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Abstract

Hybrid systems are those that have a mixture of continuous and
discrete valued state variables and a combination of continu-
ous and discrete dynamics. The modeling framework of hybrid
systems has received considerable attention over the past few
years. The modeling framework is aimed to build a mathemat-
ical model which is suitable for complex dynamical analysis
and control synthesis using hybrid systems. This paper shows
that the linear impulsive differential equations may promote a
unified framework for hybrid systems modeling.

1 Introduction

Physical systems are often subjected to disturbances, chang-
ing operation conditions and component failures, and in many
cases, the changes take place in a short space of time. Exam-
ples are found for example in biological systems and mechani-
cal systems subjected to shock. Such systems can be modeled
by differential and/or difference equations which jump instan-
taneously from one state to another. If there is no jump over
some time interval, then the mathematical model is described
by the solution of a differential and/or difference equation. The
analysis of an instantaneous change in the state of a system is
much more complicated. Mathematical models of systems that
undergo instantaneous changes in the state are calledimpulsive
systems.

Impulsive dynamical systems are characterized by the occur-
rence of abrupt changes in the state of the system which occur
at certain time instants over a period of negligible duration. The
dynamic behaviour of such systems is more complex than the
behaviour of dynamical systems without impulsive effects. The
presence of impulses means that the state trajectory does not
preserve the basic properties which are associated with non im-
pulsive dynamical systems, such as existence, uniqueness and
continuity with respect to initial conditions. Recently, impul-
sive differential equations have been used for hybrid systems
modeling.

Hybrid systems are used for modeling and analyzing systems
which have interacting continuous-valued and discrete-valued
state variables. The continuous state variable may be the value
of the state in continuous time, discrete time or a mixture of

the two. The mathematical model of the continuous state is de-
scribed by a differential or difference equation. The discrete
state variable is generally represented by a finite state digital
automaton or an input/output transition system. The behaviour
of the hybrid system is influenced by state variables which in-
teract at anevent(or trigger) time which occurs whenever the
evolution of the system satisfies a particular condition which
then initiates changes in the state variables.

Hybrid control systems are control systems where both plant
and controller consist of continuous and discrete state vari-
ables. Recently, a common framework used for a hybrid con-
trol has been developed by separating the system components
into three sub components; namely, a plant with a conventional
controller, a discrete state variable controller and an interface
[3]. The three layered configuration is shown in Figure 1. The
plant and the conventional controller are usually modeled by
differential or difference equations. The discrete state variable
controller is designed via a rule based decision process which
supervises the conventional controller. This interface facilitates
communication between the plant and the discrete controller
and simultaneously converts the continuous state to discrete
state variables (C/D), and vice versa (D/C). Some examples of
hybrid control systems are discussed in [3].
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Figure 1: Three Layers Framework

The modeling framework for hybrid systems has received con-
siderable attention over the past few years. The aim is to build
a mathematical model which is suitable for complex dynami-



cal analysis and control synthesis using hybrid systems. The
models proposed in the literature reflect a wide range of both
applications and justifications. An overview of hybrid system
modeling can be found in [7, 8]. In that paper, a unified ap-
proach is also proposed which is a generalization of five models
of hybrid control systems developed from system and control
perspectives found in [4, 5, 9, 21, 24]. The unified mathe-
matical model tries to capture all possible important aspects of
continuous and discrete valued variables as well as their inter-
action.

Currently, there are two paradigms in the theoretical framework
of hybrid systems:aggregationandcontinuation. In the ag-
gregation approach, the system state variables are treated as a
discrete event dynamic system (or a finite automaton) by ag-
gregating the continuous valued state variables via cell to cell
partition. A theory of cell to cell mapping as a global method
for analyzing nonlinear systems is available [14].

On the other hand, the continuation approach supposes the
whole system to be described by either differential or differ-
ence equations. In this approach, the discrete valued state vari-
ables are considered as uncertainty or disturbances, or embed-
ding them as jump actions in ordinary differential or difference
equations. In the first case, an appropriate hybrid controller
can be designed using robust control. In the second case, if
the jump exhibits changing dynamics, the controller can be de-
signed using a multi controller design approach or the jump
linear quadratic (JLQ) method [18].

In applications, the progress of both paradigms have been im-
peded by the conservatism which is embedded in the design
methodology [8]. The aggregation approach, on the one hand,
is often faced with the problem of choosing an appropriate par-
tition method and a non determinism of automata that lead to
undecidability and computation complexity. On the other hand,
the continuation approach is often limited by a compromise
of design requirements found in conventional control design.
Thus, verification is needed when the resulting controller from
one approach is implemented in a real system. Effort is being
made to bring about a unified design for both continuous and
discrete valued controllers.

2 Systems with Impulsive Effects

There are two main approaches for studying the behaviour of
impulsive differential systems. The first approach uses agen-
eralized functionto represent ajump discontinuityin the state
with the help of the Dirac function. This approach was devel-
oped in [13]. In the second approach, the jump discontinuity
is represented by animpulsive vectorwhich was initiated by
[19] (where the first stability results were obtained) and further
developed in [6, 16, 17] and the references cited therein.

The impulsive vector representation provides a general char-
acterization of external disturbances, perturbations or even im-
pulsive controls. The impulsive ordinary differential equations
of interest are those characterized by linear systems. The equa-

tions studied here are consequently referred to as linear impul-
sive differential equations, or simply aslinear impulsive sys-
tems (LIS). Applications of linear impulsive systems in con-
trol designs can be found in [15, 22]. The following example
demonstrates the modeling of external disturbances and a me-
chanical system subjected to collision.

External Disturbance

Allowing the plant state to “instantaneously” change its value
during the time periodtk to t+k is a simple way to model “jump”
disturbances. Consider a linear system subjected to external
disturbances as follows

ẋ(t) = Ax(t) +Bu(t) +D
∑

k

αkδ(t− tk) (1)

whereδ is the Dirac delta function; that is,δ(σ) = 0 for all
σ 6= 0, and ∫ ε

0

δ(σ) dσ = 1 for all ε > 0 (2)

Hence, the system representation (1) can be equivalently repre-
sented in the form

ẋ(t) = Ax(t) +Bu(t) ; t 6= tk

x(t+k ) = x(tk) + d(tk) t = tk

whered(tk) = Dαk. Here an impulsive disturbance at time
tk in (1) is equivalent to an instantaneous change in the statex
at timetk. This representation is known as a linear impulsive
dynamical system.

Now consider the effect of a disturbance signalµwhich acts on
a system with statex according to

ẋ(t) = Ax(t) +Bu(t) +Dµ(t)

where the disturbance signalµ is the output of the linear finite
dimensional system

ẋµ(t) = Aµ xµ(t) +Bµ

∑
k αkδ(t− tk)

µ(t) = Cµ xµ(t)

The two equations can be equivalently written more succinctly
as[

ẋ(t)
ẋµ(t)

]
=

[
A DCµ

0 Aµ

] [
x(t)
xµ(t)

]
+

[
B
0

]
u(t) ;

t 6= tk[
x(t+k )
xµ(t+k )

]
=

[
x(tk)
xµ(tk)

]
+ d(tk) ; t = tk

(3)
where the impulsive vectord(tk) has the constrained form

d(tk)
4
=

[
0
Bµ

]
αk



A Mechanical System

Consider the linear differential equation studied in [25], which
is used to model a multi-input/multi-output mechanical sys-
tems subject to collision or shock effects according to

Mÿ +Dẏ +Ky = Lu+ Pf (4)

Herey ∈ Rd is the system coordinate vector,u ∈ Rp is the
force vector,M ∈ Rd×d is the generalized positive definite
inertia matrix,D ∈ Rd×d is the generalized structural damping
matrix,K ∈ Rd×d is the generalized stiffness damping matrix,
L ∈ Rd×m is the actuator force distribution matrix, andf is
the external input which is defined as

f =
{

0 : free motion, t 6= tk
Ψ : during collision, t = tk

Definex
4
= [yT ẏT ]T . Then (4) can be written in the state

space form

ẋ(t) =
[

0 I
−M−1K −M−1D

]
x(t)

+
[

0
M−1L

]
u(t) ; t 6= tk

x(t+k ) = x(tk) +
[

0
M−1P

]
Ψ ; t = tk

(5)

At time tk, the positiony is continuous but the velocitẏy is dis-
continuous. In this model, the forceΨ represents an impulsive
force during collision that results in a jump discontinuity in the
velocity components of the states. The mathematical model in
(4) could be used in a number of applications such as to model
a rigid bar hinged at one end which is subjected to an impact
load at timetk at the other end, or a constrained manipulator
[10].

3 Impulsive Differential Equations

Consider a minimal order continuous time linear time invariant
plant with statex(t) ∈ Rn, outputy(t) ∈ Rl, and inputu(t) ∈
Rm subjected to impulsive vectors{d(tk); k ∈ Z+} on the
plant state as described by

ẋ(t) = Ax(t) +Bu(t)
y(t) = C x(t)

x(t+k ) = x(tk) + d(tk) ; t ≥ 0
(6)

where both the timestk and valuesd(tk) are unknown. The im-
pulsive vector may represent the external disturbances, failure
of the system’s components or an impulsive control.

The solution of systems with impulsive effects (6) in the ex-
tended state space begins from the initial condition(t0, x0) and
moves along the trajectory(t, x(t)). If at time instantstk ≥ t0
there is an impulsive jumpd(tk), then the state is instanta-
neously changed to the new statex(t+k ) = x(tk) + d(tk). The
state then follows the trajectory with the new initial condition

x(t+k ) until the occurrence of the next transition time instant
at time tk+1. That is, the solutions of impulsive systems are
characterized by three components: the dynamics of ordinary
differential equations, the transition time instants{tk} and the
impulsive vectors{d(tk)}.

In order to make the standard notation conform to commonly
used notation in system and control theory, some new defini-
tions that correspond to the occurrence of an impulsive jump
and the nature of an impulsive jump are considered in the fol-
lowing.

3.1 Impulsive Vectors

1. Open loop impulsive vector

In this case, the impulsive vectord(tk) is an arbitrary vector
in Rn which occurs at timetk,∀k ∈ Z+ which is indepen-
dent of either the state or the output of the system. This so
calledopen loopimpulsive vector arises in mathematical mod-
els of physical systems as a result of: exogenous disturbances,
failure of system components or open loop impulsive controls.
Applications of open loop impulsive control can be found in
drug management in the human body [23] and optimal space
trajectories problems [11].

2. Closed loop impulsive vector

In this case, the impulsive vectord(tk) is dependent on the state
or the output of the system, and can be written in the form

d(tk) = ψ x(tk)

whereψ is either a constant or time varying matrix. This
type of impulsive vector is usually found in controlling the be-
haviour of a linear system in which information about the sys-
tem is being used to effect the trajectory. Applications of closed
loop impulsive vector can be found in the pulse frequency mod-
ulation systems studied in [22] and in the recently developed
Hybrid Reference Control (HRC) in [15].

3.2 Transition Time Instants

The transition time instants are defined as the times when im-
pulsive vectors occur. The occurrence of impulsive vectors may
be the result of external disturbances, system component fail-
ures, clock timing, or a logical decision. The time instant also
defines an “event” or a “trigger” time which represents a dis-
continuity in the state of the system. In addition, an event may
be used to cause another event at some time in the future. Fol-
lowing [2], the time instants will be classified in two ways.

1. Scheduled time instants

The sequence of the scheduled time instantstk is given by

tk = tk−1 + τk ; τk > 0

where the value ofτk is knowna priori for all k ∈ Z+. In the
simplest case,τk = τ is constant for allk ∈ Z+ that leads
to uniform time instants similar to uniform sampling in digital
systems.



2. Conditioned time instants

Conditioned time instantstk occur if either the timet or the
statex(t) satisfies a particular condition. The condition can be
defined, for example, as

tk = {t : ς(t) = ε, t ∈ R+}; or

tk = {t : ς(x(t)) = ε, (t, x(t)) ∈ R+ ×Rn}
Alternatively, the condition can also be given in term of a set
S ⊂ Rn by tk = {t : x(t) ∈ S,S ⊂ Rn}.

4 Impulsive Dynamical Systems

4.1 Hybrid Systems Representation via LIS

LIS modeling can be extended to cover the problem of systems
with switching dynamics which is commonly found in hybrid
control system design. The major development of impulsive
dynamical systems is to capture the behaviour of an instanta-
neous jump of state of a dynamical system. However, impul-
sive vectors may also be used to describe a dynamical system
subjected to the output of a higher order model.

From a system and control perspective, it is common for the
design to be carried out using the continuation approach, since
control system design requires a tractable evolution for both
synthesis and assessment of the controller. In terms of discrete
variables, the continuation model can be characterized as fol-
lows:

1. Autonomous (or controlled) switching

In this case, the vector field of the continuous dynam-
ics changes discontinuously when the state satisfies some
constraints (or in response to a control command)

2. Autonomous (or controlled) impulses

In this case, the state of the system jumps discontinuously
on the satisfaction of some given constraints (or in re-
sponse to a control command)

In practice, there might only be one type of discrete variable
present, If both types are found, we have the so calledfull
powermodeling of hybrid systems [7, 8].

To illustrate, consider the dynamics of a system that consists of
switching between two dynamic systems according to

ẋ(t) = Aix(t) ; i = 1, 2

This system can be written in the form[
ż1(t)
ż2(t)

]
=

[
A1 0
0 A2

] [
z1(t)
z2(t)

]
[
z1(t+k )
z2(t+k )

]
=

[
z1(tk)
z2(tk)

]
+

[
d1(tk)
d2(tk)

]
x(t) = z1(t) + z2(t)

where eitherd1(tk) = −z2(tk) or d2(tk) = −z1(tk). This
choice of decision vectors then implies that eitherx(t) = z1(t)

or x(t) = z2(t) for tk < t ≤ tk+1. Modeling switching sys-
tems via systems with impulsive effect representation was first
observed in [8]. An autonomous switching can be viewed as a
special case of autonomous impulse by embedding the discrete
state into a larger continuous state via the universal extension
property of the phase spaceRn [20].

Recent papers on hybrid control design are related to problems
of controlling systems with switching dynamics. So far, little
attention has been paid to the problem of systems which are
subjected to an instantaneous change in the state. The capabil-
ity of an impulsive differential equation to capture the model-
ing of switching systems may provide a unified framework for
hybrid systems, and promote a new direction in analyzing and
synthesizing hybrid control systems.

4.2 Fundamental Properties

Impulsive differential equations are basically piecewise differ-
ential equations where the discontinuities in the system state
are caused by jumps in the solutions. Most results of the theory
of impulsive ordinary differential equations have been devel-
oped in [6, 17] (and the references cited therein) but the in-
vestigation has been limited to the case where the impulsive
vectors have a closed loop representation.

4.2.1 Existence, Uniqueness of Solutions

Let Ω ⊂ Rn be an open set, and consider a LIS of the form
ẋ(t) = Ax(t) +Bu(t) ; t 6= tk

x(t+k ) = x(tk) + d(tk) ; t = tk
x(t+0 ) = x0

(7)

where the solutionx(t) = x(t; t+0 , x0) ∈ Ω for t ≥ t0. The
impulsive vectord(tk) and time instantstk, for eachk ∈ Z+,
are defined in the domainΩ which contains the set

G = {(t, x) ∈ R× Ω : t+k < t ≤ tk+1,∀k ∈ Z+andx ∈ Ω}.

• Autonomous Linear Impulsive Systems
The system (7) is called an autonomous system if
B u(t) = 0 for all t ≥ 0 andx ∈ Rn.

• Non autonomous Linear Impulsive Systems
The system (7) is called a non autonomous systems if
B u(t) 6= 0 for all t ≥ 0 andx ∈ Rn.

Notice that the initial conditionx(t+0 ) = x0 is used rather than
x(t0) = x0. If the timet0 corresponds to a transition time in-
stant thenx(t+0 ) is understood to be the initial condition of the
ordinary differential equation. The time evolution of linear im-
pulsive systems consists ofcontinuousandjump discontinuous
functions.

Condition 1 LetΩ be an open set whereΩ ⊂ Rn and

1. 0 ≡ t0 < t1 < t2 < · · · < tk < · · ·
2. d(tk) are bounded impulsive vectors such that

x(t+k ) = x(tk) + d(tk) ∈ Ω



Then the nonemptyGk is defined by

Gk = {(t, x) ∈ R× Ω : tk < t ≤ tk+1, x ∈ Ω}

The solutionx of (7) is continuous from the left on each in-
terval(tk, tk+1] and has right-hand and left-hand limits,x(t+k )
andx(tk+1) respectively. This set defines the solution of im-
pulsive systems in each region(tk, tk+1)× Ω. Therefore

G =
⋃
k

Gk

The presence of impulsive vectord(tk) at timetk, means that
the impulsive system (7) is non autonomous.

For anyt > tm > 0, the solutionx(t) = x(t; t+0 , x0) can be
written in the integral form

x(t; t+0 , x0) = eA(t−t0)x(t0)+
∫ t

t0

eA(t−σ)Bu(σ−t0) dσ (8)

+
∫ t

t0

eA(t−σ)
m∑

k=0

d(tk)δ(σ − tk) dσ

The transition equation (8) gives the statex(t) at timet in term
of the statex(t0) at time t0, the input over the time interval
[t0, t) and a sequence of impulsive vectors{d(tk)} occurring at
time instantstk, k = 0, 1, · · · ,m where0 ≡ t0 < t1 < · · · <
tm < t. The uniqueness of the solution is given by the follow-
ing theorem which follows immediately from the existence and
uniqueness of solutions of linear ordinary differential equations
(ODE), see for example [12].

Theorem 1 Consider the linear time invariant impulsive sys-
tem (7). Suppose Condition 1 holds. Then for a given initial
value(t0, x0) ∈ G, there exist a unique solution given by equa-
tion (8) which is defined for allt ∈ R.

4.2.2 Continuity of Solutions

Unlike the ODE, the continuity of the solution of (8) with re-
spect to its initial condition cannot solely be guaranteed by the
initial conditionx(t+0 ) = x0. The solution of (8) on the interval
(tk, tk+1] with the initial conditionx(t+k ) is given by

x(t) = eA(t−tk)x(t+k ) +
∫ t

tk

eA(t−σ)Bu(σ − tk) dσ

The solution follows the initial value problem of ordinary dif-
ferential equations for each interval(tk, tk+1].

For the case of events which occur at time instants{tk} such
that

0 ≡ t0 < t1 < · · · < tk < tk+1 < · · · (9)

the existence of a solution as in (8) is guaranteed. However,
a problem can arise when condition (9) cannot be guaranteed.
That is, suppose the initial conditionx(t+0 ) = x0 at timet+0 is
not on the hyperplaneςj(x(t))

tj = {t : ςj(x(t)) = ε, (t, x(t)) ∈ R+ ×Rn}

Suppose also at the time instanttj , the solution(tj , xj) meets
the hyperplaneςj(x(t)) such that the solution(t+j , x(t

+
j )) lies

on the hyperplaneςj(x(t)). Hence, the part of the solution on
the intervaltj < t ≤ tj+1 is also the solution of the interval
tj ≤ t ≤ tj+1.

For example, suppose the plant output of the LIS (7) is given
by

y(t) = Cx(t) (10)

and the transition time instanttk is defined by the condition:

cTmx(tk) = δm

where cTm is the m-th row of C in (10). Then from (7),
cTmd(tk) = 0 impliescTmx(t

+
k ) = δm in which case the solution

of the LIS does not leave the hyperplane att = tk. Mathemat-
ically, this implies the solutionx for t > tk is not defined.
Moreover, ifcTmd(tl) = 0 for all l > k, then the solution is also
not continuable to the right oft > tk.

If cTmd(tk) = 0, the existence question can be resolved [1] by
assuming that an appropriately small time delay∆t occurs be-
tween the occurrence of an event at timetk and the change in
the state of the reference model at timet+k such that the tra-
jectory moves off the hyperplane before switching. That is,
supposet+k = tk + ∆t and

cTme
A∆tx(tk) 6= δm.

Thenx(t+k ) = x(tk + ∆t) + d(tk) = eA∆tx(tk) + d(tk) so
that cTmd(tk) = 0 implies cTmx(t

+
k ) = cTme

A∆tx(tk) 6= δm.
Another way to avoid the possibility of the (mathematical) non-
existence of a solution is to impose the constraint on the deci-
sion vector such that

cTmd(tk) 6= 0.

The nonexistence problem can also be resolved by using the so
calledbeating conditionthat is commonly assumed in the study
of impulsive dynamical systems, see [6, 17]. The beating con-
dition assumes that the solution meets one hyperplane not more
than once in order to guarantee the existence of the solution. In-
stead, here it is assumed that the solution will (eventually) leave
the hyperplane once the solution reaches it, possibly avoiding
the fast occurrence of impulsive vectors (known aschattering
in control theory).

More specifically, given a solutionx(t) of (8) which is defined
on [t0, t0 + α) whereα > 0, a solutionx̃(t) is a continuation
to the right ofx(t) if, for β > α, the solutioñx(t) is defined on
[t0, t0 + β) andx(t) = x̃(t) for all t ∈ [t0, t0 + α). If x(t) is
defined over the interval[t0, t0 + α) and no such continuation
is possible fort > t0 +α, then the interval[t0, t0 +α) is called
themaximal existenceof a solutionx(t).

Let J+(t+0 , x0) be the maximal interval from(t+0 , ω) in which
the solutionx(t; t+0 , x0) is defined. The following result is the
reformulation of the condition in [6, 22] which summarizes the
continuity of the solution of linear impulsive systems.



Theorem 2 Consider the linear time invariant impulsive sys-
tems (7). If the following conditions

1. 0 ≡ t0 < t1 < t2 < · · · < tk < · · ·

2. x(t) ∈ Q for t ∈ J+(t+0 , x0) whereQ is a compact subset
of Ω

hold. ThenJ+(t+0 , x0) = (t+0 ,∞)

Proof. Condition 2 implies that there exists a finiteη ∈ Q
and(γ, η) ∈ R+ × Ω. Suppose on the contrary, it is assumed
thatJ+(t+0 , x0) = (t+0 , γ) andγ < ∞. Then it follows that
limt→γ |x(t)| = ∞ provided Condition 1 is satisfied. But, this
contradicts the assumption that the limitlimt→γ |x(t)| = η
exists and is finite.

5 Conclusions

In this paper, the use of linear impulsive differential equations
for hybrid systems modeling has been discussed. The unique
characteristic of the linear impulsive differential equations is
the complexity introduced by the presence of impulsive vec-
tors in relation to time instants of occurrence to the states of the
system. Properties of the impulsive effects which are described
by impulsive vectors has also been presented. Since the impul-
sive vector is not restricted to be a function of any variables in
the system which is usually assumed in the literature, a more
general result has been obtained. The full power modeling of
hybrid systems via linear impulsive differential equations has
been shown by using simple examples that show this modeling
approach may promote a unified framework for analysis and
control design of hybrid systems.
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