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System Theory. scribed by a differential or difference equation. The discrete
state variable is generally represented by a finite state digital
Abstract automaton or an input/output transition system. The behaviour

of the hybrid system is influenced by state variables which in-
Hybrid systems are those that have a mixture of continuous dReact at arevent(or trigger) time which occurs whenever the
discrete valued state variables and a combination of contifyolution of the system satisfies a particular condition which
ous and discrete dynamics. The modeling framework of hybitigen initiates changes in the state variables.

systems has rece_ived considera_ble_attention over the past If-ﬁyﬁrid control systems are control systems where both plant
years. The mo_dell_ng frgmework is aimed to bund_a mathem%hd controller consist of continuous and discrete state vari-
ical model which is suitable for complex dynamical analysgbles_ Recently, a common framework used for a hybrid con-

and control synthesis using hybrid systems. This paper sho[\ofﬁ has been developed by separating the system components

tha.lt. the linear impulsive d{ﬁerentlal equatlons may Promote;a, three sub components; namely, a plant with a conventional
unified framework for hybrid systems modeling.

controller, a discrete state variable controller and an interface
[3]. The three layered configuration is shown in Figure 1. The
1 Introduction plant and the conventional controller are usually modeled by

. ) ) differential or difference equations. The discrete state variable
Physical systems are often subjected to disturbances, chafihirolier is designed via a rule based decision process which

ing operation conditions and component failures, and in magypervises the conventional controller. This interface facilitates
cases, the changes take place in a short space of time. Exg@imunication between the plant and the discrete controller
ples are found for example in biological systems and mechagjyy simultaneously converts the continuous state to discrete

cal systems subjected to shock. Such systems can be mode{gth variables (C/D), and vice versa (D/C). Some examples of
by differential and/or difference equations which jump Instafybrid control systems are discussed in [3].

taneously from one state to another. If there is no jump over
some time interval, then the mathematical model is described
by the solution of a differential and/or difference equation. The Discrete Discrete
analysis of an instantaneous change in the state of a system is valued state Discrete valued state
much more complicated. Mathematical models of systems that Controller I
undergo instantaneous changes in the state are dalfrdsive

systems

Impulsive dynamical systems are characterized by the occur-
rence of abrupt changes in the state of the system which occur D/C Interface c/D
at certain time instants over a period of negligible duration. The
dynamic behaviour of such systems is more complex than the )
behaviour of dynamical systems without impulsive effects. The
presence of impulses means that the state trajectory does not Plant and
preserve the basic properties which are associated with non im- > Convent. >
pulsive dynamical systems, such as existence, uniqueness and Continuous Controller | Continuous
continuity with respect to initial conditions. Recently, impul- control output
sive differential equations have been used for hybrid systems

modeling. Figure 1: Three Layers Framework

Hybrid systems are used for modeling and analyzing systems

which have interacting continuous-valued and discrete-valuggle modeling framework for hybrid systems has received con-
state variables. The continuous state variable may be the vadiierable attention over the past few years. The aim is to build
of the state in continuous time, discrete time or a mixture afmathematica| model which is suitable for Comp|ex dynami-



cal analysis and control synthesis using hybrid systems. Tiwns studied here are consequently referred to as linear impul-
models proposed in the literature reflect a wide range of bative differential equations, or simply &gear impulsive sys-
applications and justifications. An overview of hybrid systetems (LIS) Applications of linear impulsive systems in con-
modeling can be found in [7, 8]. In that paper, a unified aprol designs can be found in [15, 22]. The following example
proach is also proposed which is a generalization of five moddismonstrates the modeling of external disturbances and a me-
of hybrid control systems developed from system and contidianical system subjected to collision.

perspectives found in [4, 5, 9, 21, 24]. The unified mathe-

matical model tries to capture all possible important aspectstofternal Disturbance

continuous and discrete valued variables as well as their imﬁﬁowing the plant state to “instantaneously” change its value
action.

during the time period, tot; is a simple way to model ‘jump”
Currently, there are two paradigms in the theoretical framewatisturbances. Consider a linear system subjected to external
of hybrid systems:aggregationand continuation In the ag- disturbances as follows

gregation approach, the system state variables are treated as a

discrete event dynamic system (or a finite automaton) by ag- i(t) = Az(t) + Bu(t) + D> agd(t — ty) 1)
gregating the continuous valued state variables via cell to cell k

partition. A theory of cell to cell mapping as a global method . . . . _
for analyzing nonlinear systems is available [14]. wr;froe(;;]sdthe Dirac delta function; that i$(c) = 0 for all

g 1

On the other hand, the continuation approach supposes the

whole systgm to be Qescrlbed by enhgr differential or differ- ' / (o) do =1 foralle>0 @)

ence equations. In this approach, the discrete valued state vari- 0

ables are considered as uncertainty or disturbances, or embed- ) ]

ding them as jump actions in ordinary differential or differencg€nce, the system representation (1) can be equivalently repre-

equations. In the first case, an appropriate hybrid control@gnted in the form

can be designed using robust control. In the second case, if .

t) = Az(t Bu(t) ; t #£ tg
the jump exhibits changing dynamics, the controller can be de- 2(?) z(#) + Bult) ; 7 U
signed using a multi controller design approach or the jump x(ty) = a(ty) +d(ty) t =t

linear quadratic (JLQ) method [18].

Wered(tk) = Day. Here an impulsive disturbance at time

In applications, the progress of both paradigms have been ift- ) . . .
peded by the conservatism which is embedded in the desigr” (1) is equivalent to an instantaneous change in the state
étimetk. This representation is known as a linear impulsive

methodology [8]. The aggregation approach, on the one hafd, ™.

is often faced with the problem of choosing an appropriate p yhamical system.

tition method and a non determinism of automata that leadN@w consider the effect of a disturbance signathich acts on
undecidability and computation complexity. On the other hang system with state according to

the continuation approach is often limited by a compromise

of design requirements found in conventional control design. &(t) = Ax(t) + Bu(t) + Dpu(t)

Thus, verification is needed when the resulting controller from

one approach is implemented in a real system. Effort is beindjere the disturbance signalis the output of the linear finite
made to bring about a unified design for both continuous admensional system

discrete valued controllers. _
u(t) = Aupxu(t)+ By Yo axd(t —ty)

2 Systems with Impulsive Effects p(t) = Cux,(t)

There are two main approaches for studying the behaviour{e two equations can be equivalently written more succinctly
impulsive differential systems. The first approach usgem@ g

eralized functiorto represent gump discontinuityin the state

with the help of the Dirac function. This approach was devel- | () _ A DC, x(t) n B () ;
oped in [13]. In the second approach, the jump discontinuity | &,(¢) o 0 A, z,(t) 0 ’
is represented by aimpulsive vectowhich was initiated by t £ty

[19] (where the first stability results were obtained) and further N
developed in [6, 16, 17] and the references cited therein. { z(ty, )) }

[ ﬂfzu(éfk)) } +d(ty) st =ty

The impulsive vector representation provides a general char- (3)
acterization of external disturbances, perturbations or even ighere the impulsive vectat(t;,) has the constrained form
pulsive controls. The impulsive ordinary differential equations

of interest are those characterized by linear systems. The equa- Al 0
d(tk) = B Qg
I



A Mechanical System z(t}) until the occurrence of the next transition time instant

Consider the linear differential equation studied in [25], whic%:]tlmetk“' That is, the solutions of impulsive systems are

is used to model a multi-input/multi-output mechanical sysc_ aracterized by three components: the dynamics of ordinary

tems subject to collision or shock effects according to Fhfferer_mal equations, the transition time instafts} and the
impulsive vectorgd(t)}.

Myj+Dy+ Ky=Lu+Pf (4) In order to make the standard notation conform to commonly
used notation in system and control theory, some new defini-

d i P . : L
]Ic-lt:reyve th J\I; the};glxsttieim tzoordlga:e"\;e(;tm,eitlsl 'Z tzr?it tions that correspond to the occurrence of an impulsive jump
jorce vector, /< dxd s the generalized positive AeliNi€, 4 the nature of an impulsive jump are considered in the fol-
inertia matrix,D € R**“ is the generalized structural damping -

. . . ) X Jowing.
matrix, K € R¥*?is the generalized stiffness damping matrix, g

L € R¥*™ is the actuator force distribution matrix, arfds

the external input which is defined as 3.1 Impulsive Vectors
o 0 : free motion t# 1, 1. Open loop impulsive vector
\4 during collision ¢t =t In this case, the impulsive vectdlt) is an arbitrary vector

in R™ which occurs at timé,, vk € Z* which is indepen-
Definex 2 [yT  ¢T]T. Then (4) can be written in the statedelrlltdOf e|th|er the st?tg or the output gf the EVSte”.‘- lTh'SdSO
space form calledopen loopmpulsive vector arises in mathematical mod-
els of physical systems as a result of: exogenous disturbances,
. 0 I failure of system components or open loop impulsive controls.
i(t) = [ _M-'K —M-D ] x(t) Applications of open loop impulsive control can be found in
0 drug management in the human body [23] and optimal space
+ { =y } u(t) it # ty (5) trajectories problems [11].
2. Closed loop impulsive vector
0
x(te) + { M-lp } Uit =tk In this case, the impulsive vectd(t, ) is dependent on the state
or the output of the system, and can be written in the form

z(ty)

Attime ¢, the positiory is continuous but the velocityis dis- _

continuous. In this model, the forde represents an impulsive d(te) =9 a(t)

force during collision that results in a jump discontinuity in thevhere ¢ is either a constant or time varying matrix. This

velocity components of the states. The mathematical modekype of impulsive vector is usually found in controlling the be-

(4) could be used in a number of applications such as to mo@aliour of a linear system in which information about the sys-

a rigid bar hinged at one end which is subjected to an impagkn is being used to effect the trajectory. Applications of closed

load at timet,, at the other end, or a constrained manipulat®éop impulsive vector can be found in the pulse frequency mod-

[10]. ulation systems studied in [22] and in the recently developed
Hybrid Reference Control (HRC) in [15].

3 Impulsive Differential Equations

. . ) ] ] o _ 3.2 Transition Time Instants
Consider a minimal order continuous time linear time invariant

plant with stater(t) € R", outputy(t) € R!, and inputu(t) € The transition time instants are defined as the times when im-
R™ subjected to impulsive vectorsi(t;);k € ZT} on the pulsive vectors occur. The occurrence of impulsive vectors may

plant state as described by be the result of external disturbances, system component fail-
ures, clock timing, or a logical decision. The time instant also
i(t) = Ax(t)+ Bu(t) defines an “event” or a “trigger” time which represents a dis-

y(t) = Cux() (6) continuity in the state of the system. In addition, an event may

a(ty) = @(ty) +d(tr); >0 be used to cause another event at some time in the future. Fol-

lowing [2], the time instants will be classified in two ways.
where both the times; and valuesl(¢;) are unknown. The im- 912l y

pulsive vector may represent the external disturbances, faildréScheduled time instants

of the system’s components or an impulsive control. The sequence of the scheduled time instapis given by

The solution of systems with impulsive effects (6) in the ex-
tended state space begins from the initial conditignz,) and
moves along the trajectory, z(¢)). If at time instantg;, > t, where the value ofy, is knowna priori for allk € Z*. In the
there is an impulsive jumg(t;), then the state is instanta-simplest caser, = 7 is constant for alk € Z* that leads
neously changed to the new statg;”) = x(t;) + d(tx). The to uniformtime instants similar to uniform sampling in digital
state then follows the trajectory with the new initial conditiosystems.

ty =11+ Tk ; T >0



2. Conditioned time instants orz(t) = z(t) for tx, < t < tr4+1. Modeling switching sys-
. . . v . tems via systems with impulsive effect representation was first
Conditioned time instants, occur if either the time or the Y P . P .
L . . - observed in [8]. An autonomous switching can be viewed as a
statex(t) satisfies a particular condition. The condition can be_~ " : : !
. special case of autonomous impulse by embedding the discrete
defined, for example, as

state into a larger continuous state via the universal extension
tr={t:c(t)=¢,tc RT}; or property of the phase spaé¥ [20].

ty ={t:c(z(t)) = ¢ (t,z(t)) € RT x R"} Recent papers on hybrid control design are related to problems

] - ) ) of controlling systems with switching dynamics. So far, little
Alternatively, the condition can also be given in term of & Sekiantion has been paid to the problem of systems which are

SCRbyty={t:z(t) €S,5 C R"}. subjected to an instantaneous change in the state. The capabil-
ity of an impulsive differential equation to capture the model-

4 Impulsive Dynamical Systems ing of switching systems may provide a unified framework for
hybrid systems, and promote a new direction in analyzing and

LIS modeling can be extended to cover the problem of systems .
with switching dynamics which is commonly found in hybridh-2 Fundamental Properties

control system design. The major development of impulsiYe . . . . . . . .
. ; . . mpulsive differential equations are basically piecewise differ-
dynamical systems is to capture the behaviour of an instanta-

neous UMb of state of a dvnamical System. However. im lﬁr_nial equations where the discontinuities in the system state
. jump y y ' ! pfe\re caused by jumps in the solutions. Most results of the theory

oefr?mpulsive ordinary differential equations have been devel-
oped in [6, 17] (and the references cited therein) but the in-
From a system and control perspective, it is common for tiestigation has been limited to the case where the impulsive
design to be carried out using the continuation approach, sinegtors have a closed loop representation.

control system design requires a tractable evolution for both

synthesis and assessment of the controller. In terms of discigie 1 Existence, Uniqueness of Solutions

variables, the continuation model can be characterized as fol-

subjected to the output of a higher order model.

lows: LetQ) ¢ R™ be an open set, and consider a LIS of the form
1. Autonomous (or controlled) switching #(t) = Ax(t)+ Bu(t); t # tg
In this case, the vector field of the continuous dynam- I(té) = z(tk) +d(tk) ; t=ty  (7)
ics changes discontinuously when the state satisfies some z(ty) = wo

constraints (or in response to a control command) where the solution:(t) = z(t; {f', z) € Qfor t > to. The

2. Autonomous (or controlled) impulses impulsive vectord(t,) and time instantsy,, for eachk € Z T,
In this case, the state of the system jumps discontinuoudkg defined in the domain which contains the set
on the satisfaction of some given constraints (or in reg — {(t,x) e Rx Q: 1} <t <tyy,Vk € ZTandz € Q}.
sponse to a control command)
In practice, there might only be one type of discrete variablee Autonomous Linear Impulsive Systems
present, If both types are found, we have the so cdildid The system (7) is called an autonomous system if
powermodeling of hybrid systems [7, 8]. Bu(t)=0forallt > 0andx € R™.

To illustrate, consider the dynamics of a system that consists ob Non autonomous Linear Impulsive Systems
switching between two dynamic systems according to The system (7) is called a non autonomous systems if
) ) Bu(t) #0forallt > 0andx € R™.
z(t) = Asx(t) ; i=1,2
Notice that the initial conditiom(tS) = z, is used rather than
x(tg) = =zo. If the timet, corresponds to a transition time in-
[ Z1(t) } _ [ A0 ] [ 21(t) } stant thenz () is understood to be the initial condition of the
() | 0 A 25(t) ordinary differential equation. The time evolution of linear im-
pulsive systems consists ebntinuousandjump discontinuous
} _ [ 21(ty) } N { dy (ty) } functions.
| =(te) da(tk)

Condition 1 Let{2 be an open set whefe ¢ R™ and

This system can be written in the form

2(t) = al)+z=0) 1. 0=ty <t;<ty<-- <tp<
0Dty <ty <ty <ty <

where eitherd, (ty) = —za(tx) or da(ty) = —zi(tx). This 2. d(t;) are bounded impulsive vectors such that
choice of decision vectors then implies that eithér) = z;(t) z(th) = x(ty) +d(ty) € Q



Then the nonempty,, is defined by Suppose also at the time instant the solution(t;, ;) meets
the hyperplane; (z(t)) such that the solutiott;", z(¢))) lies

G ={(t,x) € RxQ:tp <t <tpy1, 2 €Q} on the hyperplane;(z(t)). Hence, the part of the solution on
The solutionz of (7) is continuous from the left on each in—;he<";tir\;altj <t < tj51 s also the solution of the interval
i SUS it

terval (¢, t4+1] and has right-hand and left-hand limits¢;")
andz(tx41) respectively. This set defines the solution of imFor example, suppose the plant output of the LIS (7) is given
pulsive systems in each regiéy, tx4+1) x €. Therefore by

G=J o
k

The presence of impulsive vectdft;,) at timet;, means that Cz;x(tk) =0
the impulsive system (7) is non autonomous.

y(t) = Cx(t) (10)

and the transition time instary is defined by the condition:

where ¢l is the m-th row of C in (10). Then from (7),
eI d(ty,) = 0impliesc z(t}) = 4,, in which case the solution
of the LIS does not leave the hyperplang at ¢;,. Mathemat-
ically, this implies the solutiorx for ¢ > t; is not defined.

t
x(t; by, mo) = eA(t*t“)x(toH/ e Bu(o—ty) do (8) Moreover, ifcL d(t;) = 0for all > k, then the solution is also

For anyt > t,, > 0, the solutionz(t) = x(t;tJ, o) can be
written in the integral form

to not continuable to the right af> ¢.
t m T . .
A(t—0) At (o — t) d If c;,d(tx) = 0, the existence question can be resolved [1] by
+ /to ¢ kZ:O (t)o(0 = ty) do assuming that an appropriately small time defayoccurs be-

tween the occurrence of an event at titpeand the change in
the state of the reference model at timje such that the tra-
jectory moves off the hyperplane before switching. That is,
suppose;” = t; + At and

The transition equation (8) gives the state) at timet in term

of the statexr(ty) at timety, the input over the time interval

[to, t) and a sequence of impulsive vect§dgt;) } occurring at

time instants,, k = 0,1,---,mwhere0 =ty < t; < -+ <

t,, < t. The uniqueness of the solution is given by the follow- T e L (1) # O

ing theorem which follows immediately from the existence and

uniqueness of solutions of linear ordinary differential equatiofhenz (t) = z(ty + At) + d(t) = et (ty,) + d(ty) so

(ODE), see for example [12)]. thatcl d(t,) = 0 impliesclx(t)) = cLeA®a(ty) # om.
Another way to avoid the possibility of the (mathematical) non-

Theorem 1 Consider the linear time invariant impulsive sysexistence of a solution is to impose the constraint on the deci-

tem (7). Suppose Condition 1 holds. Then for a given initialon vector such that

value(to, zo) € G, there exist a unique solution given by equa-

tion (8) which is defined for all € R. cmd(ty) # 0.

4.2.2 Continuity of Solutions The nonexistence problem can also be resolved by using the so
calledbeating conditiorthat is commonly assumed in the study
Unlike the ODE, the Continuity of the solution of (8) with reof impu|sive dynamica] systems, see [6’ 17] The beating con-
spect to its initial condition cannot solely be guaranteed by tgion assumes that the solution meets one hyperplane not more
initial conditionz(t;") = . The solution of (8) on the interval than once in order to guarantee the existence of the solution. In-

(tk, te+1] with the initial conditionz(t;) is given by stead, here itis assumed that the solution will (eventually) leave
. the hyperplane once the solution reaches it, possibly avoiding
z(t) = eA(t*tk)x(t;:) + / eA(tfa)Bu(U —ty) do the fast occurrence of impulsive vectors (knowrchattering
tk in control theory).
The splution fqllows the initigl value problem of ordinary dif-More specifically, given a solution(t) of (8) which is defined
ferential equations for each interv@k, ¢j.1]. on [to, to + o) wherea > 0, a solutioni(t) is a continuation
For the case of events which occur at time instaftis} such to the right ofz(¢) if, for 5 > «, the solutionz(t) is defined on

that [to,to + B) andxz(t) = &(t) for all ¢ € [to,to + ). If x(t) is
0= to<t1 < <ty <tppr < - g) defined over the intervato, to + o) and no such continuation

_ _ _ _ is possible for > t, + «, then the intervalto, to + «) is called
the existence of a solution as in (8) is guaranteed. Howevgle maximal existencef a solutionz (t)

a problem can arise when condition (9) cannot be guaranteed. o ) ) N ) )
That is, suppose the initial conditior{t]) = o at imet is LetJ" (g, 20) be+the maximal interval fronft; , w) in which
not on the hyperplaneg (x(t)) the solutlo_nr(t; tg, o) IS q_eﬁn_ed. The foIIc_>wmg resulti is the
reformulation of the condition in [6, 22] which summarizes the
ti={t:qj(x(t)) =¢ (t,z(t)) € RT x R"} continuity of the solution of linear impulsive systems.



Theorem 2 Consider the linear time invariant impulsive sys-[8] M. S. Branicky, V. S. Borkar, S. K. Mitter. “A Unified

tems (7). If the following conditions Framework for Hybrid Control: Model and Optimal Con-
L Omte ety oy one ety < e trol Theory”, IEEE Trans. on Automatic Controf3 pp.
IR 4§ 31-45, 1998.
2.z(t) € Qfort e J+(t5r,xo) whereQ is a compact subset [9] R. W. Brockett. “Hybrid models for motion control sys-
of Q tems”, Perspectives in Contrpeds. H. Trentelman and J.

C. Willems, Birkrauser, Boston, pp. 29-54, 1993.
[10] L. Cai, A. A. Goldenberg. “Robust Control of Position
and Force for Robot Manipulators Involving Both Free
and Constrained Motion”Proc. 29th IEEE Conf. Deci-

hold. ThenJ*(tf, o) = (g, 0)

Proof. Condition 2 implies that there exists a finitec Q
and(vy,n) € RT x Q. Suppose on the contrary, it is assumed sion Contr, pp. 1943-1948, 1990

+(4+F _ (4t ;
;hatJ (tg ;wol_ (o ’721 %n27 j.t.oo' 1Then tlt :Qllgwg E[h?rt]_ [11] T.E. Carter, J. Brient. “Linearized Impulsive Rendezvous
im¢ . |z(t)| = oo provided Condition 1 is satisfied. But, this Problem”, J. Optmiz. Theory and Applic86, pp. 553—

contradicts the assumption that the litii,_,~ |z(t)| = n 584 1995

exists and is finite. [12] E. A. Coddington, N. Levinson. Theory of Ordinary Dif-
ferential Equations, McGraw-Hill, New York, 1955.

[13] A. Halanai, D. Wexler.Qualitative Theory of Impulsive
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the system which is usually assumed in the literature, a mdi®] E. Joelianto, D. Williamson. “Stability of Impulsive Dy-

general result has been obtained. The full power modeling of namical Systems”Proc. 37th IEEE Conf. Decision and
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