the now

standard technique of space-saving, introduced originally fiy mentioned before, processas responsible for computing

Hirschberg [5], the space required can be reduce(in +n), clumnsiy + 1 through(i + 1) of the tables”, D, I and

while increasing the run-time by at most a factoof H. Distribution of sequence is trivial because; is needed

Let p denote the number of processors, widls ranging from  *Givena1, 2, ..., 2, and a binary associative operator parallel prefix
0top — 1. Without loss of generality, assume that< n. We 'S the problem of computing,, s2, ..., sn, Wheres; = z1 ©z2 ® ... ® z;
compute the four tables, D, I andH together in parallel. We (©F euvalentys; = si—y @ ;). Its run-ime isO (3 +logp). Thisis a

. T " ell-known primitive operation in parallel computing, and is readily available
use a columnwise decomposition to partition the tables to t§most parallel computers. For example, the function J8Ban computes

processors. For simplicity, assumeandn are multiples ofp.  parallel prefix.



only in computing columry. Therefore, processaris given 70
bi%H .. b(7;+1)%. Eacha; is needed by all the processors at 60 L
the same time when rowis being computed. Sequengeis 50 |
stored in each processor.

40

30 |

Speedup

To summarize, each processor compugesntries per row of

each of the four tables. The run-time is dominated by paral- 20| ,
lel prefix, which takesD (% + logp) time. To achieve opti- 10 | g
mal O (%) run-time, the number of processors used should be 0 0 20 3 a0 = 0 w0
0] (—10" ) To enable using as large a number of processors Number of processors

gn

as possible, and more importantly because practical effici?_n— 1- Speed functi tth ber of
cies are better when the problem size per processor is large, re 1. Speedup as a function of the number of processors
[ Syntenic alignment of two sequences of length000.

choose the larger sequence to represent the columns of théot

ble (i.e.,n > m). The parallel run-time for computing all the

tables isO (%) optimal with respect to the sequential algo-

) o - ) and the mouse sequence is of len22fi, 538 bp (GenBank Ac-

rithm. The space required is aléb(T)- The algorithm can cegsion AC002397). The following parameters are used based

be improved to reduce the memory usag©tfm + 2 ) with ©ON our prior experiences with standard alignment programs:
P n%atch: 10; mismatch= —20; gap opening penalty, = 60;

n : .

gdp continuation penalty; = 2. A value for the parameter

d was selected on the basis of internal exon lengths, often of

. length at leas50 bp. The score 050 matches at0 per match

2.3 Experimental Results is 500. The value 0f300 was used for the parametér The

We implemented the parallel syntenic alignment algorithm mjmanﬂandkmogse_;}equenckesdwere screened Iﬁr repezzts W.'th
C and MPI and experimentally evaluated its performance usiﬁ tpe'?h asker [9]. edmasd e Se?ue.nceﬁ are (;Jn fufhe tas in-
an IBM xSeries cluster. The cluster consists of 64 Pentium pl%- ' € program produced a syntenic aiighment ot the two

cessors each with a clock rate of 1.26GHZ and 512MB of maiffd4€Nces i33.32 minutes onG4 processors. The alignment

memory, connected by Myrinet, supporting peak bidirection‘é{?nSiSts of154 ordered subsquence pairs separated by un-
communication rates of 2Gb/sec. To study the scalability atched subsequences. The alignment fully displays the sim-

the algorithm, the program is run using sequences of the salfk regions but omits most of the dissimilar regions. The 154

length and varying the number of processors. Note that |5nilar re_gions are mostly coding exon regions _and_untrans-
communication required in computing a row depends only fed regions. Gaps_ oceur mu_ch more frequently n alignments
the number of processors and is independent of the probl8 ntranslated regions than in ahgnments (.)f cogllng exon re-
size. Thus, it is interesting to determine the smallest probl ns. The_ total Ieng.th Of.the54 similar regions '543’4.145

size per processogfain-sizg that gives good scaling results. P an.d their average identity 19%. The154 similar regions
This can be used to calculate the largest number of procesé‘t%smme about9% of each of the two sequences.

that can be beneficially used to solve a given problem. On the

IBM cluster, we determined that the grain-size required for €8 EST Clustering

ficient parallel execution is abo@00 — 1000 per processor.

a parallel traceback capability to retrieve the actual alignme
and the details are omitted here for lack of space.

3.1 Problem Formulation
The speedups as a function of the number of processors for

a syntenic alignment of two sequences of leng@h000 are Gene is a contiguous stretch of genomic DNA that encodes the
shown in Figure 1. Notice that superlinear speed up is dpformation necessary for building a protein. The first step in
served in several cases, due to the typical beneficial effectpgdtein production process is transcription, in which a copy of
caching. Oni6 processors, each processor has an approximtte gene is made on an RNA molecule known as pre-mRNA.
row size of2, 000 entries per table. We need to store 4 tables,@enes are composed of alternating segments celedsand
rows per table, and need 3 memory words (12 bytes) per entijfons The introns are spliced out from the pre-mRNA and
Thus, the memory required in the problem decomposition stdijé resulting molecule is callethRNA The mRNA is later
is 192KB per processor, which will nicely fit into th256KB  used as a template for building a protein. Molecular biologists
cache. OrB processors, the rows will have to be continuallgapture such mRNA and convert it to the corresponding DNA
swapped between cache and main memory, causing signifigaelecule, known as complementary DNA, @NA for short.
slowdown. Due to the limitations of the experimental processes involved
) i and due to breakage of sequences in chemical reactions, sev-
The program is used to.c'ompare two syntenic human agd, .pnAs of various lengths are obtained instead of just full-
mouse sequences containifig genes [2]. The human S€length cDNAs. Part of the cDNA fragments of average length

guence is of lengtB22, 930 bp (GenBank Accession U47924)about500 — 600 can be sequenced. The sequencing can be
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Figure 2: A simplified diagrammatic illustration of genomic DNA, mRNA and ESTSs.

done from either end. The resulting sequences are caldt using dynamic programming is the run-time intensive part and
(Expressed Sequence Tags). For a simplified diagrammaticgéneration of promising pairs is the memory intensive part. The
lustration, see Figure 2. worst case scaling of both the memory and run-time with the

An EST collection will contain ESTs from expressed genensumber Of ESTs is quadratic.

in proportion to their expression levelshe EST clustering We developed a solution that 1) reduces the memory require-
problem is to partition the ESTs into clusters such that ESTeent from quadratic to worst-case linear, 2) reduces the num-
from each gene are put together in a distinct cluster. A wider of pairwise alignments without affecting quality of cluster-
range of biological applications require EST clustering includg, and 3) employs parallel processing to enable clustering of
ing gene identification, studies of gene expression and difféarger EST data sets. The approach is explained in detail below:
ential gene expression, identification of disease-causing dimtially, each EST can be thought of as a cluster by itself. Two
gle nucleotide polymorphisms (SNPs) and the design of niiST clusters can be merged provided an EST from each clus-
croarrays. A repository of ESTs collected from various orgater can be identified that show strong overlap using the pairwise
isms is maintained at the National Center for Biotechnologlignment algorithm. This process is continued until no further
Information (http://www.nicb.nlm.nih.gov/dbEST). At presentmerges are possible. If a pair of identified ESTs does not show
there exists a two orders of magnitude gap between the largesbng overlap, the corresponding clusters cannot be merged,
EST data sets and the size of data set that can be clustered waiitth the effort in testing is wasted. However, there may be an-
serial EST clustering software. The human EST collection aher pair of ESTs from these clusters that may have strong
over 4.9 million and the mouse EST collection is over 3.6 mibverlap, causing the clusters to merge when this pair of ESTs
lion currently, and these data sets are continually growing. is aligned. The order in which promising pairs are processed
does not affect the final set of clusters formed. However, the
3.2 Parallel Algorithm order does have significant influence on the run-time it takes to
compute the clusters, as explained below.
The fundamental information available for EST clustering is.

the potential overlaps between ESTs expressed from the saft ificant savings in run-time can be achieved by fast identifi-
gene. A naive solution would take each pair of ESTs and co ation of pairs that would likely yield a positive outcome when

pute if they have significant overlap. This can be done e pairwise alignment algorithm is run. A positive outcome

using a dynamic programming algorithm, similar to sequen glps in merging of two clusters. As a result, it is no longer

alignment discussed in the previous section. Once significg\fglessary (o test pairs of ESTs where each is drawn from one

pairwise overlaps are determined, this knowledge can be ude two clusters. Hence, by early identification of promising

to perform EST clustering. The run-time of this approach pairs of ESTs that cause clusters to merge, it becomes unnec-

O(n2k2), wheren is the number of ESTs andis the average essary to allgn many promising pairs generated at later stages.

length of an EST, which is prohibitively expensive for large Thus., instead of mef‘?'y finding a.II pairs that meet certain test
criteria (such as sharing a substring of length 20 or more), we

In order to reduce the run-time, the following approach is usegknerate pairs in decreasing order of overlap quality, as mea-
Because the percentage of positions where two overlappingséred by an efficiently computable measure. As the measure,
quences differ is small (allowing both for sequencing errors amé use maximal common substring length. A maximal com-
naturally occurring variations), any overlapping region muston substring of a pair of sequences is a substring common
also contain significantly long exact matching regions. Thus, both the sequences that cannot be extended at either end
afilter is applied to determine pairs of ESTs that share an exactesult in a longer match. The rationale for using the mea-
matching region (common substring) of length at least a threslure is that pairs of ESTs with larger length exact matches are
old value. The dynamic programming algorithm is run only omore likely to pass the alignment test. To eliminate the large
those pairs, which we refer to @somising pairs Experimen- memory required for storing the promising pairs, we designed
tation with current software indicates that pairwise alignmeah on-demand algorithm that remembers its state and produces



the next set of pairs as and when required. We also addrassy order. As an illustration of the capability of our software
the important problem of avoiding generation of the same p#ir solve large problems, we clustered 327,632 rat ESTs on 64
multiple times, even though it is nontrivial to do so because vpeocessors in under 47 minutes. The preprocessing phase took
do not store previously generated pairs. Our algorithm uses #imut 15 minutes while the clustering phase took about 32 min-
generalized suffix tree (GST) data structure [4]. utes. This problem is beyond the computational capabilities of
The organization of our software is as follows: We first build™y cu_rrent serial sof_tware. We est!mate that the human EST
L . . ) cgllectlon can be easily clustered using a 256 processor system
a distributed representation of the generalized suffix tree da

. . . wﬁh 1GB of memory per processor.
structure in parallel. This data structure is used for on-deman
generation of promising pairs in decreasing order of maximal ] _ _
common substring length. The pair generation itself is dode Protein Accessible Surface Area Computation
in parallel. Maintaining and updating of the EST clusters is

handled by a single processor, which acts as a master proc4e§- Problem Formulation

sor directing the remaining processors to both generate batchgg accessible surface area of a protein molecule is the cu-
of promising pairs and perform pairwise alignment on promigs|ative surface area of the individual atoms that is accessi-
ing pairs. It is not mandatory to perform pairwise alignmemjie 1o a solvent molecule. Two atoms of the protein may be
of each generated pair because the current set of EST clusifgSe enough that the solvent molecule cannot access the sur-
may obviate the need to do so. Hence, the master proce§gep area of the atoms completely. The atoms and the solvent
is also responsible for the selection of pairs to be aligned agghjecules are modelled as spheres using their van der Waals’
is a necessary intermediary betwe.en pair generation and alighyii. The problem can be further simplified by reducing the
ment. In order to reduce communication overhead, the mas{gfyent molecule to a point and increasing the van der Waals’
processor dispatches the selected pairs in batches of size baighi of all the atomic spheres by the van der Waals’ radius of
size, a configurable parameter. To provide an added degregafsolvent molecule. The problem is now abstracted as: Given
flexibility in balancing the load, we do not require that a pajf spheres, find the total surface area of the spheres that is ac-

generated on a processor be allocated to the same processQidfiple, i.e. the surface area that does not lie inside any other
a pairwise alignment is needed. sphere.

The main idea behind the on-demand pair generation algoritpytein ASA computation is used in computational methods for
is the following: A suffix tree of all the ESTs is a compactedotein folding, for estimating the interaction free energy of a
trie of all the suffixes of all the ESTs. An internal node in @qtein with solvent, in studies on protein stability and protein-
suffix tree corresponds to a substring common to all the ESIgytein interactions. Because proteins are relatively small, with
represented as leaves in the subtree of the node. The lengifiical protein containing only several hundred amino acids,
of this common substring is called the string depth of the nod&nay appear that the problem is not large enough for parallel
in the suffix tree. In order to general pairs in decreasing ordgSmpytation. However many applications require ASA calcu-
of maximal common substring length, we sort all the intern@ltion for many structures with the ASA calculation for one

nodes in decreasing order of string depth and process theniictyre influencing the next structure. Thus, parallel com-
that qrder. While at a particular nod(_e, pairs of ESTs Wheb%tation of the ASA can significantly speed up such compu-
each is drawn from one of the leaves in the node’s subtree a{fons. A noteworthy example of such an application is the
generated. A number of algorithmic strategies are developegygtein structure determination using molecular dynamics sim-

avoid duplicate generation of promising pairs. The key here|jgyiion, where ASA is one of the terms used in energy calcula-
that we report the presence of a maximal common substring fgj,.

a pair directly from the sulffix tree, without having to look at all
th.e gmaller length non-maximal common substrings contam&% Parallel Algorithm
within it.
Protein ASA computation can be decomposed into two parts:

3.3 Experimental Results Firstly, the set of spheres that intersect each sphere have to be

] ) . . _determined. Secondly, we have to find the accessible surface
We ran our software oArabidopsis thalian&STs using dif- 4req of each sphere, knowing the spheres that intersect it. For
ferent numbers of processors. The total run-time as a functig, first part, a naive algorithm checks all pairwise intersec-
of the number of processors is shown in Figure 3(a). AS C88ns and take® (n?) time. As the spheres in ASA calculations
be observed, the run-times show near perfect scaling with §i§respond to atoms in proteins, prior information is available
number of processors. The total number of promising paifgich can be used to devise more efficient algorithms. For in-

generated and the number of these pairs assigned for pgifnce, the atoms are of a few types (such as Carbon, Nitrogen
wise alignment as a function of the data size are shown dft..) whose radii information is known.

Figure 3(b). This clearly explains the reduction in run-time

achieved as a consequence of generating the promising phliggnber the atoms (and the corresponding spheres) .., n
in decreasing order of maximal common substring length, @8d letr; denote the radius an@; = (x;,y;,2;) denote the
opposed to the traditional way of generating them in an arlgenter of thei' atom. Letr be the radius of the solvent
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Figure 3: The graph to the left shows parallel run-times for EST clustering as a function of the number of processors. The number
of generated pairs, pairs which are aligned, and pairs that pass the alignment test are shown in the graph to the right.

molecule. Letr,,,, = maz{max}_,{r;},r} andr,;, = plish this task efficiently, the following strategy is adopted:
min{min}_,{r;},r}. From the knowledge of atoms that ocBuild an auxiliary arrayB of size2p by gathering from each
cur in amino acids and taking the solvent to be watgy,,. is processor the 3-tuple of the cubes containing the centers of its
2Aand r,,:, is 1.2A. It is reasonable to assume that the ratifirst and last spheres. Procesggrthen composes a message
of 740 10 Tin IS bounded by a small constant. By a simplér each processor, requesting the information needed from it,
geometric argument, it is easy to see that the number of sphexgdollows: for each distinct cubeat P;, compute the set of
intersecting a given sphere must be a constant. Thus, the totddes,D, whose spheres may intersect spheres in culber
number of sphere intersections is boundedigy:). eachd € D, use a binary search iB to identify all the pro-

Without loss of generality, 160, X,na] 0, Yinas] [0, Zyas] cessorsP; that contain spheres froth Append cubel to the

be the smallest parallelepiped containing the protein and tha uest message being sent to all sigis. The duplication

Xonaws Yorww aNdZ,0, are all divisible bydr,,... This is the in .he request message can be easily avoided (for example, by
! . : using local sorting). All requests from all processors are com-
domain relevant to computation of the accessible surface area. * . L
) . oL . Unicated using onall-to-all communication. For each cube
Consider an implicit partitioning of the domain into cubes o

side lengthir.,...,. Each cube can be identified with an integ e{equest that a process#y receives, it retrieves the spheres in

Stuple (1, v, 1), WHETe (s dr,n, vk ATy, ATy as) iS the his cube using a binary search in its portion/fin this fash-

. 0 . ion, it composes an answer message for each processor. All
corner of the cube having the minimuimy andz co-ordinates. P 9 P

We say a cube contains a sphere if it contains the center of %n?;wers are communicated using a sirglgo-all communi-
sphere. The main idea behind the decomposition is that Fpron-
the spheres that intersect a given sphere lie either in the cltaeh processor now concatenates, in an afrawll the in-
containing the sphere or in one of &8 neighboring cubes.  formation received and its own information according to the
Qprocessor ids. This ensures that each processor has all the re-
p processors such that procesgohasAfi™ . .. (i+1)% — 1]. quired spheres arranged in sorted order according to their cube
P p 3-tuples. Now each processor can calculate the set of spheres
Entry A[i] stores the*" sphere (’;, r;) and the cubeu;, Vi, W) jntersecting each of the spheres it is responsible for by doing bi-
contalmng the center’;. Note .that, the latter can easily pe Calhary searches in array. Since the size of the array is O(2)
culated given the former as input, by each process@(ifl)  and the total number of spheres that might potentially be tested
time. The algorithm then sort$in parallel using cube 3-tuples¢,; intersection with each sphere is bounded by a constant,
as keys. As a result, spheres Who_se cent_e_rs are contained intR§otal computation time required in this steig? log ™).
same cube now occupy consecutive positionglirEach pro-  pying together the run-times from the various components of

cessor will now compute the ASA of the spheres stored in Hige aigorithm above, it is clear that the total runtime for the
section of sorted!. The general idea behind sorting is to let thﬁl%orithm is dominated by sorting anday ™2™,
e p

same processor handle all spheres whose centers belong to t

same cube, to potentially reduce the communication requirédly ordering of the cube 3-tuples can be used to sort atray
For largen, sortingA requiresO( ™8™ parallel time. Irrespective of the ordering, the algorithm has the same optimal
p

] ) ) ) _worst-case performance. However, the practical performance
To compute its portion of the ASAP; requires information of the algorithm can be improved significantly by employing a
about spheres intersecting any sphere stored.alo accom- isgribution that preserves locality. Suppose we use an order-

Use an array of sizen stored in a distributed manner over th



Number Total m = 200 m = 2000
Protein of surface Confidence Confidence
Molecule atoms area ASA that error ASA that error
(in A2) || (in A2) is< 1% | (in A% is < 1%
DNAse | 4945 | 584107| 25578 81% || 25584 98%
HIV-I RT 11647 | 1377740| 67930 94% 67996 99%
DNA helicase 13284 | 1564523| 74610 93% || 74792 99%
Cyclooxygenase-2 17896 | 2123492| 86145 94% || 86292 99%

Table 1: Information about the four proteins used for testing. Also shown are the estimated accessible surface areas and error
bounds.
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Figure 4: The left and the right graphs show the run-times in seconds for computing sphere intersections and Monte Carlo ASA
estimation, respectively, as a function of the number of processors for the four proteins used in testing. A samp@&ize of
used.

ing that attempts to assign spheres in nearby cubes to the s@ado method, a random value between and+r (r denotes
processor. With such an ordering, most of the spheres thattime radius of the sphere under consideration) is selected for
tersect spheres in a processor’s portion of sordeare found the z-coordinate, followed by a random angle betweenand
on the same processor. This reduces computation, commuic. The software is written in C and MPI, and run using an
cation and storage in the subsequent steps of the algorithBM SP-2 containing 4-way SMP nodes. It is evaluated using
We achieve this by using &-space filling curve [7]. Space-the following four proteins, whose structure data is taken from
filling curves are mappings from multidimensional points witthe Protein Data Bank (http://www.pdb.org): DNAse complex
integer coordinates to a one-dimensional ordering. The patlvith actin (1ATN), HIV-1 Reverse Transcriptase (2HMI),
implied in the multidimensional space by the linear orderingp4D helicase From Phage T7 (1EOK) and uninhibited mouse
i.e. the sequence in which the multidimensional points are vis¢clooxygenase-2 (5COX). The PDB identifiers of each protein
ited according to the linear ordering, forms a non-intersectige given in parenthesis next to it. For convenience, these pro-
curve. teins will be referred to as DNAse |, HIV-I RT, DNA helicase
We now turn to the computation of the ASA itself. Once al nd cycIooxygenase-_Z, respe_ctively. A.S is standard practice,
y&jrogen atoms are ignored in computing the ASA. Table 1

the spheres intersecting a given sphere are known, the Asummarizes the protein data used in testing, their total surface

of that sphere can be computed. The total ASA is simply tra‘a?eas and the estimated accessible surface areas using sample

sum of the ASAs of the individual spheres. Thus, this phase’is . -
o . zes of200 and 2000. For each sample size, the minimum

trivially parallelizable. Several methods have been propose 15 . . S

S . ; . _probability that the estimated ASA is withit% of the correct
compute the ASA of an individual sphere including numeric SA is shown
integration [6], a direct analytical method [8], using predeter- '
mine sample points on a sphere to estimate surface area [I0]evaluate the run-time performance of the software, we con-
and a Monte Carlo method based on random sampling [3]. sider the two stages: 1) Computing sphere intersections, and 2)
Monte Carlo ASA estimation. This is because a different ASA
estimation algorithm can be substituted, if desired. The total
run-times for each of the two stages as a function of the num-
We implemented the parallel algorithm for ASA computatiorher of processors for the four proteins are shown in Figure 4.
using the Monte Carlo method for ASA estimation. To gerAs can be observed, both stages exhibit very good scaling. For
erate random points on the surface of a sphere for the Motite Monte Carlo estimation, a sample size206 is used. For

4.3 Experimental Results
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being asked, parallel processing is becoming more and more
important in computational biology. While numerical simula-
tions have long driven the need for high performance parallel
computers, we believe that life sciences applications will be-
come equally important in the design, development and appli-
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Figure 5: Run-times of the three components of our algorithm
for computing sphere intersections.

this sample size, the run-time spent in Monte Carlo estimatio
is about the same as the run-time spent in computing sphere in-
tersections. The run-time for Monte Carlo estimation is linear
in the sample size.

The three components of the run-time for computing sphere [4]
intersections, namely, a) parallel sorting, b) communica-
tion and incorporation of the received communication to lo-
cally contain information about spheres intersecting allocated
spheres, and c) intersection computation, are shown in Fié"f’
ure 5. The run-time is dominated by the intersection computa-
tion. Of the three components, intersection computation shows
near perfect scaling, communication shows good scaling a
parallel sorting shows poor scaling. The poor scaling of par-
allel sorting is due to the small size of the problem (number
of atoms to be sorted) relative to the number of processors.
However, parallel sorting is a negligible percentage of the runf7]
time, and hence does not affect the overall scaling. The run-
time of the Monte Carlo method shows near perfect scaling for
all four proteins. Note that this need not be the case because
the actual number of intersecting spheres may vary consid 3]
ably from sphere to sphere, even though the number of spheres
intersecting each sphere is bounded by a large constant. Our
experimental results indicate that allocating equal number of
spheres per processor is sufficient to ensure near perfect lo
balancing. Adjusting the load based on the number of inter-
secting spheres of each sphere is unlikely to yield any benefit,
especially in light of the overhead that will be incurred in doing
Sso. [10]

5 Conclusions

In this paper, we present efficient parallel algorithms for three
important problems in computational biology and demon-
strate their effectiveness through experimental results on a 64-
processor parallel computer. As data sizes continue to grow
and more computationally demanding biological questions are

& A Smit

cation of high performance parallel computers.
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