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Keywords: Model reduction;H,-approximation, global opti- global optima. This makes it a hazardous task to apply numeri-

mization, rational optimization. cal techniques only to determine &f-optimal reduced-order
model to a given system, such as the usual iterative local search
Abstract techniques for multivariate function minimization (like steepest

descent, Newton’s method, the Gauss-Newton method, etc.).

A state-space approach ¢, model reduction of stable Sys'Depending on the choice of parameterization, e model

tems 'is pursueq, using .tec'hniques from' globa'l rational opfls,ction problem can be formulated asational optimiza-
mlzagon, and alfmr?d at finding glodbal_ oFg'T)a- First, a conceps problem This opens up the possibility to apply techniques
trat_e version o thet, criterion is derived, by optimizing an- from the field of global rational optimization to determine a
glytlcally with res.pec.t to a subset of parameters. Ngxt, aboy bal optimum to this problem. Such technigques often consist
is developed, which is shown to be sharp for reduction to mo a mix of methods from (constructive) algebra and numeri-

els of orderl. The choice of parameterization is such as to ke%gl analysis, and they may put high demands on the available
all t_hese criteria rational. L . computer hardware and software. The current state-of-the-art
To illustrate the approach, a nontrivial e_xample ofa mult|\_/arb-f these methods is such that only examples of a rather limited
able stgble_syst?m ;f ozrdeDr 4 };vads des||gnedhtoget2er W'thd%?nplexity can be handled satisfactorily in all detail. However,

approximation of order 2. Detailed analysis shows the appr%éspite such limitations, these methods are still quite valuable

imation to be Fhelglobal C?p“m“m among all staple system 8.9. in test situations where exact results are required or when
order 2, constituting the first such system described in the lﬂﬁ'eoretic results and conjectures are being analyzed
erature. The fact that it also yields a global optimum to the '

bound, which happens to be sharp at the optimum, leads thahis paper we pursue a state-space approach along such lines.
couple of questions for further research. First, the > model reduction problem is formulated and a
‘concentrated version’ of it is derived, by optimizing analyt-
ically with respect to a number of parameters which happen
to enter the problem in a linear least squares manner. Next, a

One of the important problems in the field of modelling anBound on this ‘concentratell;, criterion’ is derived, which is
systems identification is thmodel reduction problemit is not Shown to be sharp in the case of approximation by a model of
uncommon in practical applications to arrive at models of highder 1. To illustrate the approach we have designed an ex-
complexity, either directly as a result of the identification pr@mple of a stable system of order 4 with two inputs and two
cedure when using a high order (black-box) model on availaffitputs, which we intend to approximate by a stable system of
input-output data, or indirectly as a result of the interconne@tder 2. For this particular example, which leads to a ratio-
tion of a number of subsystems, each of which is modelled i@l optimization problem, the available software was unable
dividually. Models of lower complexity, however, usually lend0 handle the concentrateld; criterion due to its complex-
themselves much better for model analysis and for the appiy. but it did return a global optimum for the much simpler
cation of popular techniques for control system design. Thigund. Subsequent analysis shows that this global optimum
there is a clear practical interest in the problem of finding god@r the bound also happens to constitute a global optimum for

lower order approximate models to a given model of high ord&h€ concentrate(, criterion. This leads to a number of new
_ _ ) _ research questions by which we conclude the paper.
One of the important aspects to deal with this problem lies in

the choice of a criterion to measure the difference between two . ) .
models. Various choices for such criteria are described in the 1N€ discrete time, model reduction prob-
literature. In this paper we focus attention on one of the most lem

well-known criteria for stable systems, th& criterion, which ider th £ time-i iant svst in di
allows for a straightforward interpretation in system theoretly® Consider the space of linear time-invariant systems in dis-

terms. However, one of the unattractive characteristics of tﬁreete time which are stable and have strictly proper rational

M. criterion is that it may well possess a number of local, noﬁr_ansfer functions. We deal vynh the real multivariable situa-
tion, where the systems hameinputs andy outputs.

1 Introduction



It is supposed that a systethof McMillan degreen is given, of the entries ofd, B andC. Consequently, the(, criterionV/
stemming from this class. Th¥, model reduction problem is rational in these entries too. This shows howHiemodel
consists of finding an approximatidhwhich is of a prescribed reduction problem can be formulated as a rational optimization
orderk < n and of which theH,-distance betweel ands: problem.

is as small as possible. Here, thg criterion is given by (cf.,

e.g., [3]): 4 On the parameterization of (A, B, C)

V=|Z- 2“3{2 _ trace{i(Hi — H)(H; - ﬁi)T} ) The H;, criterion is obvipusly insensitive to a change of ba_sis
of the state space. This creates parameter redundancy in the
formulation ofV above, if all the entries oft, B andC are left
whereH; denotes the‘-th_ Markov matrix of the transfer func- free. To remove this excess freedom, (pseudo-)canonical pa-
tion H(z) = Y., H;z~" of ¥ (and likewise forH;). rameterizations ofl, B andC' can be employed, as described
For fixedk < n, it is known that among all systems of ordein the literature, for which the entries of these matrices depend
< k no approximation ot of order < & exists which con- in a (usually rather simple) rational way on the parameters. The
stitutes a local minimum of th&{ criterion. See also [1, 2]. use of such parameterizations preserves rationality.of
Therefore, one may require the orderXto be equal td: or  For most of our purposes attention can be restricted, with-
to be< k, depending on what is convenient; relaxation of thigut loss of generality, to a singlgenericparameter chart for
constraint will not lead to different solutions. the matrix triple(A, B,C). A convenient parameter chart is
for instance offered by the following structured matrices (see

3 A state space approach td{, model reduction [11, 13]):

=1

We will pursue a state space approach. It is assumed that a 0 1 0 * *
minimal realization of orden (i.e., state space dimensiahis Ao B

available fory, which is denoted byA, B, C). It then holds 1o o 1|’ - ’
that H(z) = C(z1, — A)"'B andH; = CA'"'B. Like- .

wise, 3 will be represented by a (minimal) state space matrix oo

triple (A, B, C) of orderk. Stability of > andS: corresponds to 10 0

asymptotic stability of the dynamical matricgsand A, which . * ook e X

means that all eigenvalues are in the open complex unit disk. = Do I (10)
Substitution of the expressions for the Markov matrices in o

terms of the matrices of the state space realizations3, C)
and (A, B, C') makes it possible to rewrite tHg, criterion as Here the starred entries denote parameters to be chosen freely
follows: under the sole constraint that stability4holds. Note that ob-
- servability is already built in. Controllability (and hence mini-
V= trace{( c _C ) ( P; Py ) ( OAT >} (2) mality) of (A, B) may be required to hold too, but as we have
Py P Y indicated at the end of Section 2, this is not really an issue. This

whereP;, P, and P; denote the unique solutions of the follow_parameter chartinvolvés(m + p) parameters, which precisely

ina discrete time Lvapunov and Svivester matrix equations: 29"€€S with the manifold dimension of the space of (strictly
g yap y q " proper) systems of ordet. An alternative, dual parameter

P, — AP, AT = BBT, (3) chart which has controllability built in instead of observabil-
Py — AP, AT — BBT, ) ity, is easily const_ruc_ted in a likewise fas_hlo_n. _
o Other parameterizations may have their virtues too. For in-
P3 — APsA” = BB". (5) stance, one may emplcchur parameterto build the stabil-
i¥y property of A directly into the parameterization in a way
or, . . -
which allows one to get rid of any restrictions on the parame-
ter domain. (Cf., e.g., [12] and [9].) Such an approach can be
. B combined with the choice of parameterization described above,
T T Q1 Qo . : . .
V =traceq ( BT -BT) T A (6) and can be achieved in a way which lea¥esational. In that
Qy Q3 B ; .
case thé{; model reduction problem is reformulated asemn
where@, Q2 and@Q3 denote the unique solutions of: constrainedrational optimization problem for which one may
hope to find a finite number of stationary points.

(See for instance [4, 13].) An equivalent dual formulation
theH, criterion is offered by the expression

Q1 —ATQA=C"C, (7)
Q= ATQA = CTC, (8) 5 The concentratedH, criterion
Qs — ATQsA=C"C. 9)

From Eqn. (6) it is not difficult to see that the criteridhis of
It is noted that the entries of the matrix solutions of the Lydhelinear least squareform with respect to the matri® if A
punov and Sylvester equations involved emdonal in terms andC are kept fixed. This makes it possible to optimize for



analytically in terms ofd, C' and (A, B, C). As it happens, a choice of A with respect taall of the parameters i andC,

unique minimizing solution foi3 for this restricted linear leastin which case the number of free parameters in the resulting

squares problem exists, provided tl(uaiL C‘) is observable. It ‘doubly concentrate@, criterion’ would drop to just.. This

is given by actually turns out to be possible in case approximation is car-
B=Q;'QYB. (11) ried out with systems of order 1 (i.k,= 1). In this context

Note that in view of the choice of parameter chart advocat;[a%e following theorem is useful (for a proof, cf. [10]).

above, this allows one to eliminaten parameters. Substitu-
tion into (6) returns what we will call the ‘concentratéd,
criterion’, denoted/, and given by:

Theorem 6.1 Let () be a fixedn x n Hermitian matrix. Con-
sider the (real-valued) expression
* —1 p*
V. = trace{ B"Q,B} — trace{ B"Q,Q5'Q3 B} . (12) r(P) = tracdQP(P"P) P} 17
where P ranges over the set of x k& matrices of full column
This criterion is to be minimized with respect t# and C, rankk < n. Then:
which enter the expression through andQs. Since the first (i) The (globally) maximal value of(P) is equal to the sum of
term of V, is entirely determined by the given systéh(it de- thek largest eigenvalues @j.
notes the squared, norm ofY, viz. || %||3,,) we may focus on (ii) This maximal value is attained for any matriX of which
the second term instead. To this end we define the critéfion the column space is spanned byndependent eigenvectors of
by: @ corresponding to thesklargest eigenvalues.
W, = trace{ BT Q-Q; ' Q3 B} . (13)

It is noted that:

(i) W, is to bemaximizedvith respect tad andC;

(i) W, > 0, and since alsd, > 0, a natural uniform upper
bound onlV. is provided byi|3|)3,.;

To see how this theorem can be applied, we reconsider the ex-
pression’V, = trace{ BTQ.Q5'Q¥ B}. In casek = 1, itis
noted that); and A are actually scalar angs is of sizen x 1.

They are given by

(i) W, = ||Z||3,,, so the aim is to maximize the norm of the Q2 = (I, - AAT)~'C"C, (18)
approximation(4, B, C), but notably under the constraint that Qs =CTC/(1 - A2). (19)
B satisfies Eqn. (11), which involves, C and(A, B, C); R )

(iv) W, can still be constructed to be an unconstrained rationghrerefore W, = (1 — Az)trace{BT(In — AAT)TICTx
function of the remaining parameters. xCA’(CA'TC')*ch’TC(In _ AA)*lB} _ trace{(l _ AQ)X

Of course, from (2) a similar (dual) approach can beAfollowed A N1 T A TN L ANT A AT A —1 AT
to optimizeV with respect to onlyC, for fixed A and B. In XC(In = AA) = BB (I = AAT)=C7C(CTC) 70 }

this case the unique minimizing value f6ris given by This last expression is in a su_itable form to apply_the
above theorem to. The role @ is played by the matrix
C=CPpP; . (14) (1 - A*)C(I, — AA)~'BB” (I, — AAT)~1C” and that of

P is played byC. Thus, the doubly concentratéd, criterion
Substitution into (2) leads to an alternative concentraid is given by
criterionV,., which is given by a AZ)
~ _ U=4a% i A—1NT
V. = trace{CP,CT} — trace{CP,P; ' PTCT} . (15) Wa = Amad —2—H(A"HHA)T} - (20)
which is to be maximized with respect to the scalar real param-

This criterion is to be minimized with respect tband B. In eter A over the open interva—1, 1).

this case it is natural to introduce the associated Critefﬁin
according to L
7 A bound on theH, criterion

i —1 pT AT
We = trace{CP2P3 R C } (16) To apply the previous approach also to the situation Wwith

1 we first note that), and Q3 can be written as products of

which is to bemaximizedwith respect tad and B. The crite- . . A
T 8bservablllty matrices of infinite size:

rion V. involves onlykp parameters. A choice between the tw

alternatives/, andV, may be based on the number of inputs Q2 = 0L O, (21)
and the number of outputs Qs = OOTCOm, 22)
6 A doubly concentrated™, criterion for k=1 Where

C
Above it was noted that thé{, criterion V' is a linear Iea}st CC A CA
squares criterion with respect to the sets of parametefs in Ow=| caz |, Ou= caz |- (23)

or in C individually, butnot simultaneously Nevertheless it
would be nice ifV could be optimized analytically for a fixed



ThenW, can be rewritten as where (fori = 1,...,p) the column vectorg; andé; denote

L R the transposed rows ¢t andC, respectively, whence:
W, = trace{ [OOTOBBTOOTO}OOO(OOTOOOC)—lofo} . (24)

T AT
i gl
which resembles the form of Eqn. (17). There are two prob- O = : ¢ — : (33)
lems with this attempt to apply Theorem 6.1. — ’ — ’
(1) The matrices playing the role §fand P are ofinfinite size. p p

(2) The matrixO.., which plays the role of?, cannot be cho-
sen freely: itinvolves the fixed matri and it has thetructure
of an observability matrix. (A closely related problem is th
the matrix playing the role of) currently does not involvel

and where the matriced (of sizen x k) and A (of size
& * k) are the unique solutions of the associated (highly struc-
tured) Sylvester and Lyapunov equations in controller compan-

atall.) ion form:
Itis possible to overcome the first problem, essentially by not- A— ACAACT = 616{7 (34)
ing that high matrix powers oft and A can be expressed as A — ANAT = el (35)

linear combinations of low matrix powers according to the the-

orem of Cayley-Hamilton. One way to work this out is ofitis noted that the expression i@ now involves a finite num-
fered by the approach based on Faddeev sequences to Sotveof Faddeev reachability matricesfiviite size, but also the
Lyapunov and Sylvester equations, see [7]. positive definite symmetric matridA. To deal with this, we

. _— . introduce the following matrices:
We have the following definitions and notation. 9

. 5 . ] G jr (&) i= Fir(¢)AY2, (of sizek x k), (36)
Definition 7.1 Let X be a matrix of size. x n, andy a vector A .
of sizen x 1. Then: G ar(c;) = Fur(c;)AATY2, (of sizen x k). (37)

(i) The characteristic polynomialet (21, — X ) of X is denoted 1 op-

by
p
xx(2) =2"+x12" "+ .. 4 Xn-12 + Xn- (25) Q2 = Z Gar (e)(G 4o (&))", (38)
=1
(i) The controller companion form matrix associated with P
is denoted byX . and defined by Q3 = Z G i (&)(G 4o (@))T. (39)
=1
—X1 " —Xn-1 —Xn
1 0 0 The matrices¥ ;- (¢;) andG 47 (¢;) dependinearly on the en-
Xe= . : : (26)  tries of ¢; and¢;, respectively. Therefore, these matrices can
' ' also be rewritten as:
0 1 0
(i) The Faddeev sequence ofX is denoted by G ir (@) :( M ‘ ‘ My.é; )7 (40)
{Xo, X1,...,X,—1} and defined recursively by Gar(c) = ( M;¢; ‘ ‘ Mye; )7 (41)
Xo = I, (27) with N1, ..., M, of sizek x k depending only ond, and
X = XX — trace[XXk,l}In' (28) Mi.-.., M, of sizen x k depending only oni and A. Con-
k sequently, we find:
Equivalently, it holds (fok = 0,1,...,n — 1) that bk k
_ AT T _ T ANyT
Xp= X" 40X b e X el (29) Q=) Y Mcel M =% M;CTCM], (42)
i=1 j=1 j=1
(iv) The Faddeev reachability matrix ¢fX, y) is denoted by Pk A koo
Fx (y) and defined by Qs =YY Meel M => " M;CTCM]. (43)
i=1 j=1 j=1
Fx(y)=( Xoy | X1y |-+ | Xn-1y ). (30)

Finally, we therefore may write:
It then follows (see again [7]) that the matric@s andQs are B A

given by Qs = M(C)M(C)T, (44)
) Qs = M(C)M(C)T, (45)
Q2 =Y Far(c)A(Fyr (@), (31) where
i=1
P M(C) = ( MyCT | -+ | MyCT ), (of sizen x kp), (46)
— . A R ~\W\T
Q3 = ;FAT(Q)A(FAT(&)) ) (32) M(C’) _ ( MléT ‘ ‘ MkC«T )’ (of sizek x kp). (47)



Substitution of these expressions into the expressioriifor
yields:

W, = trace{[M (C)" BBT M(C)]x
< M(C)T (M (C)NI(C)T) T NI(C) | . (48)

This shows how the ‘infinite size problem’ has been solved
The ‘structure problem’, however, still exists for the matrix

M (C), which apart fron' also still depends on.
In view of Theorem 6.1 we conclude that the sum of
the & largest eigenvalues of thgk x pk matrix Z
M(C)T"BBTM(C) constitutes ampper boundfor the max-
imally achievable value ofV/.. It is noted that this matrixz

depends on the given systdm, B, C) and onA. As we have
seen, this bound is actually sharp foe= 1.

e Using the generic chart fqrd, B, C') indicated in Section
4, Eqgn. (10), the criterio is rational and involves 8 free
parameters. The numerator polynomial has total degree
8 and consists of 655 terms; the denominator polynomial
has total degree 6 and consists of 27 terms.

After the first concentration step, which eliminates the
matrix B, the concentrated criterio’.. is still rational

and involves 4 free parameters. The numerator polyno-
mial has total degree 14 and consists of 705 terms; the
denominator polynomial has total degree 12 and consists
of 277 terms (but can be factored to become more con-
cise). This problem is still too complex to be handled by
our software, using tools from constructive algebra.

The upper bound Wy

8 Case study: globally optimal*, model reduc- The second concentration step, which eliminates the matrix
tion of a multivariable system from order 4 to produces an upper boufid; on the concentrated criteridir,.

order 2 It

turns out that this bound is again rational and involves only 2

free parameters. The numerator polynomial has total degree 8

The set-up above has been applied to study a nontrivial m#and consists of 42 terms and the denominator polynomial has
tivariable example with 2 inputs and 2 outputs, where a givé@fal degree 6 and consists of 28 terms (and can be factored to
systemy. of order 4 is approximated by another systenof Pecome more concise). It has the following explicit form:

order 2. Use has been made of tools from constructive alge-

bra, computer algebra software and numerical software (MapIer = ((1 = a2)(7907854144 + 32968298244,

Mathematica, Matlab). The methods employed for global ra-—6927169920a; — 2897270720a7 + 818184528a}

tional optimization are described in [5, 8, 9]. +438089920a° — 18864576aS 4 18209891616a;
+6894389696a1 as — 5524025360a%as — 235600123243 as
—65091328a7as — 56513808a%ay + 6093273648 ay
+14986490756a2 + 5732635144a,a3 — 132402430843 a3
—583912552a%a% — 270351000a; a3 + 304663685 a3
+5601025568a5 + 2101676108a, a3 + 24475143202 a3
—85974588a% a3 — 57124440a a3 + 100342721745
+357191240a; a3 + 128010888a3 a3 — 30466368a’asy
1+91843237a5 + 571157464, a5 + 11424888a3a5
+5940378a$ + 7616592a1a$ + 952074a%))/
(1081600(16 + 4ay + az)?(4 — 243 + day + a3)?),

The systenk involved in this example is given by:
1

2

o

383
2080

279
1040

1839

1317
8320

4160

o o oo
= O = O
== O O

1419
33280

).

99
1280

(49)
(51)

3

3 where the characteristic polynomial of is denoted by
1
1

The second order approximatidhis given by:

) , O = det(zIy — /1) = 22 4+ a1z + as. Investigation of the upper

(50) boundW, shows a number of interesting properties for this

The designof this example will be discussed in more detagXxample.
elsewhere. It is such that the systéiris guaranteed to con-
stitute a stationary point (on the manifold of systems of ord@j The expression foiV; is rational, despite the fact that
2) of theH, criterion V' associated wittt, a property which square roots appear in intermediate calculations and that
is easily verified. However, no further aspects of the concen- the two largest eigenvalues ofdax 4 matrix have to be
tratedH, criterion W, nor of its boundi¥; have been used in summed.
the design of this example.

1

0
1 1)

1
7
6

_ . - ~ (i) The boundW, is not sharp everywhere on the domain of
The Hessian o’ at ¥ can be computed to be positive definite, *  staple matricesd, butit happens to be sharp at the in-

which implies that yields alocal minimum of V. A similar tended approximatio.

statement holds for the concentrafed criterion V... To show

that3. constitutes @lobal minimum of V we intend to employ (iii) The boundi¥, can be handled by our software. We are
technigues from global rational optimization. able to compute all of its stationary points and to deter-



(iv)

mine itsglobal maximum. It turns out that there is a sin- References

gle global maximum foW/; within the stability domain; it
is located at the intended approximatidh Together with
(ii) this proves thats: is the unique globally optimakt,
approximation of order 2 of..
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Conclusions
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this bound is sharp and reduces the model reduction prob-
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