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Abstract

This paper considers stability of hybrid systems described by
linear impulsive systems. Stability conditions are derived by
transforming the linear impulsive systems to discrete dynami-
cal systems at the occurrences of impulsive effects on the linear
systems. This transformation leads to a discrete time system
driven by forcing inputs that represent the impulsive effects.

1 Introduction

Hybrid systems can be found in physical systems which are
coupled with digital controllers or subsystems modeled as finite
automaton. In particular, a hybrid system arises wherever there
is a mixture of continuous control laws and logical decision
processes. Examples of hybrid control systems are found in
automotive engine control, automated highway systems, flex-
ible manufacturing, chemical process control, electric power
distribution and computer communication networks. To illus-
trate, some examples of hybrid control systems are discussed
in [1, 2].

Hybrid systems are used for modeling and analyzing systems
which have interacting continuous-valued and discrete-valued
state variables. The continuous state variable may be the value
of the state in continuous time, discrete time or a mixture of
the two. The mathematical model of the continuous state is de-
scribed by a differential or difference equation. The discrete
state variable is generally represented by a finite state digital
automaton or an input/output transition system. The behaviour
of the hybrid system is influenced by state variables which in-
teract at anevent(or trigger) time which occurs whenever the
evolution of the system satisfies a particular condition which
then initiates changes in the state variables.

Hybrid control systems are control systems where both plant
and controller consist of continuous and discrete state vari-
ables. Recently, a common framework used for a hybrid con-
trol has been developed by separating the system components
into three sub components; namely, a plant with a conventional

controller, a discrete state variable controller and an interface
in the three layered configuration [2]. The plant and the con-
ventional controller are usually modeled by differential or dif-
ference equations. The discrete state variable controller is de-
signed via a rule based decision process which supervises the
conventional controller. This interface facilitates communica-
tion between the plant and the discrete controller and simulta-
neously converts the continuous state to discrete state variables
(C/D), and vice versa (D/C).

Physical systems are often subjected to disturbances, chang-
ing operation conditions and component failures, and in many
cases, the changes take place in a short space of time. Exam-
ples are found for example in biological systems and mechani-
cal systems subjected to shock. Such systems can be modeled
by differential and/or difference equations which jump instan-
taneously from one state to another. If there is no jump over
some time interval, then the mathematical model is described
by the solution of a differential and/or difference equation. The
analysis of an instantaneous change in the state of a system is
much more complicated. Mathematical models of systems that
undergo instantaneous changes in the state are calledimpulsive
systems.

There are two main approaches for studying the behaviour of
impulsive differential systems. The first approach uses agen-
eralized functionto represent ajump discontinuityin the state
with the help of the Dirac function [5, 13, 18]. In the second
approach, the jump discontinuity is represented by animpul-
sive vector[3, 12, 14] and the references cited therein. The
impulsive vector representation provides a general characteri-
zation of external disturbances, perturbations or even impulsive
controls, see [7]. The equations studied here are referred to as
linear impulsive differential equations, or simply aslinear im-
pulsive systems (LIS).

Several qualitative theories for stability properties of zero so-
lution of impulsive systems in sense of Lyapunov stability has
been established in [3, 8, 9, 11, 14] and the references there in.
In general, the stability conditions rely on the standard results
of Lyapunov stability for linear dynamical systems, see for ex-
ample [6, 16], with some additional work to account for the
effect of the impulsive vectors. The work in [17] has given a
more general stability condition than the conditions in [3]. In



this paper, Lyapunov stability of the LIS has been analyzed by
modeling the state at time instants as a discrete time dynami-
cal system. Within this new representation, impulsive vectors
act as forcing inputs. The Lyapunov stability is then derived
by using the standard stability of discrete time systems, see for
example [4].

2 Lyapunov Stability: Discrete-Time Systems

Consider the following autonomous LIS with statex(t) ∈
Rn and outputy(t) ∈ Rl subjected to impulsive vectors
{d(tk); k ∈ Z+} on the plant state as described by

ẋ(t) = Ax(t) ; t 6= tk
x(t+k ) = x(tk) + d(tk) ; t = tk
x(t+0 ) = x0

(1)

and assume that the following condition holds.

Condition 1 LetΩ be an open set whereΩ ⊂ Rn and

1. 0 ≡ t0 < t1 < t2 < · · · < tk < · · ·
2. d(tk) are bounded impulsive vectors such that

x(t+k ) = x(tk) + d(tk) ∈ Ω
Then the nonemptyGk is defined by

Gk = {(t, x) ∈ R× Ω : tk < t ≤ tk+1, x ∈ Ω}

The solutionx(t) for t > t0 = 0 is given by

x(t) = eA(t−t0)x(t0) +
∫ t

0

eA(t−σ)
∑

k

d(tk)δ(σ − tk) dσ

(2)
The solution of systems with impulsive effects (1) in the ex-
tended state space begins from the initial condition(t0, x0) and
moves along the trajectory(t, x(t)). If at time instantstk ≥ t0
there is an impulsive jumpd(tk), then the state is instanta-
neously changed to the new statex(t+k ) = x(tk) + d(tk). The
state then follows the trajectory with the new initial condition
x(t+k ) until the occurrence of the next transition time instant
at time tk+1. That is, the solutions of impulsive systems are
characterized by three components: the dynamics of ordinary
differential equations, the transition time instants{tk} and the
impulsive vectors{d(tk)}.

The solution at time instantst+k+1 can therefore be written as

x(t+k+1) = eA(tk+1−tk)x(t+k ) + d(tk+1) (3)

Now definehk
4
= x(t+k ). Then the solution of the LIS (1) at

time instantst+k which is given by (3) for allk ∈ Z+ can be
described as a discrete dynamical system

hk+1 = Φ(tk+1, tk)hk + d(tk+1) ; (4)

Φ(tk+1, tk)
4
= eA(tk+1−tk)

whereΦ(tk+1, tk)
4
= eA(tk+1−tk). The discrete system matrix

Φ(tk+1, tk) represents the evolution of the continuous solution

of the LIS (1) from the initial condition at timetk to tk+1 while
the forcing vectord(tk+1) is the impulsive vector at timetk+1.

The solutionhk = hk(k; 0, h0) of (4) is then given by

hk = Φ(tk, t0)h0 +
k−1∑
i=0

Φ(tk, ti)d(ti) (5)

Condition for stability of the LIS (1) will be deduced from the
behaviour of the discrete system (4).

Definition 1 Given{(tk, d(tk)); k = 1, 2, · · ·}, then the solu-
tion hk(k; 0, h0) of (4) is said to be

1. stable: if for eachε > 0 there existsδ(ε) > 0 such that if
‖h0‖ < δ(ε) implies

‖hk(k; 0, h0)‖ < ε

for all k ≥ 0.

2. asymptotically stable: if the solutionhk(k; 0, h0) is stable,
and there existsδ > 0 such that for all‖h0‖ < δ implies

lim
k→∞

hk(k; 0, h0) = 0.

3. exponentially stable: if the solutionhk(k; 0, h0) is stable,
and there existδ > 0 and0 < ρ < 1 such that if‖h0‖ < δ
implies

‖hk(k; 0, h0)‖ ≤ µρk‖h0‖

for all k ≥ 0 and someµ ≥ 1.

Definition 2 Given{(tk, d(tk)); k = 1, 2, · · ·}, such that the
solutionx(t; t+0 , x0) of the linear impulsive system (1) exists,
then the solutionx(t; t+0 , x0) is said to be

1. stable: if for eachε > 0 there existsδ(ε) > 0 such that if
‖x0‖ < δ(ε) implies

‖x(t; t+0 , x0)‖ < ε

for all k ≥ 0.

2. asymptotically stable: if the solutionx(t; t+0 , x0) is stable,
and there existsδ > 0 such that for all‖x0‖ < δ implies

lim
k→∞

x(t; t+0 , x0) = 0.

3. exponentially stable: if the solutionx(t; t+0 , x0) is stable,
and there existδ > 0 and0 < ρ < 1 such that if‖x0‖ < δ
implies

‖x(t; t+0 , x0)‖ ≤ µρk‖x0‖

for all k ≥ 0 and someµ ≥ 1.

The following theorem gives necessary and sufficient condi-
tions for the stability of the linear impulsive systems (1) in term
of the stability of the discrete dynamical system (4).



Theorem 1

1. The linear impulsive system (1) is stable if and only if the
discrete system (4) is stable.

2. The linear impulsive system (1) is asymptotically stable if
and only if the discrete system (4) is asymptotically stable.

Proof. The state of the solution of the linear impulsive system
(1) at transition time instantst+k for all k is given by

x(t+k+1) = Φ(tk+1, tk)(x(tk) + d(tk)) + d(tk+1)

= Φ(tk+1, tk)x(t+k ) + d(tk+1)

The solution, by replacingx(t+k ) with hk, is given by (5) which
can then be written

‖hk‖ = ‖Φ(tk, t0)‖ ‖h0‖+
k−1∑
i=0

‖Φ(tk, ti)‖ ‖d(ti)‖

From the standard discrete time systems, it then follows that
the solutionhk is stable (asymptotically stable) if and only if
the matrixA is stable (asymptotically stable).

As preliminaries to proof of the stability theory, some defini-
tions and standard results will be presented.

Definition 3 [6] A functionα : R+ → R+ is said to belong to
a classK if it is continuous, strictly increasing andα(0) = 0.

Lemma 1 [16] Let φ : R+ → R+ be continuous, non-
decreasing and thatφ(r) > 0,∀r > 0, with φ(0) = 0. Then
there exists a classK functionα such thatα(r) ≤ φ(r),∀r.
Furthermore, ifφ(r) → ∞ asr → ∞, thenα can be chosen
to have the same property ofφ.

Definition 4 A functionV : Rn → R is said to be a local
positive definite function if:

(i) V is continuous

(ii) V(0) = 0

(iii) There exists a classK functionα such that

α(‖hk‖) ≤ V (hk), ∀k ≥ 0, hk ∈ Ω ⊂ Rn

positive definite function ifhk ∈ Rn(r →∞).

V is said to be decrescent if there exists a classK functionβ
such that

V (hk) ≤ β(‖hk‖), ∀k ≥ 0, hk ∈ Ω ⊂ Rn

wherehk ∈ Rn(r →∞).

A discrete Lyapunov function is then defined as

Vk
4
= V (hk)

whereVk denotes the value of the positive functionV at the
statex(t+k ) at timet+k . Along the discrete trajectories of (4),
the change∆V in the positive definite functionV is defined by

∆Vk+1
4
= Vk+1 − Vk

The following results follow directly from the discrete time sta-
bility results. (See for example [4].)

Theorem 2 Consider the linear impulsive system (1) and the
associated discrete time system (4). Suppose Condition 1 holds
and a positive definite functionV is defined onΩ. If for all
decision vectors{d(tk)} occurring at time instants{tk, k ∈
Z+} and for someθ such that0 < tk+1 − tk < θ < ∞ and

∆Vk ≤ 0 (6)

then the equilibrium point̄h = 0 is stable. Moreover, if
Ω = Rn and V (hk) → ∞ for ‖hk‖ → ∞ then the stabil-
ity is global.

Theorem 3 Consider the linear impulsive system (1) and the
associated discrete time system (4). Suppose Condition 1 holds
and a positive definite functionV is defined onΩ. If for all
decision vectors{d(tk)} occurring at time instants{tk, k ∈
Z+} and for someθ > 0 such thattk+1 − tk < θ < ∞ and

(i) ∆Vk < 0, for all k ∈ Z+, or

(ii) ∆Vk ≤ 0, for all k ∈ Z+ and∆Vk = 0 implieshk = 0
for k ≥ 0

then the equilibrium point̄h = 0 is asymptotically stable.
Moreover, ifΩ = Rn andV (hk) → ∞ for ‖hk‖ → ∞ then
the stability is global.

Theorem 4 If the conditions in Theorem 3 hold with respect to
a continuous functionV (h) where

0 ≤ α‖h‖p ≤ V (h) ≤ β‖h‖p

for someα, β, p > 0 and in addition

V (hk+1) ≤ γV (hk) ; 0 ≤ γ < 1

then (4) is exponentially asymptotically stable.

Theorem 5 Consider the linear impulsive system (1) and the
associated discrete time system (4). Suppose Condition 1 holds
and a positive definite functionV is defined onΩ. If for all
decision vectors{d(tk)} occurring at time instants{tk, k ∈
Z+} and for someθ > 0 such thattk+1 − tk < θ < ∞ and

∆Vk > 0

then (4) is unstable.



3 Quadratic Lyapunov Function

Consider the continuous time linear system

ẋ(t) = Ax(t) (7)

and consider a quadratic Lyapunov function candidate of the
form

V (x(t)) = xT (t)Px(t) ; P = PT > 0 (8)

ThenV̇ is given by

V̇ (x(t)) = −xT (t)Qx(t) (9)

where the matrixQ satisfies the Lyapunov matrix equation

AT P + PA = −Q (10)

Lemma 2 Consider the discrete dynamical system

xk+1 = Φ(tk+1, tk)xk ; Φ(tk+1, tk)
4
= eA(tk+1−tk)

for someθ such that0 < tk+1 − tk < θ < ∞. Then

(i) If the matrixA is asymptotically stable, for a givenQ > 0,
there exists a unique matrixP > 0 such that

AT P + PA = −Q

(ii) If Vk = xT
k Pxk then∆Vk

4
= Vk − Vk−1 < 0 implies

ΦT (tk, tk−1)PΦ(tk, tk−1)− P < 0

Furthermore, if the matrixA is stable then∆Vk
4
= Vk −

Vk−1 ≤ 0 impliesΦT (tk, tk−1)PΦ(tk, tk−1)− P ≤ 0.

Proof. Consider a continuous time linear system (7). IfA is
an asymptotically stable matrix, then equation (10) is satisfied
such thatV̇ < 0. Consequently

∆Vk = Vk − Vk−1 = −
∫ tk

tk−1

xT (σ)Qx(σ) dσ < 0

which implies ∆Vk = Vk − Vk−1 =
xT

k−1[Φ
T (tk, tk−1)PΦ(tk, tk−1) − P ]xk−1 < 0. Simi-

larly, if the matrixA is only stable, theṅV ≤ 0, then

∆Vk = Vk − Vk−1 = −
∫ tk

tk−1

xT (σ)Qx(σ) dσ ≤ 0

implies ∆Vk = Vk − Vk−1 =
xT

k−1[Φ
T (tk, tk−1)PΦ(tk, tk−1)− P ]xk−1 ≤ 0.

From this quadratic Lyapunov function, the change∆Vk for (5)
is then given by

∆Vk = hT
k−1[Φ

T (tk, tk−1)PΦ(tk, tk−1)− P ]hk−1 (11)

+2hT
k−1Φ

T (tk, tk−1)Pd(tk) + dT (tk)Pd(tk)

Corollary 1

1. If <λ(A) ≤ 0 and 2hT
k−1Φ

T (tk, tk−1)Pd(tk) +
dT (tk)Pd(tk) ≤ 0 then (1) is stable.

2. If <λ(A) < 0 and 2hT
k−1Φ

T (tk, tk−1)Pd(tk) +
dT (tk)Pd(tk) ≤ 0 then (1) is asymptotically stable.

Proof.

Let Vk = hT
k Phk. Then

Vk = hT
k−1[Φ

T (tk, tk−1)PΦ(tk, tk−1)− P ]hk−1

+2hT
k−1Φ

T (tk, tk−1)Pd(tk) + dT (tk)Pd(tk)

It follows thatVk ≤ 0 if

hT
k−1[Φ

T (tk, tk−1)PΦ(tk, tk−1)− P ]hk−1 ≤ 0

2hT
k−1Φ

T (tk, tk−1)Pd(tk) + dT (tk)Pd(tk) ≤ 0

The results are completed using Lemma 2.

Example 1 Consider the following PFM feedback system that
was studied in [15]. The system representation is described by[

ẏ(t)
q̇(t)

]
=

[
0 0
−1 −c

] [
y(t)
q(t)

]
; |q(tk)| 6= r

[
y(t+k )
q(t+k )

]
=

[
y(tk)
q(tk)

]
+

[
K
−r

]
sgn(q(tk)) ; |q(tk)| = r

y(t) = [1 0]
[

y(t)
q(t)

]
(12)

wherey is the output of the system, and the variableq is the
input of the modulator. The pulses are emitted at timetk when-
ever |q(tk)| = r for a fixed thresholdr. These impulses then
resetq to zero; that is,q(t+k ) = 0. The rate of pulse generation
depends on the value of the thresholdr, and the dynamics of
the system.

The dynamics of this example can therefore be arranged into
the form

ẋ(t) = Ax(t)
x(t+k ) = x(tk) + d(tk)

where

x(t) =
[

y(t)
q(t)

]
; d(tk) =

[
K
−r

]
sgn(C̄T x(tk)) ; (13)

C̄ =
[

0
1

]
for someK andr. Since|sgn(q)| = 1, the magnitude of the im-
pulsive vectors are identical, but their direction is determined
by the sign of the modulator inputq.



Consider the PFM system (12) with the impulsive vectord(tk)
given by (13). The stability of this system was investigated in
[14] where it was shown that the system is stable in the sense of
Lyapunov. The open setΩ for this system, for an infinitesimal
δ > 0, is

Ω = {(y, q) : |q|+ δ < r}

Consider the quadratic Lyapunov functionV given by

V (y, q) =
[

y(t) q(t)
] [

α β
β γ

] [
y(t)
q(t)

]
for α, β, γ > 0 andαγ > β2.

The first condition for stability is thaṫV (x) ≤ 0 for all x ∈ Ω.
This can be obtained from the Lyapunov matrix equation[

α β
β γ

] [
0 0
−1 −c

]
+

[
0 −1
0 −c

] [
α β
β γ

]
≤

[
0 0
0 0

]
which gives[

−2β −(γ + βc)
−(γ + βc) −2γc

]
≤

[
0 0
0 0

]
ThenV̇ ≤ 0 if the determinant

0 ≥ 4βγc− (γ + βc)2

≥ (γ − βc)

which givesβc ≥ γ. Also, the setG defined byG = {x :
V̇ (x) = 0, x ∈ Ω} is given byy + cq = 0 and |q| ≤ r.

The condition on the impulsive vectors is computed by using
the condition

2hT
k−1Φ

T (tk, tk−1)Pd(tk) + dT (tk)Pd(tk) ≤ 0

Defineyk
4
= y(tk), qk

4
= q(tk), the above condition is equiva-

lent to

2
[

yk

qk

]T [
α β
β γ

] [
K
−r

]
sgn(qk)

+
[

K
−r

]T

sgn(qk)
[

α β
β γ

] [
K
−r

]
sgn(qk) ≤ 0

This condition in turn is equivalent to

2yksgn(qk)[αK − βr] + αK2 − γr2 ≤ 0

Now the dynamic behaviour of the input modulatorq in the
absence of impulses is given byq̇ = −cq−y. Then multiplying
both sides byq gives

1
2

d

dt
(q2) = qq̇ = −cq2 − qy ; for |q| < r (14)

Sinceq is increasing in absolute value, henceqq̇ is positive
which from (14), then implies thatqy must be negative. This in
turn leads to the condition thatyk sgn(qk) is negative.

The condition onK is then obtained as follows:

αK ≥ βr and αK2 ≥ γr2

These inequalities leads to0 ≤ K ≤ γr
β . Since forc 6= 0, the

maximum value ofβ is β = γ
c , we conclude that the system is

stable if
0 ≤ K ≤ cr

which is the same as the result in [14]. However the present
approach for deriving the result is more direct since the results
are obtained by using the Lyapunov matrix equation.

It has been assumed that impulsive vectors{d(tk)} which lead
to Lyapunov stability exist inRn. Therefore, it is of interest to
show the existence of such impulsive vectors. In the following
result, an existence condition for impulsive vectors to satisfy
the condition

2hT
k−1Φ

T (tk, tk−1)Pd(tk) + dT (tk)Pd(tk) ≤ 0 (15)

is derived.

Corollary 2 Given a vector̃hk
4
= hT

k−1Φ
T (tk, tk−1), suppose

for someεk, there exists a vectorγk such that

h̃T
k Pγk ≤ −εk < 0

Then there exists anαk > 0 such that condition (15) is satisfied
with d(tk) = αk γk.

Proof. Let d(tk) = αkγk. Then

2h̃T
k Pd(tk) + dT (tk)Pd(tk) = αk(2h̃T

k Pγk + αkγT
k Pγk)

≤ αk(−2εk + αkγT
k Pγk)

Here, if for any choiceαk > 0 such thatαkγT
k Pγk < 2εk,

condition (15) is satisfied.

Another possible form for the impulsive vectors is given as fol-
lows.

Corollary 3 Let h̃k
4
= hT

k−1Φ
T (tk, tk−1). Suppose the impul-

sive vectord(tk) for all k ∈ Z+ is given by

dT (tk) = −[β1sgn(pT
1 h̃k) β2sgn(pT

2 h̃k) · · · (16)

βnsgn(pT
n h̃k)]P−

1
2

wheresgn(α) is the sign of a scalarα, pT
m is them-th row of

P
1
2 , and

0 ≤ βi ≤ 2 for 1 ≤ i ≤ n

Then2h̃T
k Pd(tk) + dT (tk)Pd(tk) ≤ 0.

Proof. Defineω = P
1
2 h̃. Thereforeẇ = P

1
2 AP−

1
2 ω

4
= F1ω.

Then

d
dt (ωT ω) = ωT (P−

1
2 AT P

1
2 + P

1
2 AP−

1
2 )ω

= −ωT P−
1
2 QP−

1
2 ω < 0,

which impliesAT
1 + A1 = −Q1, Q1

4
= P−

1
2 QP−

1
2 . Define

µk
4
= 2h̃T

k Pd(tk) + dT (tk)Pd(tk) = 2ωT
k fk + fT

k fk



where ωk
4
= ω(tk) and fk

4
= P

1
2 d(tk). Now let fT

k =
−[β1ω1k β2ω2k · · · βnωnk] where ωT

k =
[ω1k ω2k · · · ωnk] so thatµk = −2(β1ω

2
1k + β2ω

2
2k +

· · · + βnω2
nk) + (β2

1ω2
1k + β2

2ω2
2k + · · · + β2

nω2
nk) ≤ 0 for all

k if 0 ≤ βi ≤ 2, for all 1 ≤ i ≤ n.

The following example shows how the impulsive vectors are
computed by using the stability condition (16) in Corollary 3.

Example 2 Consider a second order plant

ẋ(t) =
[

0 1
−1 −4

]
x(t) ; y 6= 1

x(t+k ) = x(tk) + d(tk) ; y = 1

y(t) = [1 0] x(t)

(17)

The system matrix has eigenvaluesλ1 = −0.268 and λ2 =
−3.732 so the linear system is asymptotically stable. Then from

(10),Q =
[

4 2
2 4

]
implies

P =
[

7 2
2 1

]
; P

1
2 =

[
2.5790 0.5907
0.5907 0.8069

]

According to Corollary 3, if the decision vectord(tk) is given
by

d(tk) = P−
1
2

 −β1 sgn([2.5790 0.5907]h̃k)

−β2 sgn([0.5907 0.8069]h̃k)


then (17) will be asymptotically stable. Now supposexT (tk) =
[1 α] which satisfiesy = 1. Using the condition2h̃T

k Pd(tk)+
dT (tk)Pd(tk) ≤ 0 then yields

−2(2.5790β1 +0.5907β2)−2(0.5907β1 +0.8069β2)α (18)

+β2
1 + β2

2 ≤ 0

and so choosingβ1 andβ2 which satisfy (18) and0 ≤ β1, β2 ≤
2 leads to the asymptotic stability of the system (17).

4 Conclusions

In this paper, stability of hybrid systems modeled as linear im-
pulsive systems was developed by transforming the hybrid sys-
tems discrete dynamical systems. When the Lyapunov function
is of the quadratic form, the stability condition is a function of
the impulsive vector. This requirement leads to a condition on
inner product between gradient of Lyapunov function discrete
states and the impulsive vectors at the occurrences of impulsive
effects. This representation improves the stability condition,
since the impulsive vector has nonunique representation as a
function of the state at that time instant. The developed stabil-
ity conditions have been applied in a class of receding horizon
hybrid reference control (RHHRC) appeared in [10].
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