
A NEW ALGORITHM FOR CONSTRAINED FINITE TIME
OPTIMAL CONTROL OF HYBRID SYSTEMS WITH A LINEAR

PERFORMANCE INDEX
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Abstract

In this paper we present a modification of the algorithm de-
scribed in [1, 2] for computing the solution to the constrained
finite time optimal control problem for discrete time linear hy-
brid systems. As opposed to the quadratic performance index
used in the original algorithm here we use a linear performance
index. The algorithm combines a dynamic programming strat-
egy with a multi-parametric linear program solver. By compar-
ison with literature results it is shown that the algorithm pre-
sented here solves the considered class of problems in a com-
putationally efficient way.

1 Introduction

In the last few years several different techniques were developed
for the analysis and controller synthesis for hybrid systems [3,
4, 5, 6, 2]. A significant amount of the research in this field has
focused on solving constrained optimal control problems, both
for continuous time and discrete time hybrid systems.

We consider the class of discrete time linear hybrid systems,
in particular, the class of constrained piecewise affine systems
(PWA) that are obtained by partitioning the state space into
polyhedral regions and associating to each region a different
affine state update equation, cf. [4]. For such a class of systems
the constrained finite time optimal control (CFTOC) problem
can be solved by means of multi-parametric programming [2].
The solution is a piecewise affine state feedback control law
and can be computed by using multi-parametric mixed-integer
quadratic programming (mp-MIQP) for a quadratic perfor-
mance index and multi-parametric mixed-integer linear pro-
gramming (mp-MILP) for a linear performance index.

A novel computationally efficient method to solve the con-
strained finite time optimal control problem with the perfor-
mance index based on the squared 2-norm was recently pro-
posed by Borrelli et al. [1]. There the authors solved the prob-
lem backwards in time with the dynamic programming strategy
where at each time step a multi-parametric quadratic program
(mp-QP) is solved.

In this paper we present a modification of the aforementioned
method [1] for optimal control problems with performance in-
dices based on the 1- and ∞-norm. The algorithm uses a dy-
namic programming strategy together with a multi-parametric
linear program solver (mp-LP).

The algorithm is compared with the mp-MILP solver proposed
by Dua and Pistikopoulos [7]. It is impossible to conclude on
the general superiority of one particular method. However, ex-
tensive simulations have shown that the presented algorithm is
faster, less sensitive to ill-conditioned problems, and gives a
more compact representation of the solution.

The aim of this paper is to give insight into the new approach
and explain why it performs better for the class of problems we
are considering.

2 Finite Time Constrained Optimal Control of
linear Hybrid Systems

Consider the class of linear discrete time hybrid systems which
can be stated as constrained piecewise affine systems of the
following form

x(t + 1) = fPWA(x(t), u(t)) = Aix(t) + Biu(t) + fi, (1)

if
[

x(t)
u(t)

]

∈ Pi := {[ x
u ] | Hix + Jiu ≤ Ki}

where t ≥ 0, x ∈ R
n is the state, u ∈ R

m is the control
input, and {Pi}

s

i=1 is the polyhedral partition of the sets of the
extended state+input space R

n+m. Furthermore let the union of
the polyhedral partitions be P := ∪s

i=1Pi. Note that linear state
and input constraints of the general form Kx(t) + Lu(t) ≤ M

are incorporated in the description of Pi.

Additionally, define the following cost function

J(UT−1
0 , x(0)) := ‖Px(T )‖p +

T−1
∑

k=0

‖Qx(k)‖p + ‖Ru(k)‖p

(2)
and consider the finite time constrained optimal control problem
(CFTOC)

J∗(x(0)) := min
U

T−1
0

J(UT−1
0 , x(0)), (3)

subj. to
{

x(t + 1) = fPWA(x(t), u(t)),
x(T ) ∈ X f (4)



where the column vector UT−1
0 := [u(0)′, . . . , u(T − 1)′]′ ∈

R
mT is the optimization vector, T is the time horizon, X f is

the terminal target region and ‖Qx‖p with p ∈ {1,∞} in (2)
denotes the corresponding standard vector 1- or ∞-norm. Ad-
ditionally, we assume that R, Q, and P are of full column rank.

We summarize the main result of the solution to the CFTOC
problem (1)–(4) which is proved in [2].

Theorem 2.1 (Solution to the CFTOC). The solution to the
optimal control problem (1)–(4) with p ∈ {1,∞} is a piece-
wise affine state feedback control law of the form

u∗(t) = ft(x(t)) = F t
i x(t) + Gt

i if x(t) ∈ Rt
i (5)

where Rt
i , i = 1, . . . , N t, is a polyhedral partition of the set

X t of feasible states x(t) at time t = 0, . . . , T − 1. �

3 Computation of the CFTOC Solution via mp-
MILP

One way of solving the constrained finite time optimal control
problem (1)–(4) is by reformulating the PWA system into a set
of inequalities with integer variables as switches between the
different dynamics of the hybrid system. An appropriate mod-
eling framework for such a class of systems are mixed logical
dynamical (MLD) systems [8] where the switching behavior as
well as the constraints of the system are modeled with inequal-
ity conditions. In [9] the authors show the equivalence between
PWA and MLD systems.

Using an MLD representation the CFTOC problem (1)–(4) can
be stated in the form

J∗(x(0)) := min
U

T−1
0

‖Px(T )‖p +

T−1
∑

k=0

‖Qx(k)‖p + ‖Ru(k)‖p,

(6)

subj. to







x(t + 1) = Ax(t) + Buu(t) + Bδδ(t) + Bzz(t),
Eδδ(t) + Ezz(t) ≤ Euu(t) + Exx(t) + E,

x(T ) ∈ X f

(7)

where δ ∈ {0, 1}mδ is the vector of integer variables and z ∈
R

mz represents the vector of auxiliary variables, cf. [8].

By using an upper bound εx
t for each of the components,

e.g. ‖Qx(t)‖p ≤ εx
t , of the cost function (6) and

x(t + 1) =Atx(0) +

t−1
∑

j=0

Aj
{

Buu(t − 1 − j)

+ Bδδ(t − 1 − j) + Bzz(t − 1 − j)
}

(8)

the CFTOC problem can be rewritten as a mixed-integer linear
program (MILP)

min
ε

c′ε, (9)

subj. to Gε ≤ W + Sx(0) (10)

where G, W , and S are matrices of suitable dimension,
c = [01×(m+mδ+mz)T 1 . . . 1]′, and the optimization vari-
able is of the form ε := [u(0)′ . . . u(T − 1)′ δ(0)′ . . . δ(T −
1)′ z(0)′ . . . z(T − 1)′ εx

0
′ . . . εx

T
′ εu

0
′ . . . εu

T−1
′]′. Note that

x(0) can be considered as parameter of the mp-MILP. The ma-
trices G, W , and S contain the whole information on the state
and input constraints, the weighting matrices P , Q, and R, as
well as the update equation (8) for the whole time horizon T .
Note that for the construction of S it is necessary to compute
At, t = 0, . . . , T .

For a given initial state x(0) the MILP (9)–(10) can be solved in
order to obtain the optimizer ε∗(x(0)) which in turn provides
the optimal control sequence UT−1

0 . For exploring the whole
feasible state space a multi-parametric MILP has to be solved.
Dua and Pistikopoulos [7] proposed to split the original mp-
MILP problem into two subproblems: an mp-LP and an MILP.
The solution is found by recursion between these two subprob-
lems by first fixing the integer variable and solving an mp-LP
for this situation in order to explore and partition the feasible
space. The intermediate solution gives an upper bound on the
optimal cost. Then a new integer variable is fixed, an mp-LP
is solved, and in case of overlapping polyhedral regions of the
state space the resulting cost is compared with the previous one.
In order to limit the exploration of the state space, which grows
exponentially with the time horizon and the number of possible
switching sequences, a branch and bound technique is applied.

4 Computation of the CFTOC Solution via an
efficient Dynamic Program

Here we show that the considered constrained finite time opti-
mal control problem (1)–(4) can be solved in a computationally
more efficient way than with the mp-MILP method described
in Section 3. In [1] Borrelli et al. solved such a problem for
a quadratic performance index with an efficient dynamic pro-
gramming approach.

For the 1- or∞-norm case considered here the CFTOC problem
can be formulated in a similar way as in [1]. The equivalent
dynamic program is of the following form

J∗
j (x(j)) := min

u(j)
‖Qx(j)‖p + ‖Ru(j)‖p

+ J∗
j+1(fPWA(x(j), u(j)), (11)

subj. to fPWA(x(j), u(j)) ∈ X j+1 (12)

for j = T − 1, . . . , 0, with boundary conditions

X T = X f , and (13)
J∗

T (x(T )) = ‖Px(T )‖p (14)

where

X j =
{

x ∈ R
n | ∃u, fPWA(x, u) ∈ X j+1

}

(15)

is the set of all initial states for which the problem (11)–(12) is
feasible.

In order to give a more detailed description of how the algo-
rithm works some preliminary results have to be presented.



Basic Parametric Programming

All following results were stated and proved in [2] for the mp-
QP case but also hold for mp-LP.

Consider the multi-parametric program

J∗(x) :=min
u

l(x, u) + q(f+(x, u)), (16)

subj. to f+(x, u) ∈ S (17)

where S ⊆ R
n, f+ : R

n × R
m 7→ R

n, q : S 7→ R, and
l : R

n × R
m 7→ R are piecewise affine functions of x and u.

Denote with X the set of variables x for which the parametric
program (16)–(17) is feasible. Note that q(·) corresponds to
the cost-to-go function J∗

j+1(·), cf. (11)–(12). First we define:

Definition 4.1 (PWA function with multiplicity). A function
q : Θ 7→ R, where Θ ⊆ R

s, is a multiple PWA function of
order d ∈ N

+ if q(θ) = min
{

q1(θ) := l1θ+c1, . . . , qd(θ) :=

ldθ + cd
}

and Θ is a convex polyhedron. �

Here we summerize the main result needed for solving the
CFTOC problem via dynamic programming. The reader is re-
ferred to the references [1, 2, 10] for details.

Result 4.2.
(a) one to one problem: f+ is a linear function, q is a piece-

wise affine function, and S is a convex polyhedron. A one
to one problem is solved with one mp-LP.

(b) one to one problem of multiplicity d: f+ is a linear func-
tion, q is a multiple piecewise affine function of multiplic-
ity d. A one to one problem of multiplicity d is solved by
solving d mp-LPs.

(c) one to many r problem: f+ is a linear function, q is a poly-
hedral piecewise affine function defined over r polyhedral
regions. A one to many r problem is solved with r mp-
LPs.

(d) one to many r problem of multiplicity d: f+ is a linear
function and q is a multiple polyhedral piecewise affine
function of multiplicity d defined over r polyhedral re-
gions. A one to many r problem of multiplicity d is solved
with rd mp-LPs.

If the function f+ is polyhedral piecewise affine defined over
s regions then we have a many s to X problem where X can
belong to any of the combinations listed above, i.e. we have a
many s to many r problem of multiplicity d if f+ is polyhedral
piecewise affine defined over s regions and q is a multiple poly-
hedral piecewise affine function of multiplicity d, defined over
r polyhedral regions.

(e) A many s to one problem can be decomposed into s one
to one problem.

horizon Dynamic Programming mp-MILP
T CPU-time [sec] # regions CPU-time [sec] # regions
1 0.3 10 1.4 10
2 2.1 16 12.3 17
3 6.1 26 36.2 59
4 20.8 52 125.8 220
5 58.3 90 317.5 441
6 155.1 152 912.6 819
7 358.8 218 2192.3 1441
8 662.0 262 5320.1 2257
9 973.6 268 ? ?

10 1250.0 258 ? ?

11 1515.0 252 ? ?

Tab. 1: Comparison of the CPU-time in seconds and the number of regions for
Example (20). ? denotes that the computation for the particular problem did
not converge.

(f) A many s to many r problem can be decomposed into s

one to many r problems.

(g) A many s to many r problem of multiplicity d can be de-
composed into s one to many r problem of multiplicity d.

�

The Dynamic Programming Strategy

The dynamic programming problem (11)–(14) can be solved
by using a multi-parametric linear program solver going back-
wards in time starting from the target region X f .

Consider the first step of the dynamic program (11)–(14)

J∗
T−1(x(T − 1)) := min

u(T−1)
‖Qx(T − 1)‖p

+‖Ru(T − 1)‖p + J∗
T (fPWA(x(T − 1), u(T − 1)), (18)

subj. to fPWA(x(T − 1), u(T − 1)) ∈ X f . (19)

The cost-to-go function J∗
T (x) in (18) is piecewise affine, the

terminal region X f is a polyhedron and the constraints are
piecewise affine. Problem (18)–(19) is a many s to one problem
that can be solved with s mp-LPs, cf. Result 4.2(e).

At the second step j = T − 2 the cost-to-go function J∗
T−1(x)

is polyhedral piecewise affine and the terminal set X T−1 is a
union of N r

T−1 polyhedra where N r
T−1 is the number of polyhe-

dra of J∗
T−1. Note that the constraints are still piecewise affine

but X T−1 is not necessarily a convex set. Problem (11)–(14)
becomes a many s to many N r

T−1 problem and from Result
4.2(f) can be solved by solving sN r

T−1 mp-LPs. From the third
step j = T − 3 to the last one j = 0 the cost-to-go function
J∗

j (x) is polyhedral piecewise affine with a certain multiplicity
dj , the terminal set X j is again a union of N r

j polyhedra and
the constraints are piecewise affine. Therefore, problem (11)–
(14) is a many s to many N r

j problem with multiplicity dj , that
from Result 4.2(g) can be solved by solving sN r

j dj mp-LPs.
The resulting optimal solution will have the piecewise affine
form (5).
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Fig. 1: State space partitioning of the finite time horizon solution for T = 8
derived with the dynamic programming algorithm. Same color corresponds to
the same affine control law u

∗(x(0)). There exist 19 different affine control
laws in 262 polyhedral regions.

5 Example

Consider the piecewise affine system [8]






































x(t + 1) = 0.8
[

cos α(t) − sin α(t)
sin α(t) cos α(t)

]

x(t) + [ 0
1 ] u(t),

α(t) =

{

π
3 if [1 0]x(t) ≥ 0,

−π
3 if [1 0]x(t) < 0,

x(t) ∈ [−10, 10]× [−10, 10],

u(t) ∈ [−1, 1].
(20)

The constrained finite time optimal control problem (1)–(3)
is solved with Q = [ 1 0

0 1 ], R = 1, P = [ 0 0
0 0 ], and X f =

[−10, 10] × [−10, 10] for p = ∞.

In Table 1 we report the computational times and the total num-
ber of polyhedral regions of the solution to the aforementioned
problem for various horizons T obtained with the dynamic pro-
gramming algorithm and the mp-MILP algorithm. The com-
putation was done on a Pentium 4, 2.2 GHz machine running
MATLAB 6.1.

Figure 1 shows the state space partition of the finite time hori-
zon solution for T = 8 computed with the dynamic program-
ming algorithm. The same color corresponds to the same affine
control law u∗(x(0)). There exist 19 different affine control
laws in 262 polyhedral regions. Each polyhedral region corre-
sponds to a different affine value function. Figure 2 shows the
corresponding partition of the state space computed with the
mp-MILP algorithm presented in Section 3. Here the 19 differ-
ent affine control laws were found in 2257 polyhedral regions.
Unnecessary slicing of the state space was produced by the re-
cursive structure of the mp-MILP algorithm.

Figure 3 shows the state space partition for the infinite time
horizon solution computed with the dynamic programming al-
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Fig. 2: State space partitioning of the finite time horizon solution for T =
8 derived with the mp-MILP algorithm. Same color corresponds to the same
affine control law u

∗(x(0)). There exist 19 different affine control laws in
2257 polyhedral regions.

gorithm. A posteriori it can be shown with the dynamic pro-
gramming procedure that the finite time solution for a horizon
T ≥ 11 = T∞ is in fact identical to the infinite time solution
of the constrained optimal control problem. The same color-
ing scheme corresponds to the same affine control law. There
exist 23 different affine control laws u∗(x(0)) in 252 polyhe-
dral regions. Figure 4 reveals the corresponding value function
for the state space partition. The same color corresponds to the
same cost. The minimum cost is achieved at the origin. Figure
5 shows the state and control action evolution for an initial state
of x(0) = [−10 10]′ for the infinite time solution obtained with
the dynamic programming procedure.

6 General Comments

In this section some general remarks on what has been no-
ticed as being important issues of the new technique com-
pared with the mp-MILP approach will be given. It should be
noted that both algorithms were implemented by the authors
as MATLAB R©-code. However the CPLEX R© MILP-solver was
used in the mp-MILP algorithm. No effort was made to opti-
mize either of the algorithms.

Special Purpose

We believe that one of the main reasons for the efficiency of the
dynamic programming algorithm compared to the mp-MILP al-
gorithm, shortly described in Section 3, is that the dynamic pro-
gramming approach solves the CFTOC problem in the extended
(x, u)-space with inequality constraints, whereas the mp-MILP
approach solves the same problem in the extended (x, u, z, δ)-
space with equality constraints, which are numerically hard to
handle and increase the size of the problem dramatically. This is
because every equality constraint is translated into two inequal-
ity constraints for each time step for the whole time horizon.
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Fig. 3: State space partitioning of the infinite time horizon solution (T = 11)
derived with the dynamic programming algorithm. Same color corresponds to
the same affine control law u

∗(x(0)).

Another reason is that the dynamic programming approach is
tailored to the considered class of optimal control problems.
Contrary to that, the mp-MILP method solves general MILP
problems and is therefore suitable for a larger class of prob-
lems such as for example optimal control problems with binary
states or a large number of binary inputs as well as, for example,
problems originating from economics or logistics.

Complexity of the Solution

It is observed by extensive simulations, cf. for example Table 1,
that the dynamic programming approach is by a factor 5 to 10
times faster than mp-MILP algorithm (depending on the time
horizon). Additionally the mp-MILP algorithm fails to find a
solution for bigger time horizons because of the bigger memory
demand.

Due to the possible degeneracy of linear programs it is impossi-
ble to provide a unique solution in all cases. Therefore it is very
difficult to give a minimal representation for all possible occur-
ring problems. However the obtained number of polyhedral re-
gions in our approach was always smaller than in the mp-MILP
approach. Because of the recursive structure of the mp-MILP
method unnecessary slicings of the state space are introduced.

Ill-Conditioning

One of the reasons why the dynamic programming method is
numerically more reliable is that for large time horizons T a
computation of the possibly ill-conditioned matrix AT is not
needed while it is inherent in the MLD structure for the mp-
MILP method, cf. Section 3. Furthermore, MLD systems do
not exploit explicitly the structure of the control problem and
for large time horizons MLD systems might become ill-defined
because strict inequalities have to be modeled with slack vari-
ables that vanish to 0 as the time horizon increases.
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Fig. 4: State space partitioning of the infinite time horizon solution (T = 11)
derived with the dynamic programming algorithm. Same color corresponds to
the same cost value.
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Fig. 5: State and control action evolution of the infinite time horizon
solution derived with the dynamic programming algorithm. Initial state
x(0) = [−10 10]′.

Infinite Time Horizon Solution

An important advantage of the dynamic programming approach
is that after every step, starting from t = T − 1 to t = 0, the
data of all the intermediate optimal control steps, the polyhedral
partition of the state space, and the piecewise affine cost laws
are available. This makes it possible to detect if the solution
for a specific time horizon is identical to the infinite time hori-
zon solution (T → ∞), i.e. if for T = T∞ the whole feasible
polyhedral state space partition and the cost as a function of the
initial state x(0) is identical to the polyhedral partition and the
cost for T ≥ T∞, respectively.

In some parts of the state space it is likely to happen that in two
successive steps of the dynamic programming algorithm iden-
tical regions –in terms of the regions’ dimensions and the asso-
ciated value function– are generated. Such a case is depicted in
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Fig. 6: State space partitioning of the finite time horizon solution for T = 4
derived with the dynamic programming algorithm. Same color corresponds to
the same cost value. The white marked region is identical to the infinite time
solution.

Figure 6 (T = 4) and Figure 7 (T = 5) for Example (20) where
the white encircled regions are identical. This intermediate in-
formation could be used to speed up the proposed algorithm.
(We would like to emphasize that the CPU-time reported in
Table 1 is obtained with the dynamic programming algorithm
which does not use such an intermediate information.) How-
ever, only when the algorithm converges in the whole feasible
state space we can claim that the infinite time solution is ob-
tained in any part of the state space. As a consequence it would
be wrong to deduce that the infinite time solution was obtained
in parts of the state space for some T < T∞. Such a claim can
only be made a posteriori, i.e. after computing the solution to
the CFTOC problem with T ≥ T∞.

In [11] we propose a modification of the algorithm that con-
structs the infinite time solution in an efficient way by limiting
the exploration of the state space in intermediate steps of the
dynamic programming.

Other Advantages

Other advantages of the new algorithm are that only an mp-LP
and not an mp-MILP solver is needed. Recursive calls like in
the mp-MILP algorithm, which cause computational instability
problems for large time horizons, are avoided by construction.
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