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Discrete-Time Systems, Lyapunov Stability. in the three layered configuration [2]. The plant and the con-
ventional controller are usually modeled by differential or dif-
Abstract ference equations. The discrete state variable controller is de-

signed via a rule based decision process which supervises the
This paper considers stability of hybrid systems described ggnventional controller. This interface facilitates communica-
linear impulsive systems. Stability conditions are derived Bipn between the plant and the discrete controller and simulta-
transforming the linear impulsive systems to discrete dynanmieously converts the continuous state to discrete state variables
cal systems at the occurrences of impulsive effects on the liné@fD), and vice versa (D/C).

Zystembs. fTh',S trgnsformhatlon leads toha cﬁscr?g t'mf? Sys'[ﬁﬂ/sical systems are often subjected to disturbances, chang-
riven by forcing inputs that represent the impulsive effects. ing operation conditions and component failures, and in many

cases, the changes take place in a short space of time. Exam-
1 Introduction ples are found for example in biological systems and mechani-

) ) . ~cal systems subjected to shock. Such systems can be modeled
Hybrid systems can be found in physical systems which 3§ giterential and/or difference equations which jump instan-
coupled with digital controllers or subsystems modeled as fi”{tﬁweously from one state to another. If there is no jump over
automaton. In particular, a hybrid system arises wherever thggne time interval, then the mathematical model is described
is a mixture of continuous control laws and logical decisiofy the solution of a differential and/or difference equation. The
processes. Examples of hybrid control systems are foundgiyysis of an instantaneous change in the state of a system is
automotive engine control, automated highway systems, fléxych more complicated. Mathematical models of systems that

ible manufacturing, chemical process control, electric POWEhdergo instantaneous changes in the state are dalfadsive
distribution and computer communication networks. To i"“%‘ystems

trate, some examples of hybrid control systems are discussed _ ) )
in[1, 2]. There are two main approaches for studying the behaviour of

) ] ) impulsive differential systems. The first approach usgerm
Hybrid systems are used for modeling and analyzing systeglgjized functiorto represent ump discontinuityin the state
which have interacting continuous-valued and discrete-valugg, the help of the Dirac function [5, 13, 18]. In the second
state variables. The continuous state variable may be the valy oach, the jump discontinuity is represented bynapul-
of the state in continuous time, discrete time or a mixture gje vector[3, 12, 14] and the references cited therein. The
the two. The mathematical model of the continuous state is Qgpyisive vector representation provides a general characteri-
scribed by a differential or difference equation. The discrefgyion of external disturbances, perturbations or even impulsive
state variable is generally represented by a finite state digi{ghrols, see [7]. The equations studied here are referred to as

automaton or an input/output transition system. The behavigifear impulsive differential equations, or simply lear im-
of the hybrid system is influenced by state variables which iBUIsive systems (LIS)

teract at arevent(or trigger) time which occurs whenever the

evolution of the system satisfies a particular condition whicpeveral qualitative theories for stability properties of zero so-
then initiates changes in the state variables. lution of impulsive systems in sense of Lyapunov stability has

] been established in [3, 8, 9, 11, 14] and the references there in.
Hybrid control systems are control systems where both plaptgeneral, the stability conditions rely on the standard results
and controller consist of continuous and discrete stat_e Va-Lyapunov stability for linear dynamical systems, see for ex-
ables. Recently, a common framework used for a hybrid COfmnple [6, 16], with some additional work to account for the
trol has been developed by separating the system compon@#isct of the impulsive vectors. The work in [17] has given a
into three sub components; namely, a plant with a conventiopghye general stability condition than the conditions in [3]. In



this paper, Lyapunov stability of the LIS has been analyzed bjthe LIS (1) from the initial condition at tim&, to ¢, while
modeling the state at time instants as a discrete time dynathie forcing vectorl(t,.1) is the impulsive vector at timg, ;.
cal system. Within this new representation, impulsive vect . _ ) . .

act as forcing inputs. The Lyapunov stability is then deriv:;?1e solutionu. = hy.(k; 0, ho) 0f (4) is then given by
by using the standard stability of discrete time systems, see for

k-1
example [4]. hie = ®(tg, to)ho + Y ®(tx, t:)d(t:) ()
=0

2 Lyapunov Stability: Discrete-Time Systems  Condition for stability of the LIS (1) will be deduced from the

i i ; behaviour of the discrete system (4).
Consider the following autonomous LIS with statét) < viou : Yy 4)

R"™ and outputy(t) € R! subjected to impulsive vectors

{d(tx); k € Z*} on the plant state as described by Definition 1 Given{(tx,d(tx)); k = 1,2,--}, then the solu-
tion hy(k; 0, hg) of (4) is said to be

i(t) = Au(t); t# by
z(t)) = x(ty) +d(t); t =1 (1) 1. stable: if for eache > 0 there existgi(e) > 0 such that if
z(ty) = o ol < d(€) implies
and assume that the following condition holds. A (k3 0, ho)|| < €
Condition 1 Let{) be an open set whefeé ¢ R" and forall k > 0.

2. asymptotically stable: if the solutidn, (k; 0, ho) is stable,

1. O0=to<ti <to < ---<tp<--- ; S
ot . and there exist§ > 0 such that for all|| hy|| < § implies

2. d(ti) are bounded impulsive vectors such that

z(tf) = x(te) + d(ty) € Q lim hg(k;0,ho) =0
Then the nonempty,, is defined by Koo (80, ho) = 0.

Gr ={(t,x) e Rx Q:t), <t <tpy1,0 € Q} 3. exponentially stable: if the solutidn, (k; 0, ho) is stable,
and there exis§ > 0 and0 < p < 1 such thatif|hg|| < ¢
The solutionz(t) for t > to = 0 is given by implies

. ([ (K30, ho) || < pp®[|holl
z(t) = A1)z (¢,) +/ eAlt=o) Z d(ty)d(o — tg) do for all £ > 0 and some: > 1.
0 k

2
The solution of systems with impulsive effects (1) in t(he) eRefinition 2. Given {(iy, d(tx)); k = 1,2,---}, such that the
tended state space begins from the initial conditign.,) and 5°|Ut'°”x(t?t5_r’ o) of the linear impulsive system (1) exists,
moves along the trajectory, =()). If at time instantg,, > ¢, then the solution:(t; ¢, o) is said to be
there is an impulsive jumg@(t;), then the state is instanta- _ _ _
neous|y Changed to the new Sta»](e;") = $(tk) + d(tk) The 1. stable: if for eacke > 0 there eXlStS;(G) > 0 such that if
state then follows the trajectory with the new initial condition  [|zoll < d(€) implies
z(t;) until the occurrence of the next transition time instant
at timet, ;. That is, the solutions of impulsive systems are
characterized by three components: the dynamics of ordinary ¢o; a1 % > 0.
differential equations, the transition time instafits} and the
impulsive vectorgd(ty)}. 2. asymptotically stable: if the solutiar(t; 5, o) is stable,
and there exist§ > 0 such that for all||z¢|| < ¢ implies

l(t: 25, @)l < €

The solution at time instantg, ; can therefore be written as
lim z(t;td,z0) = 0.
—00

w(tf) = e Ta () + d(te) 3
Now defineh;, = x(t}). Then the solution of the LIS (1) at 3. exponentially stable: if the soluticn‘(t;taﬂxo) is stable,
time instants;” which is given by (3) for allk € Z* can be and there exisi > 0 and0 < p < 1 such thatifizo|| <4
described as a discrete dynamical system implies

k
ot w0) | < gl

hi1 = @(trrr, te)he + d(tiyr) 4) for all k > 0 and some: > 1.

Bty i1, ty) = et )
The following theorem gives necessary and sufficient condi-

where® (tx.y1,tx) 2 eAltksi—t) | The discrete system matrixtions for the stability of the linear impulsive systems (1) in term
D (tr41, ) represents the evolution of the continuous solutiasf the stability of the discrete dynamical system (4).



Theorem 1 A discrete Lyapunov function is then defined as

1. The linear impulsive system (1) is stable if and only if the Vi 2 V (h)

discrete system (4) is stable. - )
whereV}, denotes the value of the positive functibhat the

2. The linear impulsive system (1) is asymptotically stablesfatez(t;") at timet;". Along the discrete trajectories of (4),
and only if the discrete system (4) is asymptotically stablée change\ V' in the positive definite functiolr” is defined by

AVit1 £ Vi — Vi
Proof. The state of the solution of the linear impulsive system k+1 = Ve+l = Vi

(1) at transition time instantg for all k is given by The following results follow directly from the discrete time sta-
bility results. (See for example [4].)
(i) = O(trrrs te)(@(ty) +d(te)) + d(trr) , , _ _
Theorem 2 Consider the linear impulsive system (1) and the
= O(tpgr,te)z(t) + dtysr) associated discrete time system (4). Suppose Condition 1 holds
and a positive definite functiol is defined ort2. If for all
The solution, by replacing(t;) with g, is given by (5) which decision vectorgd(t;)} occurring at time instant§t, k €

can then be written Z7*} and for somé such that) < ¢441 — t; < 6 < oo and
k—1 AV <0 (6)
1ill = 1@t to) | 1ol + D 1(tw, ta)] 1t _ . . :
=0 then the equilibrium point, = 0 is stable. Moreover, if

Q = R"andV(hy) — oo for ||hg|]| — oo then the stabil-
From the standard discrete time systems, it then follows thgtis global.
the solutionh,, is stable (asymptotically stable) if and only if

the matrix4 is stable (asymptotically stable). Theorem 3 Consider the linear impulsive system (1) and the

As preliminaries to proof of the stability theory, some definiassociated discrete time system (4). Suppose Condition 1 holds
tions and standard results will be presented. and a positive definite functiol is defined ort2. If for all
decision vectorqd(tx)} occurring at time instantg¢,, k €

- . L zZ+ f h th -
Definition 3 [6] A function« : R, — R, is said to belong to } and for som@ > 0 such thatty., — ;< 6 < oo and

a classK if it is continuous, strictly increasing and(0) = 0. .
y g (0) () AV, <0, forall ke ZT, or

Lemmal [16] Let 6 : R, — R, be continuous, non- () AVi <0, forallk € Z* andAV; = 0 implieshy = 0

decreasing and thap(r) > 0,¥r > 0, with ¢(0) = 0. Then fork>0

there exists a clas& functiona such thata(r) < ¢(r),Vr. ~

Furthermore, ifp(r) — oo asr — oo, thena can be chosen then the equilibrium point. = 0 is asymptotically stable.

to have the same property ¢f Moreover, if2 = R™ andV (hy) — oo for ||hg|| — oo then
the stability is global.

Definition 4 A functionV : R®™ — R is said to be a local » ) )
positive definite function if: Theorem 4 If the conditions in Theorem 3 hold with respect to

a continuous functiof’ (k) where
(i) V is continuous 0 < allh||P < V(h) < B||h|P
(i) V(0) =0 for somex, 5, p > 0 and in addition

(iii) There exists a clask functiona such that V(hier1) <qV(he); 07y <1

then (4) is exponentially asymptotically stable.
o) < V), k>0, hyeQcR" @is exp Y asymprofcaly

positive definite function fi;, € R™(r — o). Theorgm 5 C?onsider_ the linear impulsive system (;)_ and the
associated discrete time system (4). Suppose Condition 1 holds
and a positive definite functiol is defined orf2. If for all
decision vectorgd(t;)} occurring at time instantgt,, k €

Z*} and for somé > 0 such thatty,; — ¢, < 6 < oo and

V(hi) < B(|hel), VE >0, hye€eQCR" AV >0

V is said to be decrescent if there exists a cl&Sfinction 3
such that

wherehy, € R™(r — 00). then (4) is unstable.



3 Quadratic Lyapunov Function

Consider the continuous time linear system

z(t) = Ax(t) )
and consider a quadratic Lyapunov function candidate of the
form V(z(t)) = 2T (t)Pz(t); P=PT >0 (8)
ThenV is given by
V(x(t) = =" (£)Qu(1) 9)

where the matrixQ satisfies the Lyapunov matrix equation

ATP+PA=—-Q (10)

Lemma 2 Consider the discrete dynamical system

A _
Thyr = O(tpgr, ti)e s P(tpgr, ty) = el =)

for somef such that) < ¢;,; — ¢t < 6 < co. Then

(i) If the matrix A is asymptotically stable, for a given > 0,
there exists a unique matrik > 0 such that

ATP 4+ PA=—Q

(il If Vi, = 2T Pz, thenAVy, 2 Vi, — Vi1 < 0 implies

(I)T(tk,tkfl)P(I)(tk,tkfl) —P<0

Furthermore, if the matrix4 is stable thenAV; =
Vi1 <0 implies@T(tk,tk,l)P<I>(tk,t;€,1) — P <0.

Vi —

Proof. Consider a continuous time linear system (7).Alfs

Corollary 1
1. If RA(A) < 0 and 2h] @7 (ty, tx—1)Pd(ty) +
dT (t;.)Pd(t) < 0then (1) is stable.

2. If RA(A) < 0 and 2hf @7 (tg, ty—1)Pd(ty) +
d” () Pd(t;,) < 0 then (1) is asymptotically stable.

Proof.
Let Vi = h] Phy. Then
Vi = hi [®T (tg, t_1)PO(ty, tp_1) — Plhp_1

+2hT  ®T (ty, tp_1)Pd(ty) + dT (t) Pd(ty)
It follows thatV, < 0 if

h{_l[q)T(tk,tk_l)PCD(ﬁk,tk_l) — P]hk_l <0

2hT  ®T (ty,, tp_1)Pd(ty) + dT (tx)Pd(ty) <0

The results are completed using Lemma 2.

Example 1 Consider the following PFM feedback system that
was studied in [15]. The system representation is described by

[50] - (5 % )[
B {y(tk)}*[f}sgmq(tk))nq(tm_r

vy

] Ja(te)| # 7

y(t) =
(12)

an asymptotically stable matrix, then equation (10) is satisfiatherey is the output of the system, and the variablis the

such that” < 0. Consequently

tr
AV =Vi = Vi1 = */ 27(0)Qx(0) do < 0

tr—1

which  implies AV} = Vie — Vi1 =
xz_l[(I)T(tk,tk,l)Pq)(tk,tkfl) — Plzgp—1 < 0. Simi-
larly, if the matrix A is only stable, the < 0, then

tr
AV =V, — Vi1 = —/ xT(J)Qx(J) do <0
th—1

implies AV, = Vie —  Veq =
ol [T (tr, th—1) PP (tg,tp—1) — Plzg—1 < 0.

From this quadratic Lyapunov function, the changg, for (5)
is then given by
AV = hp_ [®F (tg, ts—1) PO(ty, ty—1) — Plhy—1  (11)

+2hF T (ty,, tp_1) Pd(ty) + d* (ty) Pd(ty)

input of the modulator. The pulses are emitted at ti;jmehen-
ever|q(tx)| = r for a fixed threshold. These impulses then
resetq to zero; thatisg(t;") = 0. The rate of pulse generation
depends on the value of the threshe|dand the dynamics of
the system.

The dynamics of this example can therefore be arranged into
the form

i(t) = Ax(t)
w(tf) = a(ty)+d(te)
where
_ | y(@®) _
o) = | U0 | st = | £, sontcTat s

for someK andr. Sincelsgn(q)| = 1, the magnitude of the im-
pulsive vectors are identical, but their direction is determined
by the sign of the modulator inpyt



Consider the PFM system (12) with the impulsive vedfos) These inequalities leads tb< K < %. Since forc # 0, the
given by (13). The stability of this system was investigatedriaximum value of is 3 = 2, we conclude that the system is
[14] where it was shown that the system is stable in the sensegfble if

Lyapunov. The open sgtfor this system, for an infinitesimal 0<K<er
0>0,1s Q= {(1,q): lg| +6 <} which is the same as the result in [14]. However the present

W4 le approach for deriving the result is more direct since the results
Consider the quadratic Lyapunov functidhgiven by are obtained by using the Lyapunov matrix equation.

v _ a f y(t) . . .
v.q) = [ y(t) q@) | 3 0 It has been assumed that impulsive vectai§;)} which lead
K 1 to Lyapunov stability exist irR™. Therefore, it is of interest to

fora, 8,7 > 0 anday > 2. show the existence of such impulsive vectors. In the following

i N o . result, an existence condition for impulsive vectors to satisfy
The first condition for stability is thalt’ (z) < 0 forall z € Q. the condition

This can be obtained from the Lyapunov matrix equation
2hi_ O (ty, tx_1)Pd(ty) +d* (t)Pd(ty) <0  (15)

LS S S DL = 0 e

which gives Corollary 2 Given a vector, £ hE  ®T(t),tr—1), SUuppose
for somex,, there exists a vectoy, such that
{ -2 (v+6o>]<[0 0}
( —10 0

—(v+ Bc) —2vc hi Py, < —ex <0

ThenT” < 0 if the determinant Then there exists am; > 0 such that condition (15) is satisfied
with d(tr) = ag Ve-
0 > 4pye—(y+Po)?

> (v—B¢) Proof. Letd(t;) = ay. Then

which givesge > v. Also, the seGG defined byG = {x : 2k} Pd(t) + d” (t;)Pd(ts) = an(2h] Py + aryi Py
V(z) =0,z € Q}isgivenbyy +cg=0 and |q| <.

T
The condition on the impulsive vectors is computed by using < an(=2e, + ary Pyk)

the condition Here, if for any choicev;, > 0 such thatakfykTP% < 2¢g,

ohT &7 (t),, tr_1)Pd(ty) + dT (tx) Pd(ty) < 0 condition (15) is satisfied.
N N Another possible form for the impulsive vectors is given as fol-
Definey, = y(tx), ¢x = q(tx), the above condition is equiva-lows.
lent to

o[ e Tr . 3 K san(as) C_orollary3 Let Ay 2 hﬁl@i(_tk,z?k_l). Suppose the impul-
ar B~ r | 594k sive vector(t) for all k € Z* is given by
T d¥ (ty) = —[Bisgn( Thy) Basgn(pd ) (16)
K K k 1sgn(py hi) B2sg
[T 5 2][ % ;

Basgn(py, hi.)] P
wheresgn(a) is the sign of a scalaw, p?, is them-th row of
2yksgn(qr)laK — Br] +aK? —r? <0 P2, and

This condition in turn is equivalent to

0<p3;,<2 foril<i<n

Now the dynamic behaviour of the input modulagoin the s T
absence of impulses is givendy —cq —y. Then multiplying Then2hy, Pd(ty) + d* (tx) Pd(ty) < 0.

both sides by gives
1d

Proof. Definew = P%h. Thereforei = P2 AP w2 Fluw.

53 (@) =ai=—c’ —qy; forjgl<r  (14) Then
. o o . » % (Wwlw) = wT(P’%ATP% —|—P%AP’%)w
Sincegq is increasing in absolute value, hengeé is positive
which from (14), then implies thay must be negative. This in = WP 2QP 2w<0,
turn leads to the condition that, sgn(qx) is negative.
The condition ork is then obtained as follows: which impliesAT + A, = —~Qy, Q, £ P~3QP~3. Define

aK > fBr and aK? > ~r? I 2 2iLZPd(tk) +dT (tp) Pd(ty,) = kaTfk + fkak
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