A NEW APPROACH TO H_{∞} SUBOPTIMAL MODEL REDUCTION FOR SINGULAR SYSTEMS

\author{

* Jing Wang, College of Sciences,Northeasten University, Shenyang, 110004, P. R. China, Email:cos@mail.edu.edu.cn,
 ${ }^{\dagger}$ Wanquan Liu, Department of Computing, Curtin University of Technology, WA 6102, Australia, Email:wanquan@cs.curtin.edu.au
 * QingLing Zhang, College of Sciences,Northeasten University, Shenyang, 110004, P. R. China,
}

Keywords: Singular Systems, Model Reduction, Silverman-Ho Algorithm, H_{∞} norm

Abstract

In this paper, the H_{∞} suboptimal model reduction for singular systems is investigated. An optimal model reduction algorithm is designed for obtaining a stable reduced model. A necessary and sufficient condition for the existence of a stable reduced-order system is given and this criterion can be verified numerically. Also, a numerical algorithm is presented for obtaining such a reduced order stable system.

1 Introduction

In recent years, singular systems have been investigated extensively due to their broad applications in modelling and control of electrical circuits, power systems and economics, etc. Some important characteristics of singular systems include combined dynamic and static solutions, impulsive behaviors and large dimensionality. Thus model reduction is vital for analysis and controller design for such systems [4, 6].

The initial investigation of model reduction for singular systems was the chained aggregation approach proposed in [7]. The authors there developed a generalized chain-aggregation algorithm and gave an intuitive interpretation of the exact aggregation conditions for singular systems. The aim of the proposed method is to remove the unobservable subspace. Initial behavior of singular systems was also taken into consideration while performing model reduction. However, as pointed out in [8], its main drawback is its high computational costs.

Perev and Shafai [8] considered model reduction for singular system via balanced realizations and gave a model reduction algorithm. Unfortunately, their approach ignored the impulsive behavior which is of paramount importance to singular systems. With this
reduction algorithm, the reduced order model may be a normal state space system, which has no impulsive behavior and does not track the original system response properly as demonstrated in [5]. Liu and Sreeram [5] proposed a new reduction algorithm via the Nehari's approximation algorithm and overcome this issue. With the approach in [5], the reduced-order model will be a really singular system and the approximation has been obtained as desired. For discrete singular systems, Zhang et al. [4] discussed the same problem with the approximation in H_{2} norm and some results obtained. Moreover, Zhang et al.[9] discussed the H_{∞} suboptimal model reduction problem for singular systems. In [9], it requires the transfer matrix of the error system to be rational in order to guarantee that H_{∞} norm exists. However, the existence of the reduced-order system was not solved there and has remained open. Also the H_{∞} model reduction problem for discrete singular systems was investigated in [3] with the restriction of admissible property.

In this paper, we will tackle the model reduction problem for singular systems and will present a new approach for the H_{∞} suboptimal model reduction. In order to preserve the impulsive nature of singular systems, we will use reduced-order fast sub systems to approximate the fast sub systems as proposed in [5, 9]. However, a necessary and sufficient condition has been obtained for the existence of a stable reduced-order system in this paper. Further, an algorithm has been designed for the \mathcal{H}_{∞} suboptimal model reduction and this algorithm can be easily implemented via Matlab software .

The organization of this paper is as following. In section 2, a system transformation and suboptimal model reduction problem will be presented. In section 3 , the Silverman-Ho algorithm will be given. In section 4, the main results about the \mathcal{H}_{∞} suboptimal model reduction will be given and a detailed algorithm will be illustrated in section 5 . Conclusions will be presented in section 6 .

2 Prelimineries

Consider the following singular systems

$$
\begin{align*}
& E \dot{x}(t)=A x(t)+B u(t) \quad x(0-)=x_{0} \\
& y(t)=C x(t) \tag{1}
\end{align*}
$$

where $x(t) \in \mathcal{R}^{n}$ is the state vector, $u(t) \in \mathcal{R}^{q}$ is the input vector and $y(t) \in \mathcal{R}^{m}$ is the output vector. $E \in \mathcal{R}^{n \times n}, A \in \mathcal{R}^{n \times n}, B \in \mathcal{R}^{n \times q}, C \in \mathcal{R}^{m \times n}$ are constant matrices with E possibly singular. Assume that the matrix pair (E, A) is regular (i.e., $|s E-A| \not \equiv 0$). In this paper, the realization quadruple (E, A, B, C) is used to represent the system (1). All matrices in this paper are assumed to have appropriate dimensions.

From [2], it is known that there exist two square nonsingular matrices Q and P such that system (1) can be transformed into the Weierstrass form

$$
\begin{array}{ll}
\dot{x}_{1}(t)=A_{1} x_{1}(t)+B_{1} u(t) & x_{1}(0-)=x_{1,0} \\
y_{1}(t)=C_{1} x_{1}(t) & \tag{2}\\
N \dot{x}_{2}(t)=x_{2}(t)+B_{2} u(t) & x_{2}(0-)=x_{2,0} \\
y_{2}(t)=C_{2} x_{2}(t) &
\end{array}
$$

where $x_{1}(t) \in \mathcal{R}^{n_{1}}, x_{2}(t) \in \mathcal{R}^{n_{2}}, n_{1}+n_{2}=n, N \in$ $\mathcal{R}^{n_{2} \times n_{2}}$ is nilpotent, and

$$
\begin{aligned}
& Q E P=\operatorname{diag}(I, N), \quad Q A P=\operatorname{diag}\left(A_{1}, I\right) \\
& C P=\left[\begin{array}{ll}
C_{1} & C_{2}
\end{array}\right], \quad P^{-1} x(t)=\left[\begin{array}{ll}
x_{1}^{T}(t) & x_{2}^{T}(t)
\end{array}\right]^{T} \\
& Q B=\left[\begin{array}{ll}
B_{1}^{T} & B_{2}^{T}
\end{array}\right]^{T}, y(t)=y_{1}(t)+y_{2}(t)
\end{aligned}
$$

System(1) is called system restricted equivalent(s.r.e) to the system(2). The transfer function matrix $G(s)$ is invariant under such s.r.e. transformation, i. e. ,

$$
\begin{aligned}
G(s) & =C(s E-A)^{-1} B \\
& =C P(s Q E P-Q A P)^{-1} Q B \\
& =C_{1}\left(s I-A_{1}\right)^{-1} B_{1}+C_{2}(s N-I)^{-1} B(23)
\end{aligned}
$$

and

$$
\begin{aligned}
C_{2}(s N-I)^{-1} B_{2} & =-C_{2} B_{2}-s C_{2} N B_{2}-\cdots \\
& -s^{h-1} C_{2} N^{h-1} B_{2}
\end{aligned}
$$

with $C_{2} N^{h-1} B_{2} \neq 0$.
The aim of this paper is to investigate the \mathcal{H}_{∞} suboptimal model reduction for singular systems. Suppose the reduced-order singular system is

$$
\begin{align*}
& E_{r} \dot{x}_{r}(t)=A_{r} x_{r}(t)+B_{r} u(t) \\
& y(t)=C_{r} x_{r}(t) \tag{4}
\end{align*}
$$

which is assumed to be regular. Then there also exist two matrices Q_{r} and P_{r} such that

$$
\begin{align*}
& \dot{x}_{1 r}(t)=A_{1 r} x_{1 r}(t)+B_{1 r} u(t) \\
& y_{1 r}(t)=C_{1 r} x_{1 r}(t) \\
& N_{r} \dot{x}_{2 r}(t)=x_{2 r}(t)+B_{2 r} u(t) \tag{5}\\
& y_{2 r}(t)=C_{2 r} x_{2 r}(t)
\end{align*}
$$

where $x_{1 r}(t) \in \mathcal{R}^{n_{1 r}}, x_{2 r}(t) \in \mathcal{R}^{n_{2 r}}, n_{1 r}+n_{2 r}=n_{r}$, $N_{r} \in \mathcal{R}^{n_{2 r} \times n_{2 r}}$ is nilpotent, and

$$
\begin{aligned}
& Q_{r} E_{r} P_{r}=\operatorname{diag}\left(I, N_{r}\right), \quad Q_{r} A_{r} P_{r}=\operatorname{diag}\left(A_{1 r}, I\right) \\
& C_{r} P_{r}=\left[\begin{array}{ll}
C_{1 r} & C_{2 r}
\end{array}\right] P_{r}^{-1} x_{r}(t)=\left[x_{1 r}^{T}(t) x_{2 r}^{T}(t)\right]^{T} \\
& Q_{r} B_{r}=\left[\begin{array}{ll}
B_{1 r}^{T} & B_{2 r}^{T}
\end{array}\right]^{T}, \quad y(t)=y_{1 r}(t)+y_{2 r}(t)
\end{aligned}
$$

Then the error system between the original system and the reduced order system will be

$$
\begin{align*}
& E_{e} \dot{x}_{e}(t)=A_{e} x_{e}(t)+B_{e} u(t) \tag{6}\\
& y_{e}(t)=C_{e} x_{e}(t)
\end{align*}
$$

where $x_{e}^{T}(t)=\left[x^{T}(t) x_{r}^{T}(t)\right]^{T}, y_{e} \in \mathcal{R}^{m}$, and

$$
\begin{aligned}
& E_{e}=\operatorname{diag}\left(E, \quad E_{r}\right), \quad A_{e}=\operatorname{diag}\left(A, \quad A_{r}\right) \\
& B_{e}^{T}=\left[\begin{array}{ll}
B^{T} & B_{r}^{T}
\end{array}\right]^{T}, \quad C_{e}=\left[\begin{array}{ll}
C & -C_{r}
\end{array}\right]
\end{aligned}
$$

Let

$$
Q_{e}=\operatorname{diag}\left(Q, \quad Q_{r}\right), \quad P_{e}=\operatorname{diag}\left(P, P_{r}\right)
$$

Then the \mathcal{H}_{∞} norm of the transfer matrix $G_{e}(s)$ for the error system will be

$$
\begin{aligned}
\left\|G_{e}(s)\right\|_{\infty} & =\left\|C_{e} P_{e} P_{e}^{-1}\left(s E_{e}-A_{e}\right)^{-1} Q_{e}^{-1} Q_{e} B_{e}\right\|_{\infty} \\
& =\| C_{1}\left(s I-A_{1}\right)^{-1} B_{1}-C_{1 r}\left(s I-A_{1 r}\right)^{-1} B_{1 r} \\
& +C_{2}(s N-I)^{-1} B_{2}-C_{2 r}\left(s N_{r}-I\right)^{-1} B_{2 r} \|_{\infty}
\end{aligned}
$$

Then, the problem of the \mathcal{H}_{∞} suboptimal model reduction for singular system (1) is to find a reduced-order singular system $\left(E_{r}, A_{r}, B_{r}, C_{r}\right)$ with $\operatorname{dim}\left(E_{r}\right)<$ $\operatorname{dim}(E)$ such that for a given positive number γ, the following holds

$$
\left\|G_{e}(s)\right\|_{\infty}<\gamma
$$

First, It is known from [9] that $\left\|G_{e}(s)\right\|_{\infty}$ is finite if and only if
$C_{2}(s N-I)^{-1} B_{2}-C_{2 r}\left(s N_{r}-I\right)^{-1} B_{2 r}=C_{2} B_{2}-C_{2 r} B_{2 r}$
i. e.,

$$
\begin{align*}
& C_{2} N^{i} B_{2}=C_{2 r} N_{r}^{i} B_{2 r}, \quad i=1,2, \cdots, h-1(.7) \\
& C_{2 r} N_{r}^{i} B_{2 r}=0, \quad i \geq h \tag{8}
\end{align*}
$$

In this case, one has

$$
\begin{aligned}
& \left\|G_{e}(s)\right\|_{\infty}= \\
& \left\|C_{1}\left(s I-A_{1}\right)^{-1} B_{1}-C_{1 r}\left(s I-A_{1 r}\right)^{-1} B_{1 r}+C_{2} B_{2}-C_{2 r} B_{2 r}\right\|_{\infty}
\end{aligned}
$$

Therefore, the \mathcal{H}_{∞} suboptimal model reduction problem can be solved via using the conventional approaches if (7) and (8) are met. As indicated by results in [9], the main difficulty for the model reduction problem is to find suitable ($C_{2 r}, N_{r}, B_{2 r}$) such that equaions (7) and (8) are satisfied.

Also it is known from [2] that the transfer matrix for a system is determined only by the controllable and observable subsystem, Therefore, one problem in this paper is to discuss the model reduction of the fast subsystems (N, I, B_{2}, C_{2}). i.e., to find the fast subsystem ($N_{r}, I_{r}, B_{2 r}, C_{2 r}$) with $n_{2 r}<n_{2}$ and satisfy the conditions (7) and (8).

The approach adopted in [9] is to find N_{r} first, then one tries to solve (7) and (8) to obtain $B_{2 r}$ and $C_{2 r}$. The proposed approach there has two significant disadvantages. On one hand, for a given N_{r}, the equations (7) and (8) may not have solutions for $B_{2 r}, C_{2 r}$. On the other hand, even the solutions for these equations exist, it is still not easy to solve them due to their nonlinear nature.
In this paper, the following questions related to the model reduction problem will be addressed. The existence of ($N_{r}, I_{r}, B_{2 r}, C_{2 r}$) satisfying (7) and (8) will be tackled and their solutions will be investigated. Also the lowest order of N_{r} will be identified and a model reduction algorithm will be presented.

3 Silverman-Ho algorithm

The Silverman-Ho algorithm in [1] is about the property of a matrix polynomial. It has many applications in system analysis and design. First, it can be stated as below.

Lemma 1 [1] For any polynomial matrix $P(s)$, there always exist matrices N, B, and C, with N nilpotent, such that $P(s)=C(s N-I)^{-1} B$

For a given polynomial matrix

$$
P(s)=P_{0}+P_{1} s+\cdots+P_{h-1} s^{h-1}, P_{i} \in \mathcal{R}^{r \times m}
$$

The above lemma guarantees the existence of B, C, and the nilpotent matrix N, such that

$$
P(s)=C(s N-I)^{-1} B
$$

The following process presents an approach for finding a minimal realization (C, N, B), in the sense that they are impulsive controllable and observable [2]. Let

$$
\begin{aligned}
M_{0} & =\left[\begin{array}{ccccc}
-P_{0} & -P_{1} & \cdots & -P_{h-2} & -P_{h-1} \\
-P_{1} & -P_{2} & \cdots & -P_{h-1} & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
-P_{h-2} & -P_{h-1} & \cdots & \cdots & 0 \\
-P_{h-1} & 0 & \cdots & \cdots & 0
\end{array}\right] \\
& \in \mathcal{R}^{h r \times h m}
\end{aligned}
$$

$$
\begin{aligned}
M_{1} & \triangleq\left[\begin{array}{ccccc}
-P_{1} & -P_{2} & \cdots & -P_{h-1} & 0 \\
-P_{2} & -P_{3} & \cdots & 0 & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
-P_{h-1} & 0 & \cdots & \cdots & 0 \\
0 & 0 & \cdots & \cdots & 0
\end{array}\right] \\
& \in \mathcal{R}^{h r \times h m}
\end{aligned}
$$

and denote

$$
\tilde{n} \triangleq \operatorname{rank} M_{0}
$$

Then one decompose M_{0} into the following form

$$
M_{0}=L_{1} L_{2}
$$

where $L_{1} \in \mathcal{R}^{h r \times \tilde{n}}, L_{2} \in \mathcal{R}^{\tilde{n} \times h m}$ are matrices with full column and row rank, respectively. Further, Let \tilde{B} and \tilde{C}, respectively, be the first m columns of L_{2} and the first r rows of L_{1}. Then

$$
\tilde{N}=\left(L_{1}^{T} L_{1}\right)^{-1} L_{1}^{T} M_{1} L_{2}^{T}\left(L_{2} L_{2}^{T}\right)^{-1}
$$

will be nilpotent and $(\tilde{N}, \tilde{B}, \tilde{C})$ forms a minimal realization for $P(s)$ as desired. This algorithm will be used in the sequel to design a procedure for solving the model reduction problems proposed in the previous section.

4 Main Results

From the Silver-Ho algorithm, it can be seen that the order of the minimal realization for $P(s)$ is determined by the rank of the matrix M_{0}. For a given fast subsystem $\left(N, B_{2}, C_{2}\right)$, let $P_{i}=C_{2} N^{i} B_{2}, \quad i=0,1, \cdots, h-1$. Then the suboptimal model reduction problem is to find a matrix \tilde{P}_{0} such that $n_{2}=\operatorname{rank} M_{0}>\operatorname{rank} \tilde{M}_{0}=n_{2 r}$, where \tilde{M}_{0} corresponds to $\tilde{P}_{0}, P_{1}, \cdots, P_{h-1}$. So the existence of such matrix \tilde{P}_{0} will determine whether the original fast subsystem can be reduced. The following theorem will give a necessary and sufficient condition for the existence of such matrix \tilde{P}_{0}.

Without loss of generality, let

$$
\begin{aligned}
M_{2} & \triangleq\left[\begin{array}{lllll}
-P_{0} & -P_{1} & \cdots & -P_{h-2} & -P_{h-1}
\end{array}\right] \\
& \triangleq\left[\begin{array}{llll}
\alpha_{1}^{T} & \alpha_{2}^{T} & \cdots & \alpha_{m}^{T}
\end{array}\right]^{T}
\end{aligned}
$$

$$
M_{4}=\left[\begin{array}{ccccc}
-P_{1} & -P_{2} & \cdots & -P_{h-1} & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
-P_{h-2} & -P_{h-1} & \cdots & \cdots & 0 \\
-P_{h-1} & 0 & \cdots & \cdots & 0
\end{array}\right]
$$

Then M_{0} can be partitioned as

$$
M_{0}=\left[\frac{M_{2}}{M_{4}}\right]
$$

Let the vector set $\left[\begin{array}{llll}\alpha_{1}, & \alpha_{2}, & \cdots, & \alpha_{d}\end{array}\right]$ be the maximal linearly independent set of $\left[\begin{array}{llll}\alpha_{1}, & \alpha_{2}, & \cdots, & \alpha_{m}\end{array}\right]$ such that
$\operatorname{rank} M_{0}=\operatorname{rank}\left[\begin{array}{c}\alpha_{1} \\ \alpha_{2} \\ \vdots \\ \frac{\alpha_{d}}{M_{4}}\end{array}\right]=\operatorname{rank}\left[M_{4}\right]+d, d \leq m$
This is possible since one can choose the independent vectors from the bottom to top in M_{0}. Also, it can be seen that d is determined by M_{4} and M_{2}. Further, suppose that

$$
\left[\begin{array}{c}
M_{4} \\
\alpha_{1} \\
\alpha_{2} \\
\vdots \\
\alpha_{d} \\
\alpha_{d+1} \\
\vdots \\
\alpha_{m}
\end{array}\right]=\left[\begin{array}{c|c|c}
M_{4}^{1} & M_{4}^{2} & M_{4}^{3} \\
\hline *_{1} & *_{2} & *_{3} \\
\hline p_{k+1} & \beta_{k+1} & \eta_{k+1} \\
p_{k+2} & \beta_{k+2} & \eta_{k+2} \\
\vdots & \vdots & \vdots \\
p_{d} & \beta_{d} & \eta_{d} \\
\hline p_{d+1} & \beta_{d+1} & \eta_{d+1} \\
p_{d+2} & \beta_{d+2} & \eta_{d+2} \\
\vdots & \vdots & \vdots \\
p_{m} & \beta_{m} & \eta_{m}
\end{array}\right]
$$

where $k=\operatorname{rank}\left[P_{h-1}\right], *_{1}, *_{3} \in \mathcal{R}^{k \times q}, *_{2} \in$ $\mathcal{R}^{k \times(h-2) q}$. The matrix $*_{3}$ are of full row rank, p_{i}, $\eta_{j} \in \mathcal{R}^{1 \times q}$ with

$$
\operatorname{rank}\left[\frac{*_{3}}{\eta_{j}}\right]=\operatorname{rank}\left[*_{3}\right]
$$

$\beta_{i} \in \mathcal{R}^{1 \times(h-2) q}, k+1 \leq i \leq m, k+1 \leq j \leq m$. This simplification is possible due to the fact that

$$
\mathrm{r} a n k P_{h-1}=\mathrm{r} a n k\left[*_{3}\right]
$$

Then among

$$
\beta_{k+1}, \quad \beta_{k+2}, \cdots, \quad \beta_{d}
$$

there are two possible cases. (i) If

$$
\operatorname{rank}\left[\begin{array}{c|c}
M_{4}^{2} & M_{4}^{3} \\
*_{2} & *_{3} \\
\hline \beta_{i} & \eta_{i}
\end{array}\right]=\operatorname{rank}\left[\begin{array}{c|c}
M_{4}^{2} & M_{4}^{3} \\
*_{2} & *_{3}
\end{array}\right]
$$

which indicates that p_{i} can affect the rank of M_{0} due to the following fact,
$\operatorname{rank}\left[\begin{array}{c|c|c}M_{4}^{1} & M_{4}^{2} & M_{4}^{3} \\ \hline *_{1} & *_{2} & *_{3} \\ \hline p_{i} & \beta_{i} & \eta_{i}\end{array}\right]>\operatorname{rank}\left[\begin{array}{c|c|c}M_{4}^{1} & M_{4}^{2} & M_{4}^{3} \\ \hline *_{1} & *_{2} & *_{3}\end{array}\right]$
Then one can decrease the rank of M_{0} by changing p_{i} as discussed below. (ii) If

$$
\operatorname{rank}\left[\begin{array}{c|c}
M_{4}^{2} & M_{4}^{3} \\
*_{2} & *_{3} \\
\hline \beta_{i} & \eta_{i}
\end{array}\right]>\operatorname{rank}\left[\begin{array}{c|c}
M_{4}^{2} & M_{4}^{3} \\
*_{2} & *_{3}
\end{array}\right]
$$

Then it implies that p_{i} does not affect the rank of M_{0}. In case (i), one can reduce the rank of M_{0} by changing the elements p_{i} as described below. Since $\left[\beta_{i}, \eta_{i}\right]$ is linearly dependent on

$$
\left[\begin{array}{c|c}
M_{4}^{2} & M_{4}^{3} \\
*_{2} & *_{3}
\end{array}\right]
$$

There exists vectors x_{1} and x_{2} such that

$$
\left[\beta_{i}, \eta_{i}\right]=\left[x_{1}^{T} M_{4}^{2}+x_{2}^{T} *_{2}, x_{1}^{T} M_{4}^{3}+x_{2}^{T} *_{3}\right]
$$

In this case, one replace p_{i} with

$$
\tilde{p}_{i}=x_{1}^{T} M_{4}^{1}+x_{2}^{T} *_{1}
$$

one can find that
$\operatorname{rank}\left[\begin{array}{c|c|c}M_{4}^{1} & M_{4}^{2} & M_{4}^{3} \\ \hline *_{1} & *_{2} & *_{3} \\ \hline \tilde{p}_{i} & \beta_{i} & \eta_{i}\end{array}\right]=\operatorname{rank}\left[\begin{array}{c|c|c}M_{4}^{1} & M_{4}^{2} & M_{4}^{3} \\ \hline *_{1} & *_{2} & *_{3}\end{array}\right]$
which indicates that the rank can be reduced. However, the vector among $\left[p_{j}, \beta_{j}, \eta_{j}\right], d<j<m+1$ may become independent with
$\left[\begin{array}{c|c|c}M_{4}^{1} & M_{4}^{2} & M_{4}^{3} \\ \hline *_{1} & *_{2} & *_{3} \\ \hline p_{k+1} & \beta_{k+1} & \eta_{k+1} \\ p_{k+2} & \beta_{k+2} & \eta_{k+2} \\ \vdots & \vdots & \vdots \\ p_{d} & \beta_{d} & \eta_{d}\end{array}\right]$
after changing p_{i}. In order to avoid the possible rank incremental in this case, one need to change p_{j} accordingly as bellow. Remind that $\left[p_{j}, \beta_{j}, \eta_{j}\right], d<j<m+1$
is linearly dependent with (9), so there exist vectors y_{1}, y_{2}, y_{3} satisfying

$$
\left[p_{j}, \beta_{j}, \eta_{j}\right]=\left[y_{1}^{T} M_{4}^{1}+y_{2}^{T} *_{2}+y_{3}^{T} P, *, *\right]
$$

In order to keep the rank not increasing after P is replaced by \tilde{P}, one can replace p_{j} with

$$
\tilde{p}_{j}=y_{1}^{T} M_{4}^{1}+y_{2}^{T} *_{2}+y_{3}^{T} \tilde{P}
$$

After changing the $p_{i}, 0<i<d+1$ in case (i) and related $p_{j}, d<j<m+1$, the rank of M_{0} has been reduced, which indicates that a reduced model can be obtained. Now, with notation for $k<i<d+1$,

$$
S=\left\{\eta_{i} \left\lvert\, \operatorname{rank}\left[\begin{array}{c|c}
M_{4}^{2} & M_{4}^{3} \\
*_{2} & *_{3} \\
\hline \beta_{i} & \eta_{i}
\end{array}\right]=\left[\begin{array}{c|c}
M_{4}^{2} & M_{4}^{3} \\
*_{2} & *_{3}
\end{array}\right]\right.\right\}
$$

Clearly, this set will provide a necessary and sufficient condition for the existence of the lower order fast subsystems.

Theorem 2 Given $\left(N, B_{2}, C_{2}\right)$, there exists a reduced-order, controllable and observable system $\left(N_{r}, B_{2 r}, C_{2 r}\right)$ with dimension $n_{2 r}<n_{2}$ such that the \mathcal{H}_{∞} norm of the error system is finite if and only if the set S is not empty.

With this theorem, the following results are obvious.

Corollary 3 1. The lowest order n_{r} of the reducedorder system is $n_{2}-N(S)$, where $N(S)$ is the number of the elements in S. Further,

$$
n_{2}-N(S) \geq \operatorname{rank} \quad M_{1}+k
$$

2. For single-input(or single-output), controllable and observable system, there does not exist reduced-order system such that the \mathcal{H}_{∞} norm of the error system exists.

Prior to give a model reduction algorithm, one should note a fact that the corresponding p_{i} in case (ii) can choose any value freely without affecting the rank of M_{0}. This set can be a free parameter for optimal reduction algorithm given below.

Let the order of the reduced order system be $n_{2 r}$ satisfying $n_{2}-N(S) \leq n_{2 r}<n_{2}$. Without loss of generality, suppose that the original P_{0} can be partitioned as

$$
P_{0}=\left[\frac{P_{01}}{P_{02}}\left[\frac{P_{03}}{}\right]\right.
$$

where P_{01} is the vector set in case (i) and P_{02} is the vector set in case (ii) and P_{03} is the vector set with index $d<j<m+1$. In this case, one can iteratively reduce the rank of M_{0} by changing P_{01} and P_{03}. Recall that P_{02} will not affect the rank of M_{0}, therefore P_{03} will be a function of P_{02} which is a free parameter used in the optimization process below. So the suboptimal model reduction problem can be converted into an optimization problem for finding $A_{r 1}, B_{r 1}, C_{r 1}$, and $P_{03}\left(P_{02}\right)$ such that
$\left\|C_{1}\left(s I-A_{1}\right)^{-1} B_{1}-C_{1 r}\left(s I-A_{1 r}\right)^{-1} B_{1 r}++P_{02}\left(P_{03}\right)\right\|_{\infty}$
is minimized. This can be solved by the standard optimization technique introduced in [10].

5 Algorithm and Illustrative Example

Now a model reduction algorithm can be presented based on previous discussions.

1. Decompose the given singular system into the slow and fast subsystems. If there exists controllable and observable part and denote it as $\left(N, I, B_{2}, C_{2}\right)$. Otherwise, go to step 4.
2. Compute $P_{i}=-C_{2} N^{i} B_{2}$ and obtain M_{0}.
3. Change elements in P_{01} to P_{01}^{*} such that the rank of matrix M_{0}^{*} is reduced as desired.
4. Solve the unconstrained optimization problem and obtain $A_{r 1}, B_{r 1}, C_{r 1}, P_{03}^{*}$ and then P_{0}^{*}.
5. Use the Silverman-Ho algorithm to obtain the minimal realization ($N_{r}, I_{r}, B_{r}, C_{r}$) for the reduced order system.

Now, we give one numerical example to illustrate the algorithm. Consider the fast system (N, B, C) with

$$
\begin{gathered}
N=\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right], \quad B=\left[\begin{array}{ll}
1 & 1 \\
0 & 2 \\
1 & 0 \\
2 & 1 \\
0 & 1
\end{array}\right] \\
C=\left[\begin{array}{lllll}
1 & 3 & 0 & 3 & 2 \\
1 & 0 & 2 & 1 & 0 \\
3 & 2 & 3 & 1 & 1
\end{array}\right]
\end{gathered}
$$

It can be verified that this system is a minimal realization. Computing

$$
\begin{aligned}
& -P_{0}=C B=\left[\begin{array}{lc}
7 & 12 \\
5 & 2 \\
8 & 9
\end{array}\right] \\
& -P_{1}=C N B=\left[\begin{array}{ll}
3 & 5 \\
0 & 3 \\
2 & 7
\end{array}\right]
\end{aligned}
$$

Then one can obtain that $N(S)=1$. Implementing this algorithm, one can obtain the following parameters.

$$
\begin{gathered}
N_{r}=\left[\begin{array}{cccc}
0.3284 & 0.1584 & -0.0582 & 0.0001 \\
-0.3969 & -0.3370 & -0.0025 & 0.0663 \\
0.7732 & -0.0241 & -0.3357 & 0.1813 \\
-0.0215 & -0.7651 & -0.3740 & 0.3443
\end{array}\right] \\
B_{r}=\left[\begin{array}{ccc}
-0.5660 & -0.7371 \\
0.5363 & -0.6610 \\
0.5055 & -0.0223 \\
-0.3694 & 0.1392
\end{array}\right] \\
C_{r}=\left[\begin{array}{cccc}
-14.9254 & -1.5002 & -1.3974 & -0.1695 \\
-5.3407 & 2.9334 & 0.9190 & 0.1649 \\
-16.4778 & 2.5852 & 0.1916 & 0.0886
\end{array}\right]
\end{gathered}
$$

Also the \mathcal{H}_{∞} norm of the error system is

$$
\left\|G_{e}(s)\right\|_{\infty}^{2}=\left\|C B-C_{r} B_{r}\right\|_{\infty}^{2}=9.8025
$$

With the proposed algorithm in [9], one can obtain a reduced system with the \mathcal{H}_{∞} norm

$$
\left\|G_{e}(s)\right\|_{\infty}^{2}=\left\|C B-C_{r} B_{r}\right\|_{\infty}^{2}=27.5005>9.8025
$$

This illustrates that the new proposed algorithm is much better than one reported in [9].

6 Conclusions

In this paper, we developed a new approach of \mathcal{H}_{∞} suboptimal reduction algorithm for singular systems. A necessary and sufficient condition is presented in which one can guarantee the existence of a reduced-order system with finite \mathcal{H}_{∞} norm of the error system. Also an explicit algorithm is presented for obtaining the reduced order systems. Compared to the results in the exiting literature, one can find the following the importance contributions of this paper

- A necessary and sufficient condition is obtained for the existence of the reduced order systems.
- The possible lowest order of the reduced system is obtained.
- One free parameter in the reduction process has been identified.
- The optimization process is a combination of slow and fast subsystems.

The similar technique can be applied to discrete singular systems.

The disadvantage of the proposed algorithm is the decomposition of the system matrices into slow and fast systems. This overhead may bring numerical difficulties in practice.

References

[1] F.R. Gantmacher, "The theory of matrices," Chelsea, newYork, 1960.
[2] Dai, L., "Singular control systems", New York, Springer-Verlag, 1989.
[3] $\mathrm{S} . \mathrm{Xu}$ and J. Lam, ${ }^{"} H_{\infty}$ model reduction for discrete time singular systems", Systems and Control Letters, 2002, to appear.
[4] Zhang L. Q., Lam J., and Zhang Q. L.,"Optimal model reduction of discrete-time descriptor systems ", Int. J. of Syst. Scis., vol. 32, pp. 575-583.
[5] Liu W. Q., and Sreeram V., "Model reduction of singular systems", Proc of IEEE Conf Decision and Control, pp. 2373-2378, 2000.
[6] Jamshidi, M., 'Large scale systems: Modeling and Control", New York, North-Holland, 1983.
[7] Lewis, F. L., Christodoulou, M. A., Mertzios, B. G., and Ozcaldiran, K., "Chained aggregation of singular system", IEEE Trans. on Automatic and Control, vol. 34, no. 9, pp. 1007-1012, 1989.
[8] Perev, K., and Shafai, B., "Balanced realization and model reduction of singular systems", Int. J. Systems Sci., vol. 25, no. 6, pp. 1039-1052, 1994.
[9] Q. L. Zhang, V. Sreeram, G. Wang, and W. Q. Liu, ${ }^{"} \mathcal{H}_{\infty}$ Suboptimal Model Reduction for Singular Systems", Proc of the American Control Conference, pp. 1168-1173, 2002.
[10] K.M. Zhou, John Doyal and K. Glover, "Robust and optimal Control," Pretince Hall, 1996.

