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Abstract

In this paper, we consider switched linear discrete-time sys-
tems. We propose a method to design an observer-based
switched control which guarantees that the switched system is
asymptotically stable. The main result consists in proving a
separation principle for linear discrete-time switched systems.
Hence, the design of the switched state feedback control and
the switched observer can be carried out independently. Such
a design is formulated in terms ofLinearMatrix Inequalities
(LMI).

1 Introduction

In recent years, the study of switched systems has received a
growing attention in control theory and practice. By switched
systems we mean a class of hybrid dynamical systems consist-
ing of a family of continuous (or discrete) time subsystems and
a rule that governs the switching between them. A survey of
basic problems in stability and design of switched systems is
given in [1] where some contributions are summarized. Most
of these contributions deal with stability analysis or design of
state feedback based control laws (see [2], [3], and references
therein).

In this paper, the problem of switched output feedback control
design is addressed for switched discrete time systems. We
propose a method to design an observer-based switched
control with guarantee of asymptotic stability of the closed
loop switched system. The main result consists in proving a
separation principle for linear discrete-time switched systems.
Hence, one may perform a separate design of the switched state
feedback control and the switched observer. The advantage
of the proposed control in addition to be an output feedback
based control is that the observer allows a direct access to all
the components of the state vector. This may be useful for
people interested by fault detection problems in the switched
systems framework.

The paper is organized as follows. The next section gives the
problem formulation. In section 3, the design of a switched
state feedback and a switched observer are considered sep-
arately. In Section 4 a separation principle is proved. This
shows that the observer-based switched control, obtained by
using simultaneously the switched state feedback and the
switched observer of section 3, stabilizes the closed switched
system. We end the paper by an illustrative example and a
conclusion.

Notations: We use standard notations throughout the paper.
MT is the transpose of the matrixM . M > 0 (M < 0)
means thatM is positive definite (negative definite).0 andI
denote the null matrix and the identity matrix with appropriate
dimensions.X is the state spaceX ⊂ IRn. B(0, R) denotes
the ball with center 0 and radiusR and :

‖x‖ denotes the euclidian norm.
‖A‖ = sup ‖Ax‖

‖x‖ hence‖AB‖ < ‖A‖ ‖B‖
p∏

k=1

Aik
= AipAip−1 · · ·Ai1 .

2 Problem formulation

Consider the switched system defined by:

xk+1 = Aαxk + Bαuk (1)

yk = Cαxk (2)

wherexk ∈ IRv is the state,uk ∈ IRq is the control input and
yk ∈ IRt is the output vector.{(Ai, Bi, Ci) : i ∈ E} are a
family of matrices of appropriate dimensions parameterized by
an index setE = {1, 2, ..., N} andα : X ×N→ E is a switch-
ing signal (i = α(xk, k)). The switching sequence may also
be generated by any strategy or supervisor. We assume that
the switching signal is unknown a priori but real time available.

The problem addressed in this paper concerns the design of an
observer-based switched control law of the following form :

x̂k+1 = Aαx̂k + Bαuk + Lα(yk − ŷk) (3)

ŷk = Cαx̂k

uk = Kαx̂k, (4)



such that the corresponding closed loop switched system
(

xk+1

εk+1

)
=

[
Ãα B̃α

0 Âα

](
xk

εk

)
(5)

whereεk = xk − x̂k denotes the observation error and

Ãα = Aα + BαKα

Âα = Aα − LαCα

B̃α = −BαKα

(6)

is asymptotically stable. Such a switched control law is more
realistic than the classical switched state feedback which re-
quires the availability of all the state vector components.

3 Separate design of the control and the ob-
server

3.1 Switched state feedback design

The classical switched state feedback design reduces to the
computation of

uk = Kαxk, (7)

ensuring stability of the corresponding closed loop switched
system

xk+1 =
(
Aα + BαKα

)
︸ ︷︷ ︸

Ãα

xk (8)

under arbitrary switching signal. A solution has been pro-
posed to this problem in [4]. It is based on the use of switched
quadratic Lyapunov functions and stability conditions from [5].

Theorem 1 If there exist symmetric matricesSi, matricesGi,
andRi, ∀i ∈ E , such that
(

Gi + GT
i − Si (AiGi + BiRi)T

AiGi + BiRi Sj

)
> 0 ∀(i, j) ∈ E×E

(9)
then the state feedback control given by (7) with

Ki = RiG
−1
i ∀i ∈ E (10)

stabilizes asymptotically the system (8).

Proof: see Theorem 2 in [4] 2

Remark 1 : As shown in [4] for analysis and state feedback de-
sign, the condition given in the previous Theorem is equivalent
to the following one :
(

Si (AiSi + BiRi)T

AiSi + BiRi Sj

)
> 0 ∀(i, j) ∈ E × E

(11)
with

Ki = RiS
−1
i ∀i ∈ E (12)

The main difference is the introduction of an additional
variable Gi. The introduction of an additional variableG

has been first used in [6] for uncertain linear time invariant
discrete time systems. Unlike [6] where this variable cannot
be dropped since it plays a key role for stability analysis and
control design, in the case of switched systems the additional
variablesGi can be omitted in analysis and state feedback
design and are useful for constrained control design problems
only. This has been proved in [4]. However, we prefer to
formulate the results on the basis of condition (9) to allow
a direct extension of the results proposed in this paper to
other constrained control laws. For example, the case of
decentralized control design can be immediately solved using
condition (9) with an appropriate partitioning of the matrices
Gi. This prevents conservatism since it allows to keep the
structure of the Lyapunov matricesSi unchanged.

Remark 2 : A switched state feedback computed as indicated
in Theorem 1 ensures that the closed loop switched system
(8) is asymptotically stable under arbitrary switching signalα.
This is equivalent to

∀x0 ∈ Rn,
∀s ∈ {(i0,i1, i2, . . . , ik, . . .) : ∀k ≥ 0, ik ∈ {1, 2, ..., N}} ,

lim
p→∞

p∏

k=0

Ãik
x0 = 0

⇔

∀x0 ∈ B(0, R), ∃nÃ,∀p ≥ 0,
∀snÃ+p ∈

{
(i0,i1, i2, . . . , inÃ+p) :

∀k = 0, 1, ..., nÃ + p, ik ∈ {1, 2, ..., N}}

xnÃ+p =
nÃ+p∏

k=0

Ãik
x0 ∈ B(0, R/2)

⇔

∀σ > 1,∃nÃ (σ) , ∀p ≥ 0,
∀snÃ+p ∈

{
(i0,i1, i2, . . . , inÃ+p) : ∀k = 0, 1, ..., nÃ + p,

ik ∈ {1, 2, ..., N}} ,
∥∥∥∥∥∥

nÃ+p∏

k=0

Ãik

∥∥∥∥∥∥
<

1
σ

3.2 Switched observer design

Consider the switched system defined by (1). The design of a
switched observer :

x̂k+1 = Aαx̂k + Bαuk + Lα(yk − ŷk)
ŷk = Cαx̂

(13)

for this system consists in computing the gain matricesLi,
i ∈ E such that the observation error between the statexk

of the switched system (1) and the statex̂k of the observer
(13) is asymptotically stable. The convergence to the origin
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of the observation error has to be independent of the initial
conditionsx0 andx̂0, the inputuk and the switching signalα.

Define the observation error byεk = xk−x̂k, the error dynamic
is given by:

εk+1 = (Aα − LαCα)︸ ︷︷ ︸
Âα

εk. (14)

The following Theorem, gives sufficient conditions to build
such a switched observer.

Theorem 2 If there exist symmetric matricesSi, matricesFi

andGi solutions of:

[
Gi + GT

i − Si GT
i Ai − FT

i Ci

AT
i Gi − CT

i Fi Sj

]
> 0, ∀(i, j) ∈ E × E ,

(15)
then a switched observer(13) exists and the resulting gainsLi

are given by

Li = Gi
−T FT

i ∀i ∈ E
.

Proof: See theorem 4 in [7]. 2

Remark 3 : The same comments in Remark 1 hold with (11)
replaced by

[
Si ST

i Ai − FT
i Ci

AT
i Si − CT

i Fi Sj

]
> 0, ∀(i, j) ∈ E × E ,

(16)
and (12) by

Li = Si
−T FT

i ∀i ∈ E
.

Remark 4 : A switched observer computed as indicated in
Theorem 2 ensures that the error dynamic (14) is asymptoti-
cally stable under arbitrary switching signalα. The properties
stated in Remark 1 are verified withnÃ andÃ replaced bynÂ

andÂ respectively.

4 A separation principle for discrete-time
switched systems

In this section, we show that the switched output feedback con-
trol obtained by combining the switched state feedback and
the switched observer computed independently in the previous
section guarantees that the closed loop switched system (5) is
asymptotically stable.

Theorem 3 Assume that the matrix gainsKi andLi, ∀i ∈ E ,
have been computed as indicated in Theorems 1 and 2. Then
the observer-based switched control (3)-(4) stabilizes asymp-
totically the closed switched system (5).

Proof : Assume that the matrix gainsKi andLi, ∀i ∈ E , have
been computed as indicated in Theorems 1 and 2. The closed
loop system resulting from the combination of the switched
state feedback and the switched observer is given by (5). As
the errorεk is asymptotically stable, it remains to show that

xk+1 = Ãαxk + B̃αεk (17)

is also asymptotically stable. The later equation writes :

x1 = Ãi0x0 + B̃i0e0 (18)

x2 = Ãi1Ãi0x0 + Ãi1B̃i0e0 + B̃i1Âi0e0

· · ·
· · ·

xp+1 =
p∏

k=0

Ãik
x0 +

[
p∏

k=1

Ãik
B̃i0 +

p∏

k=2

Ãik
B̃i1Âi0

+ · · ·+
p∏

k=j

Ãik
B̃ij−1

j−2∏

k=0

Âik
+ · · ·

+ Ãip
B̃ip−1

p−2∏

k=0

Âik
+ B̃ip

p−1∏

k=0

Âik

]
e0

According to Remarks 3 and 4, let

m = max (nÃ, nÂ)

we have,

∀sn ∈ {(i0,i1, i2, . . . , in) : ∀k = 0, 1, ..., n, ik ∈ {1, 2, ..., N}} ,

∥∥∥∥∥
n∏

k=0

Ãik

∥∥∥∥∥ <

(
1
2

)l

σr

wheren = lm + r with r < m andσ = max
i∈{1,2,...,N}

∥∥∥Ãi

∥∥∥

Hence,

∥∥∥∥∥∥

pm∏

k=j

Ãik
B̃ij−1

j−2∏

k=0

Âik

∥∥∥∥∥∥
≤

∥∥∥∥∥∥

pm∏

k=j

Ãik

∥∥∥∥∥∥
∥∥∥B̃ij−1

∥∥∥
∥∥∥∥∥

j−2∏

k=0

Âik

∥∥∥∥∥
(19)∥∥∥∥∥∥

pm∏

k=j

Ãik
B̃ij−1

j−2∏

k=0

Âik

∥∥∥∥∥∥
≤ σ̂βγ̂

1
2p−1

(20)

with

σ = max
i∈{1,2,...,N}

∥∥∥Ãi

∥∥∥

β = max
i∈{1,2,...,N}

∥∥∥B̃i

∥∥∥

γ = max
i∈{1,2,...,N}

∥∥∥Âi

∥∥∥

σ̂ = max(σ, σm)

γ̂ = max(γ, γm) (21)
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As :

‖xpm+1‖ ≤
∥∥∥∥∥

pm∏

k=0

Ãik
x0

∥∥∥∥∥ +

[∥∥∥∥∥
pm∏

k=1

Ãik
B̃i0

∥∥∥∥∥

+

∥∥∥∥∥
pm∏

k=2

Ãik
B̃i1Âi0

∥∥∥∥∥ + · · ·

+

∥∥∥∥∥∥

pm∏

k=j

Ãik
B̃ij−1

j−2∏

k=0

Âik

∥∥∥∥∥∥
+ · · ·

+

∥∥∥∥∥ÃipmB̃ipm−1

pm−2∏

k=0

Âik

∥∥∥∥∥

+

∥∥∥∥∥B̃ipm

pm−1∏

k=0

Âik

∥∥∥∥∥

]
‖e0‖

we have :

‖xpm+1‖ ≤
∥∥∥∥∥

pm∏

k=0

Ãik
x0

∥∥∥∥∥ + σ̂βγ̂

pm∑

k=1

1
2p−1

‖e0‖ (22)

‖xpm+1‖ ≤
(

1
2

)p

‖x0‖+ σ̂βγ̂
pm

2p−1
‖e0‖ (23)

‖xpm+1‖ → 0 if p →∞ 2

It is well known that the separation principle does not hold in
general and one has to check carefully the validity of this prin-
ciple in other cases than the classical linear time invariant case.
Hence, it is not obvious that the switched system (17) is asymp-
totically stable even if the errorεk converges asymptotically to
0. Theorem 3 gives a rigorous justification for a separate design
of the switched control and the switched observer.

5 Illustrative example

Consider a switched system given by (1) where{Ai : i ∈ E},
{Bi : i ∈ E} and {Ci : i ∈ E} are a family of matrices
parameterized by an index setE = {1, 2} and

Ai =




0 0.89 0.5
hi 0.89 0
−0.1 0 0.9




with i = 1, 2 andh1 = −aλ1, h2 = λ2

B1 = [0 0 1]T , B2 = [0 − 6(λ1 + λ2) 0]T

C1 = [−1 1 − 2] and C2 = [−2 0.35 1]

If the switching signal is characterized by

α =
{

1 if x1
k < 6, with xk = [x1

k x2
k x3

k]T

2 otherwise
(24)

and the parametersλ1 = 1.12, λ2 = 2 then the open loop
switched system may exhibit a chaotic motion as shown in
figure 1 by using an open loop controluk = 0 if x1

k < 6 and
uk = 1 otherwise.
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Figure 1: Chaotic attractor generated by the switched system
in the three dimensional state space

First, we design a switched state feedback using Theorem 1.
The corresponding LMIs are found to be feasible and the ob-
tained matrix gains are :

K1 =
[
1.3724 − 0.7652 − 0.7618

]

K2 =
[
0.1021 0.0360 0.0358

]

We design separately a switched observer using Theorem 2.
The corresponding LMIs are found to be feasible and the ob-
tained matrix gains are :

L1 =



−0.3450

0.5650
−0.1756


 , L2 =



−0.3033
−1.3599
−0.0463




The observer-based switched control obtained by combining
the previous results leads to a closed behavior corresponding
to the one depicted in figure 2.
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Figure 2: The state componentsxk = [x1
k x2

k x3
k]T of the

closed loop switched system
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The error behavior is shown in figure 3. The simulation is per-
formed for the same switching rule as in (24).
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Figure 3: The error behaviorεk = xk − x̂k

The designed observer-based control guarantees that the closed
loop system in inconditionally stable that is under arbitrary
switching signalα. A simulation has been performed with
α = 1 for even samplesk andα = 2 for odd samplesk and the
results are depicted in figures 4 and 5.
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Figure 4: The state componentsxk = [x1
k x2

k x3
k]T of the

closed loop switched system

6 Conclusion

In this paper, the design of a stabilizing switched output feed-
back control is addressed. A separation principle for linear
discrete-time switched systems is proved. It allows to per-
form the control and the observer designs independently. The
design reduces to check the feasibility of two sets of LMIs.
This reduces to solve a convex optimization problem for which
many tools are available (LMI toolbox by MATALB, Sedumi
solver...). Obviously, the proposed results are less conservative
than the ones based on single quadratic Lyapunov functions
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Figure 5: The error behaviorεk = xk − x̂k

V = xT
k Pxk with P a constant matrix. Finally, these results

are also applicable to the classical discrete time varying case.
This case corresponds to a fixed switching sequence and can be
solved by checking only the LMIs corresponding to the allow-
able sequence.
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