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Abstract

In this paper, we review some of the many challenging prob-
lems in computational biology that are amenable to treatment
using a systems approach. Specific problems discussed include
string alignment and protein structure prediction.

1 Introduction

Recent advances in experimental biology have resulted in both
a substantial increase in thespeedof experimentation as well
as a significant reduction in thecostof experimentation. As a
result, it is now possible to generate “raw data” at a far greater
rate than was possible a few years ago, and at very little cost.
However, in order to be useful, this data needs to be turned into
“information.” This is the aim of a discipline known earlier as
“computational biology,” and more recently as “bioinformat-
ics.”

The mathematical and computational problems associated with
biology have attracted the attention of some top-notch mathe-
maticians for several decades now. Perhaps one of the best ex-
amples is S. Karlin, whose book “Stochastic Processes” pub-
lished in the 1960’s already refers to the relationships be-
tween Markov chains and biological problems; see [7], p.
37. Karlin is also a co-inventor of a widely used probabilis-
tic method known as BLAST (Basic Linear Alignment Search
Technique) for aligning two strings defined over a common al-
phabet [8, 9, 4]. Thus, while there has been a long-standing
tradition of studying biological problems using mathematical
approaches, the recent excitement about advances in experi-
mental biology has substantially enhanced the interest of the
mathematical and computer community in the subject of com-
putational biology. It is by now realized that, unless some sig-
nificant advances are made in this area, much of the promise of
biology will remain unrealized. This is exemplified by the fact
that, whereas earlier biology was considered to be almost ex-
clusively an experimental science, nowadays it is thought of as
both an experimental as well as an information-based science.

The aim of this paper is to present apersonalview of some
challenging problems in computational biology, that are easily
expressed in terminology and notation that is readily accessible
to applied mathematicians, and in particular the control the-

ory community. It is the belief of the author that the problems
presented here are both of immediate interest to the biological
community and also somewhat tractable. Due to limitations of
space, only a few problems are presented here. However, there
are many other problems meeting both of the above criteria that
could be included.

2 A Brief Introduction to Some Aspects of Biol-
ogy

A person with a mathematical training and a mathematical bent
of mind will be immediately struck by the fact thatbiologists
think very differently from mathematicians. A well-known In-
dian biologist told the author with a straight face that “Biology
is today where physics was in the sixteenth century.” Proba-
bly that is an exaggeration, but there is no doubt that many of
the fundamental governing principles of biology are still being
discovered. This is one of the reasons for the rapid obsoles-
cence of biological textbooks and papers. While it is common
in mathematics (or control theory) to revisit a thirty or forty
year-old book or paper, most biologists would not bother read-
ing anything that is more than a few years old. Though biol-
ogists, like all scientists, are committed to a reductionist ap-
proach to their science (whereby the subject can be explained
by a few foundational principles governing everything else),
they are somewhat handicapped by the large number of excep-
tions that need to be made to any putative theory, except in a
few specific situations. Thus, for an applied mathematician, a
natural starting point would be those aspects of biology that
have in some sense “stabilized” and can be explained in terms
of something resembling the axiomatic approach that is com-
mon in mathematics. The choice of topics discussed in this
paper is governed by this criterion, namely, that they can be
explained in an axiomatic manner. However, it is worth repeat-
ing again that there are several other problems besides those
mentioned here that would meet this criterion.

This section contains a very high level description of some rele-
vant notions of biology and the associated computational prob-
lems. Detailed descriptions of the problems, including the state
of the art and future challenges, are given in later sections.

2.1 Genomics

All living things are made of DNA, or deoxyribonucleic acid.
DNA is arranged in the famous double helix configuration dis-



covered by Watson and Crick exactly fifty years ago. Thus
there are two polymers, or chains, consisting of the basic build-
ing blocks, namely nucleotides. Each chain is composed of
four types of nucleotides, each characterized by four bases:
Adenine (A), Cytosine (C), Guanine (G), and Thymine (T).
Thus one can think of each strand in the double helix as ahuge
string over the four-symbol alphabet{A,C,G, T}. Each strand
of the helix of the DNA has a definite beginning and an end; it
cannot be “read backwards.” The starting side is referred to as
the5′ end and the ending side is referred to as the3′ end. The
fact that there is a definite spatial ordering to the DNA strand
allows us to model thespatialordering as atemporalordering
and apply the methods of time series analysis. Because of the
chemical bonding, if one side of the double helix contains anA
at a particular location, the corresponding location on the other
sidemustcontain aT , and vice versa. Similarly,C andG are
paired. The consequence is that once we know the string de-
scribing one strand of the double helix, we can unambiguously
determine the other strand.

The description of one strand of the DNA as a string over
{A,C,G, T} is referred to as thegenomeof the organism. The
length of the genome varies widely across life forms. The table
below shows the lengths of the genomes of various organisms.

Table 1. Typical Lengths of the Genomes of Various
Organisms

Type Organism Name Length of Genome
Virus HIV Type 2 8,016
Bacterium Escherichia Coli ≈ 4.2 million
Mammal Mouse ≈ 2.4 billion
Mammal Homo Sapiens ≈ 3.2 billion
Plant Rice ≈ 10 billion

A few points are worth noting about this table.

1. The genome is each organism has a very precise and un-
varying length. Thus each HIV Type 2 virus hasexactly
8,016 nucleotides – it cannot have 8,017 or 8,015 for ex-
ample. However, two viruses of the same type need not
be identical at all locations. The variations at individ-
ual locations are referred to asSingle Nucleotide Poly-
morphisms (SNP’s). Because the lower level organisms
have had their genomes sequenced many times over, the
exact length of their genome sequence is known. Thus
the length of theE coli genome is known precisely, even
though it shown as approximately 4.2 million in the above
table. On the other hand, the human genome has not been
sequenced sufficiently many times for us to know the pre-
cise length.

2. The above table shows that there is a rough correlation be-
tween what we perceive to be the “intelligence” or “com-
plexity” of the organism and the length of its genome se-
quence. However, our smug feeling of superiority is shat-
tered when we realize that the rice genome is about three

times longer than ours. Thus it is clear that “length of the
genome” does notdirectly translate into “complexity of
behaviour.”

3. The mouse genome has about 80% overlap with the hu-
man genome. The chimpanzee genome has about 98%
overlap with the human genome. Thus, by studying the
genomes of these organisms and (if necessary) by carry-
ing out laboratory experiments, we can aspire to obtain a
better understanding of the human genome.

4. The genomes of two humans differ in only about 0.1% of
the locations, i.e., in about three million locations. These
local variations are referred to as SNP’s, as mentioned
above. Finding out how SNP’s affect a person is one of
the major computational challenges.

2.2 Genes and Coding Regions

The process of life requires that DNA becomes RNA which in
turns produces several proteins. For the present purposes, it is
enough to think of RNA as another string over the alphabet of
RNA nucleotide symbols{A,C, G,U}. Thus, so far as we are
concerned, the symbolT has been replaced byU . Triplets of
RNA nucleotide symbols are referred to as “codons.” Clearly
there are43 = 64 codons. Out of these 64 codons, three are
called stop codons, while the remaining 61 codons produce 20
amino acids. A table giving the correspondence between the 61
codons and the 20 amino acid symbols, as well as sketches of
the shapes of the 20 amino acids, can be found in [2], pp. 137-
138. It is therefore apparent that there is a redundancy in the
map between the 64 codons and the 21 amino acid plus STOP
symbol. However, to date no plausible explanation has been
advanced for the logic behind this map.

Among the 61 codons that produce 20 amino acids (which are
the building blocks of proteins), some are called “start” codons.
Of course, as stated above, the three codons that don’t pro-
duce any amino acids are called stop codons. In “lower” life
forms known as Prokaryotes, the RNA consists of a series of
genes, which consist of “coding” and “non-coding” regions.
The length of the coding region is a strict multiple of three; that
is, each coding region consists of a number of codons. Each
of these codons is mapped into the corresponding amino acid.
The non-coding regions do not produce any amino acids. In
“higher” forms of life known as Eukaryotes (which includes
humans), there is an added complication. Each gene consists
of a series of “introns” that intersperse the “exons” that actually
correspond to the coding plus non-coding regions in a Prokary-
ote. When the RNA gets replicated, the introns seem to get cut
out and only the exons replicate themselves; this phenomenon
has no parallel in the case of Prokaryotes. Therefore, when
two different Eukaryote organisms (e.g., a mouse and a man)
have similar genes with similar functionalities, the exons have
a very close resemblance to each other when viewed as strings
over the alphabet{A,C, G,U}. However, the introns across
organisms need not bear any resemblance to each other.

There is still some ambiguity as to where a coding region starts



(though not about where it ends). To put it simply, every cod-
ing region must start with a start codon, but every start codon
does not signify the start of a coding region. The parts of the
RNA that meet some simple necessary conditions (e.g., they
start with a start codon and end with a stop codon, there is only
one stop codon in the entire stretch, and that is at the end, the
length of the string is not too short, etc.) is referred to as an
Open Reading Frame (ORF). One of the important problems
in genomics is to determine whether an ORF is really a cod-
ing region or not. Note that some authors refer to an ORF as a
“putative gene.”

To summarize, we can state two very “high level” problems
that can be tackled using mathematical techniques.

1. Given a gene, is it possible to distinguish the coding re-
gions from the non-coding regions?

2. Given an ORF or a putative gene, is it possible to compare
this string with another string that isknownto be a gene,
to determine the degree of similarity between the strings?

2.3 Proteins

On the next higher step up the complexity ladder are proteins.
As stated above, at a very basic level a protein is just a sequence
of amino acids. Thus, just as a genome can be thought of as a
long string over the four-symbol alphabet{A,C, G, T}, a pro-
tein can be thought of as a string over a twenty symbol alphabet
of the amino acid symbols. Unlike the genome sequence which
can be billions of symbols long, or a gene sequence which can
be tens of thousands of symbols long, a protein is a string that
is on average about 250 amino acid symbols long. The shortest
proteins consist of just about 50 amino acids, whereas very long
proteins consist of up to 2,000 amino acids or even more. In
biology, the description of a protein in terms of its amino acid
sequence is called theprimary structure . It is now accepted
in biology that the primary structure of a protein determinesev-
erythingabout the protein, such as its three-dimensional shape,
chemical activity, etc. However, actually translating the pri-
mary structure into this information poses a formidable chal-
lenge.

In principle, a protein folds up in three-dimensional space into
a configuration that minimizes its total potential energy. After
all, even a protein must obey the laws of physics! However,
the expression for the potential energy is extremely compli-
cated, especially if one takes into account the interactions be-
tween the various molecules that comprise the protein and its
surroundings (usually water). Moreover, the energy function
seems to have a huge number of non-global local minima in
configuration space. Thus finding the three-dimensional struc-
ture of a protein by directly minimizing the energy function
has not proved fruitful except for relatively short proteins. On
the other side, it is possible to determine the 3-D structure of
a protein using experimental techniques, either NMR for short
proteins or particle accelerator experiements for long proteins.
Clearly this is an expensive route to determining structure, and

it would be preferable to find some other methods that work
at leastmostof the time, even if not always. It can be said
fairly that in industry (as opposed to academia), the ultimate
purpose of bioinformatics is to discover new drugs, because
that is where the money is. Drug discovery consists, in very
simple terms, of determining which protein needs to have its
activity suppressed or enhanced, and which chemical molecule
will do the job. For this purpose, it is often enough to describe a
protein in terms of its so-called secondary structure. In the sec-
ondary structure the local shape of a protein is described as one
of just three entities, denoted by the symbolsα, β, δ. These
symbols are referred to respectively as helix, sheet, and coil.
Note that there is no simple relationship between the length of
a protein sequence (i.e., the length of its primary structure) and
the length of its secondary structure.

There are in effect two distinct approaches to protein structure
prediction. The first is called “homology” prediction (but the
“homology” spoken of here has nothing to do with algebraic
geometry!). In this approach, one starts with the primay struc-
ture of a protein whose 3-D structure he wishes to determine,
and seeks a protein of known 3-D structure whose own primary
sequence “closely” matches that of the protein at hand. A rule
of thumb states that if two proteins have overlap of about 40%,
then their 3-D structures are similar. Of the roughly 100,000
naturally occuring proteins, roughly 19,000 have had their 3-
D structure determined, and naturally the number is constantly
increasing. The purpose of homology-based modelling is to de-
termine the structure of a protein of interest (which could either
be “natural” or artificially constructed) by comparing it with a
protein of known structure. The second approach is called “ab
initio” prediction. The approach here is to map the primary
structure directly into the secondary structure, using a variety
of approaches. Neural networks have been used withsomesuc-
cess to predict the secondary structure of a protein from its pri-
mary structure. See [2] for details. In spite of this, the prob-
lem of predicting protein structure can still be considered to be
“open.”

3 String Alignment

From the preceding discussion, it is clear that a central prob-
lem in computational biology isstring alignment. This prob-
lem arises in at least two contexts: (i) Matching an RNA frag-
ment with another that is known to be a gene, to determine the
similarity if any. (ii) Matching an amino acid sequence with an-
other whose 3-D structure is known to determine the similarity
if any. While biologically the two problems are quite distinct,
from acomputationalstandpoint both problems are quite simi-
lar. A general problem formulation that encompasses both can
be stated as follows:

SupposeA is the alphabet of interest (either the four-symbol
nucleotide alphabet or the twenty-symbol amino acid alpha-
bet), and supposeu,v are two strings overA. Suppose to be
specific thatu is shorter thanv. It is straight-forward to deter-
mine whetheru is a perfectsubstring ofv. For this purpose,



one can set up a finite state machine with input that stops if and
only if it encounters the input streamu. Text editors do this
kind of thing routinely. A slight variation of this approach can
be used to determine the longest substring ofu that is a perfect
substring ofv.

However, in biological applications it will rarely happen that
one string will be aperfectsubstring of another. Rather, it is
often necessary to introduce “gaps” in one string or the other
in order to get a good match. Moreover, one often has to settle
for “matches” of one symbol in one string against a different
(i.e., not identical) symbol in the other string. To formulate this
problem precisely, define a “weight” matrixw : A × A →
<. Thus if a symbolx ∈ A in one string is aligned against
a symboly ∈ A in the other string, the weight assigned to the
match isw(x, y). Typicallyw(x, x) is large and positive, while
w(x, y) is negative (and either large or small) ifx 6= y. In case
a gap is introduced in one or the other string, one can assign a
gap penalty. Note that it makes no sense to place gaps in both
strings, one against the other. Thus if a gap is introduced in
one string and then extended, the weight can be twice the gap
penalty; alternatively, the penalty forintroducinga gap can be
larger than the incremental penalty forextendinga gap. In any
case, the sum of all the weights from one end to the other is the
total score of the alignment. The optimal gapped alignment is
one that minimizes the total weight. Note that, in any gapped
alignment (optimal or otherwise) the total length of the gapped
strings is always equal, whether or not the original strings are
of equal length.

The optimal gapped alignment problem can be readily solved
using dynamic programming, for the simple reason that an opti-
mal gapped alignment satisfies theprinciple of optimality, that
is: a sub-alignment of an optimal alignment is itself optimal.
A dynamic programming solution to the optimal gapped align-
ment problem is called the Needleman-Wunsch algorithm. If
n denotes the length of the larger stringv, then the computa-
tional complexity of this algorithm isO(n2). By a slight mod-
ification, the dynamic programming aproach can also be used
to find an optimal gapped alignment betweensubstringsof u
andv.

There are several problems that are still unsolved. While the
dynamic programming approach haspolynomialcomplexity in
terms of thelengthof the strings, if one wishes to align more
than two strings, then the complexit isexponentialin terms of
thenumberof strings. On the other hand, in biology it is really
not necessary to find anoptimal alignment. It is only neces-
sary to find some kind of resemblance between strings. Thus
it would be worthwhile to find some alignment algorithms that
are suboptimal but in a guaranteed sense. In the same way,
it appears to the author that the use ofrandomized algorithms
should be explored.

See [5, 6] for a discussion of string alignment algorithms. Two
of the papers in this special session (by Aluru and by Wise)
address the problem of string alignment.

4 Markov Chains and Hidden Markov Models

In this section we briefly review some standard material on
Markov chains. Then the discussion is extended to so-called
hidden Markov models (HMM’s). Markov models are dis-
cussed in many standard texts, such as [6, 7] and so on. Hidden
Markov models (HMM’s) are used to separate the coding re-
gions of a Prokaryote gene from the non-coding regions, and
also to classify a protein into one of a small number of previ-
ously classified protein families.

4.1 Markov Chains

SupposeX := {s1, . . . , sn} is a finite set. A stochastic process
{Xt}t≥0 assuming values inX is said to be aMarkov chain if

Pr{Xt|Xt−1,Xt−2, . . .} = Pr{Xt|Xt−1}.

The Markov chain is said to bestationary if the above condi-
tional probability is independent oft. The temporal evolution
of a Markov chain is captured by ann× n matrix of transition
probabilities, defined as follows:

aij := Pr{Xt = sj |Xt−1 = si}, A = [aij ].

Thusaij is the probability that the Markov chain is in statesj

at the next time instant, given that it is in the statesi at the
current time instant. Obviously the matrixA is row-stochastic;
that is,

aij ≥ 0 ∀i, j, and
n∑

j=1

aij = 1 ∀i.

Hence the vector all one’s is acolumneigenvector ofA. A stan-
dard result (see e.g., [3], Theorem 3.11) states that every such
matrix also has at least onerow eigenvector whose components
are all nonnegative (and can therefore be scaled to add up to 1).
Such a vector, i.e., a nonnegative vectorπ such thatπ = Aπ
and such that the components ofπ add up to 1, is called asta-
tionary distribution. Under some additional conditions, such
as the irreducibility of the Markov chain, there is only one sta-
tionary distribution. Note tha if the Markov chain is started off
at timet = 0 with the initial stateX0 distributed according to
π, thenXt is distributed according toπ at all future times.

4.2 Hidden Markov Models

One of the main motivations for studying Markov chains is that
in some sense they have a finite description. The Markov prop-
erty says that the latest measurementXt−1 contains all the in-
formation contained inall the past measurements. Thus, once
the observer measuresXt−1, he can throw all past measure-
ments without any loss of information. Now what happens if
a stochastic process is not Markovian? Hidden Markov mod-
els (HMM’s) are somewhat more general models for stochas-
tic processes that still retain the “finite memory” feature of
Markov chains.

Specifically, suppose we now havetwosetsX := {s1, . . . , sn}
called the state space, andY := {r1, . . . , rm} called the output



space. Suppose{Xt} is a Markov chain. At each timet, the
stateXt induces a probability distribution on the output space
Y , as follows:

Pr{Yt = ri|Xt = sj} = bij , ∀i, j.

The stochastic process{Yt} is said to obey a hidden Markov
model (HMM). Thus a HMM is described by ann × n matrix
A of state transition probabilities, and anotherm×n matrixB
of readout probabilities.

Suppose we know the matricesA,B, and we have a single sam-
ple path{yt}T

t≥0 of observations of the stochastic process{Yt}.
At this point, one can ask three distinct questions.

1. Given the matricesA,B, what is the likelihood of this par-
ticular sample path? This is called the “likelihood ques-
tion” and requires us to compute the quantity

Pr{Yt = yt ∀t}, givenA,B.

2. What is the most likely sequence of states{xt}T
t≥0? This

is called the “decoding question.”

3. Assuming that we know only the integern but not the
entries in the matricesA andB, can we iteratively com-
pute these entries based on an observation of a sample path
{yt}T

t≥0? This is called the “learning question.”

Answers to these questions have been known for many years;
see [2], Chapter 7 for a discussion of these issues.

But there is another, more fundamental question that is ad-
dressed in a companion paper by this author, namely: Suppose
we have a stationary stochastic process{Yt} assuming values
in a finite setY . Do there exist an integern, a setX of car-
dinality n, and matricesA,B such that{Yt} is precisely the
corresponding HMM? A partial answer is given in [1] and a
complete answer is given in the companion paper.

5 Classification of Proteins into Families Using
HMM’s

One of the successful applications of HMM’s is in classifying a
new protein into one of a small number (typically three or four)
of protein families; see [10] for details.

In simplified form the problem is as follows: One begins with a
fairly large number of proteins, which are grouped into a small
number of families on the basis of structural or functional simi-
larities. Typical numbers are: 500 to 1,000 for the total number
of proteins, and three to four for the number of families. Then
a new protein is given in terms of its primary structure, and
the objective is to determine to which of the small number of
protein families the new protein is most likely to belong.

To solve this problem using HMM’s, one proceeds as follows.
For each of the families, one develops a corresponding HMM.
First, to cater for the fact that the primary structures of the

various proteins within a particular family all have different
lengths, one carries out a gapped alignment of the protein se-
quences. Note that this gapped alignment is usually done “by
hand” since it would be computationally infeasible to carry
out anoptimal gapped alignment.1 Once the multiple align-
ment is carried out, one has a large number of amino acid se-
quences,now all of equal length. Now one views all these
gapped aligned sequences as sample paths (of equal length) of
the output of a single HMM. To take into account the gaps in
the alignment, the output space is taken as having a cardinality
of 21 (the 20 amino acids plus the gap symbol).

Figure 1: Hidden Markov Model for Protein Classification

Figure 1 above shows the HMM used to produce each of these
sample paths. At each step along the aligned sequences (which
are now viewed as evolvingin time, rather than along spatial or-
dering), one computes the frequency of each of the three events
occuring, namely: deletion of an acid, insertion of an acid, or
mutation of one acid into another. In each of these states, the
21-dimensional probability vector corresponding to each of the
21 possible outputs is computed as just the actual frequency of
occurence of these 21 outputs in the observed sequences. This
completes the specification of the HMM for a particular family.
Similar constructions are done for each of the small number of
protein families.

To classify a new protein sequence, one first does a multiple
gapped alignment with all the proteins within each family. This
generates a sample path corresponding to each of the three or
four HMM’s. Then the likelihood of the sample path is com-
puted for each HMM. The HMM for which the sample path
likelihood is maximum is declared as the winner, i.e., the new
protein sequence is classified as belonging to that particular
family.

In a companion paper, it is pointed out that the above method
has a number of drawbacks. For one thing, the underlying
Markov chain isreducible. This is because there is no path
from a state at timei to a state at timej < i. In reality, this
reducibility comes about because the HMM is actually trying
to simulate anon-stationarystochastic process as a stationary
process. The second thing to notice about the HMM is that it
has ahugenumber of parameters to be estimated. Both of these
issues are addressed in a companion paper.

1Recall that the complexity of the existing optimal gapped alignment algo-
rithms isexponentialin the number of strings being aligned.



6 Estimating the Transition Probabilities of a
Markov Chain

We conclude the paper by raising an important problem for
which the literature contains only a partial (and somewhat un-
satisfactory) solution. Suppose we have a Markov chain evolv-
ing over a known finite state spaceX = {1, . . . , n}, but with
an unknown state transition matrixA. How is it possible to es-
timate the entries ofA based on observing a realization of the
Markov chain?

Let aij denote theij-th entry ofA. After watchingN time
steps of the Markov chain, we can form an estimate ofâij for
aij by defining

âij =
∑N

t=1 I{Xt+1 = j&Xt = i}∑N
t=1 I{Xt = i}

,

whereI{·} equals one if the event occurs and equals zero oth-
erwise. Thuŝaij is the fraction of times that, starting in state
i at timet, the Markov chain makes a transition to the statej.
Since successive cycles of a Markov chain are independent, it
is possible to use Hoeffding’s inequality to conclude that

Pr{|âij − aij | > ε} ≤ 2 exp(−2Niε
2),

whereNi is the number of times that the Markov chain passes
through statei during the firstN observations.

The main difficulty with the above bound is thatNi is itself
a random variable. If the Markov chain starts off in the (un-
known) stationary distributionπ, thenNi ≈ πiN . However,
if some components ofπ are very small, then we need to
make a very large number of observations in order for the er-
ror |âi − aij | to be uniformly small with respect toi and j.
This in turn requires us to make some assumptions about the
magnitude of the smallest component ofπ. In other words, our
estimates of the rate of convergence of the estimates to the true
values depend on the unknown quantities – a circular reason-
ing. It is highly desirable to find ways around this difficulty.

7 Discussion

In this paper, we have discussed a few problems in computa-
tional biology that are amenable to analysis using a “systems”
viewpoint. The references, especially [2, 6], contain several
other such problems.
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