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Abstract

The problem of constructing a controller that results in a time
response which is smooth, has a desired speed of response, and
has little cross-channel interaction, is considered in this paper
for the discrete-time servomechanism problem. Subject to fun-
damental limitations on achievable performance, we satisfy this
objective by introducing a new cheap-control quadratic perfor-
mance index that has the desired transient response characteris-
tics embedded within it. Two examples are used to demonstrate
that minimizing the performance index indeed results in a con-
troller which has good transient performance and, in addition,
reasonable control effort.

1 Introduction

When designing a controller, control engineers have to consider
a number of different issues, including time-response charac-
teristics, robustness properties, controller complexity, and con-
trol signal magnitude, for example. This paper focuses on the
time-response performance aspects of controller design related
to the robust servomechanism problem (RSP) [2, 5]. Specifi-
cally, the goal is to design a controller, subject to the fundamen-
tal limitations of achievable performance [1], which solves the
RSP and which, for the nominal plant, results in a “good” tran-
sient response in the sense that the closed-loop system response
is “smooth”, the speed of response is at a desirable level, and
there are “small” interactions between the output channels. It
is shown in this paper that “good” transient behaviour is indeed
attainable if one designs a controller that minimizes a perfor-
mance index of the form

Jθ :=
∞

∑
k=1

{

(ẑθ
[k])

′(ẑθ
[k])+ ε ·φ(u[k])

′φ(u[k])
}

with ẑθ
[k] := (I−θ/h)e[k−p] +(θ/h)e[k−p+1],

where e[k] is the output tracking error, h is the designer-
specified sampling period, θ is a designer-specified diagonal
matrix whose diagonal elements satisfy θi > h, ε is a designer-
specified positive constant, u[k] is the control signal, and φ(u[k])
is a special polynomial function of u[k] and its previous val-
ues which, like integer p, depends on the class of the distur-
bance/tracking signals. Note that this performance index dif-

fers from the more standard index

J =
∞

∑
k=1

{
(e[k−p])

′(e[k−p])+ ε ·φ(u[k])
′φ(u[k])

}
,

which has been used elsewhere in the literature (e.g., see
[2, 5, 1]), although both indices are of the “cheap-control”
type [4, 7]. The motivation for the structure of the term ẑθ

[k]

in the proposed index is that, in the ideal case when ẑθ
[k] = 0,

we have (I− θ/h)e[k−p] +(θ/h)e[k−p+1] = 0, or, equivalently,
e[k] = [I− hθ−1]ke[0], i.e., the error response in the system has
a smooth, non-interacting, exponentially-decaying behaviour
whose response time can be adjusted by choice of the matrix
θ. Note that the ideal response, e[k] = [I − hθ−1]ke[0], can be
obtained by sampling e(t) = exp(−θ−1t)e(0) at t = kh and us-
ing the approximation exp(−hθ−1) ≈ I− hθ−1; hence, the ith

diagonal element of θ essentially determines the desired time
constant of the ith output channel.

2 Preliminary Results

2.1 Plant, Disturbance, and Reference Signal Models

The discrete-time plant to be controlled is assumed to be de-
scribed by the linear shift-invariant model

x[k+1] = Ax[k] +Bu[k] +Eω[k] (1)

y[k] = Cx[k] +Du[k] +Fω[k] (2)

e[k] = y[k]− yref[k], (3)

where x[k] ∈R
n is the state, u[k] ∈R

m is the control input, y[k] ∈
R

r is the (measurable) output to be controlled, ω[k] ∈ R
m1 is

the vector of (unmeasurable) disturbances acting on the system,
yref[k] ∈ R

r is the tracking reference signal, and e[k] ∈ R
r is the

tracking error.

It is assumed that the disturbances ω[k] are generated from an
unforced system with the structure

xdist[k+1] = A1xdist[k], (4)

ω[k] = C1xdist[k] (5)

where xdist[k] ∈R
n1 . Similarly, we assume that the tracking ref-

erence signal yref[k] arises from a system with the structure

xref[k+1] = A2xref[k], (6)

ρ[k] = C2xref[k], (7)

yref[k] = Gρ[k], (8)



where xref[k] ∈ R
n2 and ρ[k] ∈ R

q. For nontriviality, we assume
that sp(A1)⊂ D

c, sp(A2)⊂ D
c, where sp(·) denotes the eigen-

values of (·) and D
c denotes the closed region outside of the

unit circle. Finally, we assume that, without loss of generality,

(C1,A1) and (C2,A2) are observable, rank

[
E
F

]

= rank C1 =

m1, and rank G = rank C2 = q. This class of signals is quite
broad and includes classes of signals which commonly occur
in application problems, e.g., constants, polynomials, and si-
nusoidals, and polynomial-sinusoidals.

Two definitions will be useful in the development to follow.
Given (4)–(8), let

S(λ) := λp +δpλp−1 + ...+δ2λ+δ1 (9)

be the least common multiple of the minimal polynomial of A1

and the minimal polynomial of A2, and let {λ1,λ2, ...,λp} be
the zeros of S(λ) (multipliticities included); call

Λ := {λ1,λ2, ...,λp} (10)

the disturbance/tracking poles of (4)–(8), and call S(λ) the
disturbance/tracking polynomial of (4)–(8). As an example,
consider a SISO system subject to constant tracking reference
signals and constant disturbance signals: in this case we have
Λ = {0}. On the other hand, for a SISO system subject to ramp
tracking reference signals and constant disturbance signals, we
have Λ = {0 0}.

2.2 The Robust Servomechanism Problem

The robust servomechanism problem (RSP) for (1)–(3), as de-
scribed in [2], involves finding a linear, shift-invariant con-
troller which has inputs y[k], yref[k] and output u[k] so that:

(a) the resulting closed-loop system is asymptotically stable;

(b) asymptotic tracking/regulation occurs for the disturbances
and reference signal, i.e.,

lim
k→∞

e[k] = 0, ∀x[0] ∈ R
n, ∀xdist[0] ∈ R

n1 , ∀xref[0] ∈ R
n2

and for all controller initial conditions; and

(c) condition (b) holds for arbitrary perturbations in the plant
model (1)–(3) (e.g., plant parameters or plant dynamics,
including changes in model order) which do not cause the
resulting perturbed closed-loop system to become unsta-
ble.

2.3 Solution to the Robust Servomechanism Problem

The following existence result is well established:

Theorem 2.1 [2]: There exists a solution to the robust ser-
vomechanism problem with plant (1)–(3) if and only if the fol-
lowing conditions are all satisfied:

(a) (C,A,B) is stabilizable and detectable,

(b) m ≥ r, and

(c) the transmission zeros of (C,A,B,D) exclude the distur-
bance/tracking poles
λi, i = 1,2, . . . , p. 2

To describe the structure of a controller that solves the RSP,
it is helpful to introduce the notion of a servo-compensator.
Towards this end, define the matrix A ∈ R

p×p, which depends
on the disturbance/tracking polynomial (9), and define vector
β ∈ R

p as

A :=










0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
0 0 0 · · · 1
−δ1 −δ2 −δ3 · · · −δp










and β :=










0
0
...
0
1










.

Also define the matrices

A∗ := block diag(A ,A , . . . ,A)
︸ ︷︷ ︸

r

B∗ := block diag(β,β, . . . ,β)
︸ ︷︷ ︸

r

.

Finally, define γ := [1 0 0 · · · 0] ∈ R
1×p and introduce C ∈

R
r×rp as

C := block diag(γ,γ, . . . ,γ)
︸ ︷︷ ︸

r

.

Then, a servo-compensator for plant (1)–(3) with the class of
disturbance/tracking signals (4)–(8) is a dynamic system with
input e[k] ∈ R

r, output z[k] ∈ R
r, and state η[k] ∈ R

rp which
satisfies

η[k+1] = A∗η[k] +B∗e[k] (11)

z[k] = C η[k]. (12)

In the frequency domain, the ith component of the servo-
compensator output is obtained by filtering the ith component
of the error signal, where the filter has transfer function 1/S(λ),
with S(λ) defined as in (9). For example, in the scalar case with
ω[k] as an unknown constant, we have S(λ) = λ−1 and the out-
put is z[k] = z[0]+∑k

i=0 e[i], i.e., the (discrete-time) integral of the
error.

Let us define the augmented plant to be the system formed by
cascading the servo-compensator in (11)–(12) with the plant in
(1)–(3). A realization for the augmented plant, where the mea-



surable outputs (denoted ymeas[k]) are the output, is as follows:

[
x[k+1]

η[k+1]

]

=

[
A 0

B∗C A∗

][
x[k]

η[k]

]

+

[
B

B∗D

]

u[k] +

[
E 0

B∗F −B∗

][
ω[k]

yref[k]

]

(13)

ymeas[k] =





C 0
0 I
0 0





[
x[k]

η[k]

]

+





D
0
0



u[k] +





F 0
0 0
0 I





[
ω[k]

yref[k]

]

. (14)

It is shown in [2] that, if the three conditions of Theorem 2.1
hold, then there exists a compensator that stabilizes the aug-
mented plant in (13)–(14); moreover, any compensator that sta-
bilizes the augmented plant solves the RSP. In the next section
we show how to design a compensator that, in addition to sta-
bilizing the augmented plant and thereby solving the RSP, sat-
isfies the objective of having a smooth time response whose
speed can be set to any desired value, with little cross-channel
interaction.

3 Main Results

3.1 A Useful Realization of the Augmented Plant

Our goal of achieving a “good” transient response will be sat-
isfied if we can force each component of the tracking error,
e[k] = y[k] − yref[k], to decay exponentially to zero at any pre-
specified rate. With this in mind, we introduce the matrix

θ := diag(θ1,θ2, ...,θr), (15)

where θi ≥ h determines the desired time constant for the ith er-
ror channel. Assuming p≥ 2 (the special case p = 1 is handled
later), we also define γi ∈ R

1×p, i = 1,2, . . . ,r as

γi :=
[ (

1− θi
h

)
θi
h 0 . . . 0

]

and define
Cθ := block diag(γ1,γ2, . . . ,γr). (16)

We now introduce a modified servo-compensator (11)–(12)
which has output zθ

[k] := Cθ ·η[k]. This output, like z[k], is ob-

tained by filtering e[k] by 1/S(λ), but now the desired time
constants are also incorporated in such a way that making zθ

[k]
“small” will result in a “good” transient response. The aug-
mented plant with the modified output is

[
x[k+1]

η[k+1]

]

=

[
A 0

B∗C A∗

][
x[k]

η[k]

]

+

[
B

B∗D

]

u[k] +

[
E 0

B∗F −B∗

][
ω[k]

yref[k]

]

(17)

zθ
[k] =

[
0 Cθ

]
[

x[k]

η[k]

]

. (18)

Roughly speaking, the objective now is to minimize the size
of zθ

[k] for the system (17)–(18). Unfortunately, the presense of
the external disturbance and reference signal in (17) means that
standard optimization methods, such as LQR methods, cannot
be directly applied. To write the equations in a form for which
standard optimization methods can be applied, we introduce
modified versions of x[k], η[k], and u[k] as follows:

x̂[k] := x[k] +δpx[k−1] + · · ·+δ2x[k−(p−1)] +δ1x[k−p], (19)

η̂[k] :=








ê1,[k]

ê2,[k]
...

êr,[k]








, where êi,[k] :=








ei,[k−p]

ei,[k−(p−1)]
...

ei,[k−1]








, (20)

û[k] := u[k] +δpu[k−1] + . . .+δ2u[k−(p−1)] +δ1u[k−p].(21)

Note that these new variables are obtained by filtering the old
ones with S(λ).

In these new coordinates, the signals ω[k] and yref[k] no longer
appear directly as external inputs. Indeed, it can be verified that
system (17)–(18) is equivalent to

[
x̂[k+1]

η̂[k+1]

]

=

[
A 0

B∗C A∗

][
x̂[k]

η̂[k]

]

+

[
B

B∗D

]

û[k] (22)

ẑθ
[k] =

[
0 Cθ

]
[

x̂[k]

η̂[k]

]

, (23)

where ẑθ
[k] := Cθη̂[k] equals (I−θ/h)e[k−p] +(θ/h)e[k−(p−1)].

In the special case when p = 1, we have S(λ) = λ+δ1. We also
have A∗ = −δ1Ir and B∗ = Ir for the servo-compensator. We
still can introduce a matrix θ as in (15), and again introduce
the new coordinates (19)–(21), which in this case simplify to
x̂[k] = x[k] +δ1x[k−1], η̂[k] = e[k−1], and û[k] = u[k] +δ1u[k−1]. In
terms of these variables, system (17)–(18) can be rewritten as
[

x̂[k+1]

η̂[k+1]

]

=

[
A 0
C −δ1I

][
x̂[k]

η̂[k]

]

+

[
B
D

]

û[k] (24)

ẑθ
[k] =

[ θ
hC I− θ

h (1+δ1)
]
[

x̂[k]

η̂[k]

]

+
θ
h

Dû[k], (25)

where the output, ẑθ
[k], now equals (I−θ/h)e[k−1] +(θ/h)e[k].

From the structure of (22)–(25), the following result can be
obtained:

Theorem 3.1: Given (1)–(3) and the class of distur-
bance/reference signals (4)–(8):

(a) The augmented plant representations (22)–(25) are stabi-
lizable and detectable, and possess the same fixed modes
[3] as (1)–(3), iff the existence conditions of Theorem 2.1
hold.

(b) The augmented plant representations (22)–(25) are mini-
mum phase iff the plant (1)–(3) is minimum phase. 2

It follows from this theorem that, if the plant (1)–(3) satisfies
the RSP existence conditions, then there exists a compensator



that stabilizes the augmented plant in the new coordinates (22)–
(25); such a compensator solves the RSP.

3.2 Proposed Performance Index and Optimal Controller

As indicated in Section 1, we now propose the performance
index

Jθ :=
∞

∑
k=1

{

(ẑθ
[k])

′(ẑθ
[k])+ ε · (û[k])

′(û[k])
}

, (26)

where θ is a given matrix of the form (15), ε is a given positive
scalar, û[k] is defined in (21), and ẑθ

[k] equals (I−θ/h)e[k−p] +

(θ/h)e[k−(p−1)]. Recall that the motivation for using such a
performance index is that we desire to make ẑθ

[k] small, which,
in turn, will result in a “good” transient response.

Assuming that the conditions of Theorem 2.1 hold, we know
from Theorem 3.1 and standard LQR theory that there exists
an optimal stabilizing controller that minimizes (26) subject to
(22)–(25) and which solves the RSP for (1)–(3). The optimal
controller is a state-feedback controller of the form

û[k] =
[

K0 K1
]
[

x̂[k]

η̂[k]

]

= K0x̂[k] +K1η̂[k],

where K0 and K1 are the controller gains computed from the
LQR Riccati equation. It follows from the definitions of x̂[k],
η̂[k] and û[k] that an equivalent representation of this controller
is

u[k] = K0x[k] +K1η[k].

Combining this with the servo-compensator state equation,
(11), we obtain the following final control structure:

η[k+1] = A∗η[k] +B∗e[k] (27)

u[k] = K0x[k] +K1η[k]. (28)

Note that, in this optimization problem, the usual limitations
on performance apply if the plant is non-minimum-phase (see
[1]). In addition, we note that standard observer construction
can be used to estimate the state if it is not measurable (see [3]).

4 Examples

To illustrate the type of performance achievable using the pro-
posed control scheme, we now consider two examples.

The first example, taken from [6], is a non-minimum-phase
single-input single-output flexible crane system, pictured in
Figure 1(a). The input is the force applied to the cart, and
the output is the horizontal position of the mass. For certain
masses, spring constants, etc., the basic equations of motion,
linearized about the “down” equilibrium point and sampled
with sampling period h = 0.1 seconds, fit a model of the form
(1)–(3) where

A=











1 0.1 0.04882 0.001628 0.0006816 0.0001857
0 1 0.9748 0.04882 0.08267 0.0004959
0 0 0.9902 0.09967 0 0
0 0 −0.1950 0.9902 0 0
0 0 0 0 0.7555 0.008402
0 0 0 0 −40.509 0.7471











,

B =











5.0959 ·10−6

1.0169 ·10−4

−4.9919 ·10−7

−9.9674 ·10−6

5.0705 ·10−7

8.4020 ·10−5











,

C =
[

1 0 0 0 0 0
]
, D = 0, E = 0, F = 0.

Initially consider the servomechanism problem for constant
tracking/disturbance signals, i.e., Λ = {0} in (10). The solid
curves in Figure 2 are simulation results for a unit step ref-
erence signal when the control weighting in (26) is ε = 10−5

and when the desired transient shape has parameter θ = 3, cor-
responding to an ideal error transient that is a decaying ex-
ponential with a time constant of 3 seconds (i.e., the desired
settling time is 12 seconds or 120 samples). For compari-
son, Figure 2 also shows in dashed curves the response of the
“standard” controller corresponding to θ = 0, while still using
ε = 10−5. In both cases, state-feedback is used to implement
the controller. Notice that the proposed control scheme gives a
much smoother response than the “standard” controller, with-
out using extra control effort. Also note that the settling time
is, indeed, close to the desired 120 samples.

Next, still using the flexible crane system, we consider the ser-
vomechism problem where ramp reference signals are possi-
ble, i.e., Λ = {0 0} in (10). Figure 3 shows simulation results
for the reference signal yref[k] = 50 + 0.1k, i.e., the discretized
version of the signal 50 + t. The parameter values in the sim-
ulation are ε = 10−7 and θ = 20 (for the proposed controller
simulation, shown using solid curves) and ε = 10−7 and θ = 0
(for the standard controller simulation, shown using dashed
curves). The second frame in the figure, showing the track-
ing error, clearly illustrates that the transient performance is
smoother when using the proposed controller.

The second example we consider is a minimum-phase mul-
tivariable mass-spring-damper system, shown in Figure 1(b),
where the system inputs are forces and the output are positions.
We assume that the masses are M = 10 and m1 = m2 = 1, the
spring constant is K = 1, the damper coefficient is B = 1, and
the sampling period is h = 0.1. The resulting model has param-
eters

A =











9.990 ·10−1 9.987 ·10−2 4.975 ·10−4

−1.984 ·10−2 9.970 ·10−1 9.920 ·10−3

4.975 ·10−3 6.636 ·10−4 9.950 ·10−1

9.920 ·10−2 1.489 ·10−2 −9.927 ·10−2

4.975 ·10−3 6.636 ·10−4 2.070 ·10−6

9.920 ·10−2 1.489 ·10−2 6.610 ·10−5

6.636 ·10−5 4.975 ·10−4 6.636 ·10−5

1.489 ·10−3 9.920 ·10−3 1.489 ·10−3

9.934 ·10−2 2.070 ·10−6 2.568 ·10−7

9.851 ·10−1 6.610 ·10−5 8.680 ·10−6

2.568 ·10−7 9.950 ·10−1 9.934 ·10−2

8.680 ·10−6 −9.927 ·10−2 9.851 ·10−1











,



(b)

(a)

cable
flexible

u
cart

K
BB

K

m1

M

m2 y2y1

u2u1

y

mass

Figure 1: (a) Flexible crane system; (b) Multivariable mass-
spring-damper system.

B =











2.076 ·10−6 2.076 ·10−6

6.636 ·10−5 6.636 ·10−5

4.979 ·10−3 5.943 ·10−9

9.934 ·10−2 2.568 ·10−7

5.943 ·10−9 4.979 ·10−3

2.568 ·10−7 9.934 ·10−2











,

C =

[
0 0 1 0 0 0
0 0 0 0 1 0

]

, D = 0, E = 0, F = 0.

Consider the servomechanism problem for constant track-
ing/disturbance signals. Figures 4 and 5 show simulation re-
sults, using ε = 100 and θ = 4 for the proposed controller
(solid), and using ε = 100 and θ = 0 for the “standard” con-
troller (dashed). In Figure 4, a step reference signal is applied
to the first channel of yref[k]; in Figure 5, a step is applied to the
second channel of yref[k]. Notice that the proposed controller
gives a response that, relative to the “standard” controller, is
smooth and has little cross-channel interaction. Moreover, the
controller gives excellent tracking performance for both chan-
nels.

5 Conclusions

This paper has proposed a new type of cheap-control quadratic
performance index for the discrete-time servomechanism prob-
lem. Minimizing this new index results in a nominal transient
response that has a desired speed of response, is “smooth”, and
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Figure 2: Step response simulation results for the flexible crane
system. The solid curves are for the proposed controller, and
the dashed for the “standard” controller.
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Figure 3: More simulation results for the flexible crane sys-
tem. The reference signal is 50 + 0.1k. The solid curves are
for the proposed controller, and the dashed for the “standard”
controller.
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Figure 4: Simulation results for the multivariable mass-spring-
damper system. The reference signal has a unit step on the first
channel. The solid curves are for the proposed controller, and
the dashed for the “standard” controller.
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Figure 5: More simulation results for the multivariable mass-
spring-damper system. The reference signal has a unit step on
the second channel. The solid curves are for the proposed con-
troller, and the dashed for the “standard” controller.

is “almost free” of interaction between output channels. It is in-
teresting to note that, relative to the “standard” controller, a sig-
nificant improvement in transient performance can be attained
without using significantly more control effort. Understanding
and quantifying this effect is a topic of future research.
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