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Abstract

A state-space approach toH2 model reduction of stable sys-
tems is pursued, using techniques from global rational opti-
mization, and aimed at finding global optima. First, a concen-
trated version of theH2 criterion is derived, by optimizing an-
alytically with respect to a subset of parameters. Next, a bound
is developed, which is shown to be sharp for reduction to mod-
els of order1. The choice of parameterization is such as to keep
all these criteria rational.
To illustrate the approach, a nontrivial example of a multivari-
able stable system of order 4 was designed, together with an
approximation of order 2. Detailed analysis shows the approx-
imation to be the global optimum among all stable system of
order 2, constituting the first such system described in the lit-
erature. The fact that it also yields a global optimum to the
bound, which happens to be sharp at the optimum, leads to a
couple of questions for further research.

1 Introduction

One of the important problems in the field of modelling and
systems identification is themodel reduction problem. It is not
uncommon in practical applications to arrive at models of high
complexity, either directly as a result of the identification pro-
cedure when using a high order (black-box) model on available
input-output data, or indirectly as a result of the interconnec-
tion of a number of subsystems, each of which is modelled in-
dividually. Models of lower complexity, however, usually lend
themselves much better for model analysis and for the appli-
cation of popular techniques for control system design. Thus,
there is a clear practical interest in the problem of finding good
lower order approximate models to a given model of high order.

One of the important aspects to deal with this problem lies in
the choice of a criterion to measure the difference between two
models. Various choices for such criteria are described in the
literature. In this paper we focus attention on one of the most
well-known criteria for stable systems, theH2 criterion, which
allows for a straightforward interpretation in system theoretic
terms. However, one of the unattractive characteristics of the
H2 criterion is that it may well possess a number of local, non-

global optima. This makes it a hazardous task to apply numeri-
cal techniques only to determine anH2-optimal reduced-order
model to a given system, such as the usual iterative local search
techniques for multivariate function minimization (like steepest
descent, Newton’s method, the Gauss-Newton method, etc.).

Depending on the choice of parameterization, theH2 model
reduction problem can be formulated as arational optimiza-
tion problem. This opens up the possibility to apply techniques
from the field of global rational optimization to determine a
globaloptimum to this problem. Such techniques often consist
of a mix of methods from (constructive) algebra and numeri-
cal analysis, and they may put high demands on the available
computer hardware and software. The current state-of-the-art
of these methods is such that only examples of a rather limited
complexity can be handled satisfactorily in all detail. However,
despite such limitations, these methods are still quite valuable
e.g. in test situations where exact results are required or when
theoretic results and conjectures are being analyzed.

In this paper we pursue a state-space approach along such lines.
First, theH2 model reduction problem is formulated and a
‘concentrated version’ of it is derived, by optimizing analyt-
ically with respect to a number of parameters which happen
to enter the problem in a linear least squares manner. Next, a
bound on this ‘concentratedH2 criterion’ is derived, which is
shown to be sharp in the case of approximation by a model of
order1. To illustrate the approach we have designed an ex-
ample of a stable system of order 4 with two inputs and two
outputs, which we intend to approximate by a stable system of
order 2. For this particular example, which leads to a ratio-
nal optimization problem, the available software was unable
to handle the concentratedH2 criterion due to its complex-
ity, but it did return a global optimum for the much simpler
bound. Subsequent analysis shows that this global optimum
for the bound also happens to constitute a global optimum for
the concentratedH2 criterion. This leads to a number of new
research questions by which we conclude the paper.

2 The discrete timeH2 model reduction prob-
lem

We consider the space of linear time-invariant systems in dis-
crete time which are stable and have strictly proper rational
transfer functions. We deal with the real multivariable situa-
tion, where the systems havem inputs andp outputs.



It is supposed that a systemΣ of McMillan degreen is given,
stemming from this class. TheH2 model reduction problem
consists of finding an approximation̂Σ which is of a prescribed
orderk < n and of which theH2-distance betweenΣ andΣ̂
is as small as possible. Here, theH2 criterion is given by (cf.,
e.g., [3]):

V = ‖Σ− Σ̂‖2
H2

= trace

{ ∞∑
i=1

(Hi − Ĥi)(Hi − Ĥi)T

}
(1)

whereHi denotes thei-th Markov matrix of the transfer func-
tion H(z) =

∑∞
i=1 Hiz

−i of Σ (and likewise forĤi).
For fixedk ≤ n, it is known that among all systems of order
≤ k no approximation ofΣ of order< k exists which con-
stitutes a local minimum of theH2 criterion. See also [1, 2].
Therefore, one may require the order ofΣ̂ to be equal tok or
to be≤ k, depending on what is convenient; relaxation of this
constraint will not lead to different solutions.

3 A state space approach toH2 model reduction

We will pursue a state space approach. It is assumed that a
minimal realization of ordern (i.e., state space dimensionn) is
available forΣ, which is denoted by(A,B,C). It then holds
that H(z) = C(zIn − A)−1B and Hi = CAi−1B. Like-
wise, Σ̂ will be represented by a (minimal) state space matrix
triple (Â, B̂, Ĉ) of orderk. Stability ofΣ andΣ̂ corresponds to
asymptotic stability of the dynamical matricesA andÂ, which
means that all eigenvalues are in the open complex unit disk.
Substitution of the expressions for the Markov matrices in
terms of the matrices of the state space realizations(A,B,C)
and(Â, B̂, Ĉ) makes it possible to rewrite theH2 criterion as
follows:

V = trace

{(
C −Ĉ

) (
P1 P2

PT
2 P3

) (
CT

−ĈT

)}
(2)

whereP1, P2 andP3 denote the unique solutions of the follow-
ing discrete time Lyapunov and Sylvester matrix equations:

P1 −AP1A
T = BBT , (3)

P2 −AP2Â
T = BB̂T , (4)

P3 − ÂP3Â
T = B̂B̂T . (5)

(See for instance [4, 13].) An equivalent dual formulation of
theH2 criterion is offered by the expression

V = trace

{(
BT −B̂T

) (
Q1 Q2

QT
2 Q3

) (
B

−B̂

)}
(6)

whereQ1, Q2 andQ3 denote the unique solutions of:

Q1 −AT Q1A = CT C, (7)

Q2 −AT Q2Â = CT Ĉ, (8)

Q3 − ÂT Q3Â = ĈT Ĉ. (9)

It is noted that the entries of the matrix solutions of the Lya-
punov and Sylvester equations involved arerational in terms

of the entries ofÂ, B̂ andĈ. Consequently, theH2 criterionV
is rational in these entries too. This shows how theH2 model
reduction problem can be formulated as a rational optimization
problem.

4 On the parameterization of(Â, B̂, Ĉ)

TheH2 criterion is obviously insensitive to a change of basis
of the state space. This creates parameter redundancy in the
formulation ofV above, if all the entries of̂A, B̂ andĈ are left
free. To remove this excess freedom, (pseudo-)canonical pa-
rameterizations of̂A, B̂ andĈ can be employed, as described
in the literature, for which the entries of these matrices depend
in a (usually rather simple) rational way on the parameters. The
use of such parameterizations preserves rationality ofV .
For most of our purposes attention can be restricted, with-
out loss of generality, to a singlegenericparameter chart for
the matrix triple(Â, B̂, Ĉ). A convenient parameter chart is
for instance offered by the following structured matrices (see
[11, 13]):

Â =


0 1 0
...

...
0 0 1
? ? · · · ?

 , B̂ =


? · · · ?
...

...
...

...
? · · · ?

 ,

Ĉ =


1 0 · · · 0
? ? · · · ?
...

...
...

? ? · · · ?

 . (10)

Here the starred entries denote parameters to be chosen freely
under the sole constraint that stability ofÂ holds. Note that ob-
servability is already built in. Controllability (and hence mini-
mality) of (Â, B̂) may be required to hold too, but as we have
indicated at the end of Section 2, this is not really an issue. This
parameter chart involvesk(m+p) parameters, which precisely
agrees with the manifold dimension of the space of (strictly
proper) systems of orderk. An alternative, dual parameter
chart which has controllability built in instead of observabil-
ity, is easily constructed in a likewise fashion.
Other parameterizations may have their virtues too. For in-
stance, one may employSchur parametersto build the stabil-
ity property of Â directly into the parameterization in a way
which allows one to get rid of any restrictions on the parame-
ter domain. (Cf., e.g., [12] and [9].) Such an approach can be
combined with the choice of parameterization described above,
and can be achieved in a way which leavesV rational. In that
case theH2 model reduction problem is reformulated as anun-
constrainedrational optimization problem for which one may
hope to find a finite number of stationary points.

5 The concentratedH2 criterion

From Eqn. (6) it is not difficult to see that the criterionV is of
the linear least squaresform with respect to the matrix̂B if Â
andĈ are kept fixed. This makes it possible to optimize forB̂



analytically in terms ofÂ, Ĉ and(A,B,C). As it happens, a
unique minimizing solution for̂B for this restricted linear least
squares problem exists, provided that(Â, Ĉ) is observable. It
is given by

B̂ = Q−1
3 QT

2 B. (11)

Note that in view of the choice of parameter chart advocated
above, this allows one to eliminatekm parameters. Substitu-
tion into (6) returns what we will call the ‘concentratedH2

criterion’, denotedVc and given by:

Vc = trace
{
BT Q1B

}
− trace

{
BT Q2Q

−1
3 QT

2 B
}

. (12)

This criterion is to be minimized with respect tôA and Ĉ,
which enter the expression throughQ2 andQ3. Since the first
term ofVc is entirely determined by the given systemΣ (it de-
notes the squaredH2 norm ofΣ, viz. ‖Σ‖2

H2
) we may focus on

the second term instead. To this end we define the criterionWc

by:
Wc = trace

{
BT Q2Q

−1
3 QT

2 B
}

. (13)

It is noted that:
(i) Wc is to bemaximizedwith respect toÂ andĈ;
(ii) Wc ≥ 0, and since alsoVc ≥ 0, a natural uniform upper
bound onWc is provided by‖Σ‖2

H2
;

(iii) Wc = ‖Σ̂‖2
H2

, so the aim is to maximize the norm of the

approximation(Â, B̂, Ĉ), but notably under the constraint that
B̂ satisfies Eqn. (11), which involveŝA, Ĉ and(A,B,C);
(iv) Wc can still be constructed to be an unconstrained rational
function of the remaining parameters.

Of course, from (2) a similar (dual) approach can be followed
to optimizeV with respect to onlyĈ, for fixed Â andB̂. In
this case the unique minimizing value forĈ is given by

Ĉ = CP2P
−1
3 . (14)

Substitution into (2) leads to an alternative concentratedH2

criterionṼc, which is given by

Ṽc = trace
{
CP1C

T
}
− trace

{
CP2P

−1
3 PT

2 CT
}

. (15)

This criterion is to be minimized with respect tôA andB̂. In
this case it is natural to introduce the associated criterionW̃c

according to

W̃c = trace
{
CP2P

−1
3 PT

2 CT
}

(16)

which is to bemaximizedwith respect toÂ andB̂. The crite-
rion Ṽc involves onlykp parameters. A choice between the two
alternativesVc andṼc may be based on the number of inputsm
and the number of outputsp.

6 A doubly concentratedH2 criterion for k = 1

Above it was noted that theH2 criterion V is a linear least
squares criterion with respect to the sets of parameters inB̂
or in Ĉ individually, but not simultaneously. Nevertheless it
would be nice ifV could be optimized analytically for a fixed

choice ofÂ with respect toall of the parameters in̂B andĈ,
in which case the number of free parameters in the resulting
‘doubly concentratedH2 criterion’ would drop to justn. This
actually turns out to be possible in case approximation is car-
ried out with systems of order 1 (i.e.,k = 1). In this context
the following theorem is useful (for a proof, cf. [10]).

Theorem 6.1 Let Q be a fixedn × n Hermitian matrix. Con-
sider the (real-valued) expression

r(P ) = trace{QP (P ∗P )−1P ∗} (17)

whereP ranges over the set ofn × k matrices of full column
rankk ≤ n. Then:
(i) The (globally) maximal value ofr(P ) is equal to the sum of
thek largest eigenvalues ofQ.
(ii) This maximal value is attained for any matrixP of which
the column space is spanned byk independent eigenvectors of
Q corresponding to thesek largest eigenvalues.

To see how this theorem can be applied, we reconsider the ex-
pressionWc = trace

{
BT Q2Q

−1
3 QT

2 B
}

. In casek = 1, it is

noted thatQ3 andÂ are actually scalar andQ2 is of sizen× 1.
They are given by

Q2 = (In − ÂAT )−1CT Ĉ, (18)

Q3 = ĈT Ĉ/(1− Â2). (19)

ThereforeWc = (1 − Â2)trace
{

BT (In − ÂAT )−1CT×

×Ĉ(ĈT Ĉ)−1ĈT C(In − ÂA)−1B
}

= trace
{

(1− Â2)×

×C(In − ÂA)−1BBT (In − ÂAT )−1CT Ĉ(ĈT Ĉ)−1ĈT
}

.

This last expression is in a suitable form to apply the
above theorem to. The role ofQ is played by the matrix
(1 − Â2)C(In − ÂA)−1BBT (In − ÂAT )−1CT and that of
P is played byĈ. Thus, the doubly concentratedH2 criterion
is given by

Wd = λmax{
(1− Â2)

Â2
H(Â−1)H(Â−1)T }, (20)

which is to be maximized with respect to the scalar real param-
eterÂ over the open interval(−1, 1).

7 A bound on theH2 criterion

To apply the previous approach also to the situation withk >
1 we first note thatQ2 andQ3 can be written as products of
observability matrices of infinite size:

Q2 = OT
∞Ô∞, (21)

Q3 = ÔT
∞Ô∞, (22)

where

O∞ =


C

CA
CA2

...

 , Ô∞ =


Ĉ

ĈÂ

ĈÂ2

...

 . (23)



ThenWc can be rewritten as

Wc = trace
{

[OT
∞BBT OT

∞]Ô∞(ÔT
∞Ô∞)−1ÔT

∞

}
, (24)

which resembles the form of Eqn. (17). There are two prob-
lems with this attempt to apply Theorem 6.1.
(1) The matrices playing the role ofQ andP are ofinfinitesize.
(2) The matrixÔ∞, which plays the role ofP , cannot be cho-
sen freely: it involves the fixed matrix̂A and it has thestructure
of an observability matrix. (A closely related problem is that
the matrix playing the role ofQ currently does not involvêA
at all.)

It is possible to overcome the first problem, essentially by not-
ing that high matrix powers ofA and Â can be expressed as
linear combinations of low matrix powers according to the the-
orem of Cayley-Hamilton. One way to work this out is of-
fered by the approach based on Faddeev sequences to solve
Lyapunov and Sylvester equations, see [7].

We have the following definitions and notation.

Definition 7.1 LetX be a matrix of sizen× n, andy a vector
of sizen× 1. Then:
(i) The characteristic polynomialdet(zIn−X) ofX is denoted
by

χX(z) = zn + χ1z
n−1 + . . . + χn−1z + χn. (25)

(ii) The controller companion form matrix associated withX
is denoted byXc and defined by

Xc =


−χ1 · · · −χn−1 −χn

1 0 0
...

...
0 1 0

 . (26)

(iii) The Faddeev sequence ofX is denoted by
{X0, X1, . . . , Xn−1} and defined recursively by

X0 := In, (27)

Xk := XXk−1 −
trace{XXk−1}

k
In. (28)

Equivalently, it holds (fork = 0, 1, . . . , n− 1) that

Xk = Xk + χ1X
k−1 + . . . + χk−1X + χkIn. (29)

(iv) The Faddeev reachability matrix of(X, y) is denoted by
FX(y) and defined by

FX(y) =
(

X0y X1y · · · Xn−1y
)
. (30)

It then follows (see again [7]) that the matricesQ2 andQ3 are
given by

Q2 =
p∑

i=1

FAT (ci)∆̂(FÂT (ĉi))T , (31)

Q3 =
p∑

i=1

FÂT (ĉi)∆(FÂT (ĉi))T , (32)

where (fori = 1, . . . , p) the column vectorsci and ĉi denote
the transposed rows ofC andĈ, respectively, whence:

C =

 cT
1
...

cT
p

 , Ĉ =

 ĉT
1
...

ĉT
p

 , (33)

and where the matriceŝ∆ (of size n × k) and ∆ (of size
k × k) are the unique solutions of the associated (highly struc-
tured) Sylvester and Lyapunov equations in controller compan-
ion form:

∆̂−Ac∆̂ÂT
c = e1e

T
1 , (34)

∆− Âc∆ÂT
c = e1e

T
1 . (35)

It is noted that the expression forQ3 now involves a finite num-
ber of Faddeev reachability matrices offinite size, but also the
positive definite symmetric matrix∆. To deal with this, we
introduce the following matrices:

GÂT (ĉi) := FÂT (ĉi)∆1/2, (of sizek × k), (36)

GAT (ci) := FAT (ci)∆̂∆−1/2, (of sizen× k). (37)

Then:

Q2 =
p∑

i=1

GAT (ci)(GÂT (ĉi))T , (38)

Q3 =
p∑

i=1

GÂT (ĉi)(GÂT (ĉi))T . (39)

The matricesGÂT (ĉi) andGAT (ci) dependlinearly on the en-
tries of ĉi andci, respectively. Therefore, these matrices can
also be rewritten as:

GÂT (ĉi) =
(

M̂1ĉi · · · M̂k ĉi

)
, (40)

GAT (ci) =
(

M1ci · · · Mkci

)
, (41)

with M̂1, . . . , M̂k of size k × k depending only onÂ, and
M1, . . . ,Mk of sizen × k depending only on̂A andA. Con-
sequently, we find:

Q2 =
p∑

i=1

k∑
j=1

Mjciĉ
T
i M̂T

j =
k∑

j=1

MjC
T ĈM̂T

j , (42)

Q3 =
p∑

i=1

k∑
j=1

M̂j ĉiĉ
T
i M̂T

j =
k∑

j=1

M̂jĈ
T ĈM̂T

j . (43)

Finally, we therefore may write:

Q2 = M(C)M̂(Ĉ)T , (44)

Q3 = M̂(Ĉ)M̂(Ĉ)T , (45)

where

M(C) =
(

M1C
T · · · MkCT

)
, (of sizen× kp), (46)

M̂(Ĉ) =
(

M̂1Ĉ
T · · · M̂kĈT

)
, (of sizek × kp). (47)



Substitution of these expressions into the expression forWc

yields:

Wc = trace
{
[M(C)T BBT M(C)]×

×M̂(Ĉ)T (M̂(Ĉ)M̂(Ĉ)T )−1M̂(Ĉ)
}

. (48)

This shows how the ‘infinite size problem’ has been solved.
The ‘structure problem’, however, still exists for the matrix
M̂(Ĉ), which apart fromĈ also still depends on̂A.

In view of Theorem 6.1 we conclude that the sum of
the k largest eigenvalues of thepk × pk matrix Z =
M(C)T BBT M(C) constitutes anupper boundfor the max-
imally achievable value ofWc. It is noted that this matrixZ
depends on the given system(A,B, C) and onÂ. As we have
seen, this bound is actually sharp fork = 1.

8 Case study: globally optimalH2 model reduc-
tion of a multivariable system from order 4 to
order 2

The set-up above has been applied to study a nontrivial mul-
tivariable example with 2 inputs and 2 outputs, where a given
systemΣ of order 4 is approximated by another systemΣ̂ of
order 2. Use has been made of tools from constructive alge-
bra, computer algebra software and numerical software (Maple,
Mathematica, Matlab). The methods employed for global ra-
tional optimization are described in [5, 8, 9].

The systemΣ involved in this example is given by:

A =


0 1 0 0
0 0 1 0
0 0 0 1
0 − 1

8
1
2

1
4

 , B =



1
2 − 3

4

383
2080

279
1040

1839
8320 − 1317

4160

1419
33280

99
1280


,

C =
(

1 0 0 0
1 1 0 0

)
. (49)

The second order approximation̂Σ is given by:

Â =
(

0 1
4
9 0

)
, B̂ =

(
1
2 − 3

4
1
6

1
4

)
, Ĉ =

(
1 0
1 1

)
.

(50)
The designof this example will be discussed in more detail
elsewhere. It is such that the system̂Σ is guaranteed to con-
stitute a stationary point (on the manifold of systems of order
2) of theH2 criterionV associated withΣ, a property which
is easily verified. However, no further aspects of the concen-
tratedH2 criterionWc nor of its boundWd have been used in
the design of this example.

The Hessian ofV at Σ̂ can be computed to be positive definite,
which implies that̂Σ yields alocal minimum ofV . A similar
statement holds for the concentratedH2 criterionVc. To show
thatΣ̂ constitutes aglobalminimum ofV we intend to employ
techniques from global rational optimization.

• Using the generic chart for(Â, B̂, Ĉ) indicated in Section
4, Eqn. (10), the criterionV is rational and involves 8 free
parameters. The numerator polynomial has total degree
8 and consists of 655 terms; the denominator polynomial
has total degree 6 and consists of 27 terms.

• After the first concentration step, which eliminates the
matrix B̂, the concentrated criterionWc is still rational
and involves 4 free parameters. The numerator polyno-
mial has total degree 14 and consists of 705 terms; the
denominator polynomial has total degree 12 and consists
of 277 terms (but can be factored to become more con-
cise). This problem is still too complex to be handled by
our software, using tools from constructive algebra.

The upper boundWd

The second concentration step, which eliminates the matrixĈ,
produces an upper boundWd on the concentrated criterionWc.
It turns out that this bound is again rational and involves only 2
free parameters. The numerator polynomial has total degree 8
and consists of 42 terms and the denominator polynomial has
total degree 6 and consists of 28 terms (and can be factored to
become more concise). It has the following explicit form:

Wd = ((1− a2)(7907854144 + 3296829824a1

−6927169920a2
1 − 2897270720a3

1 + 818184528a4
1

+438089920a5
1 − 18864576a6

1 + 18209891616a2

+6894389696a1a2 − 5524025360a2
1a2 − 2356001232a3

1a2

−65091328a4
1a2 − 56513808a5

1a2 + 60932736a6
1a2

+14986490756a2
2 + 5732635144a1a

2
2 − 1324024308a2

1a
2
2

−583912552a3
1a

2
2 − 270351000a4

1a
2
2 + 30466368a5

1a
2
2

+5601025568a3
2 + 2101676108a1a

3
2 + 244751432a2

1a
3
2

−85974588a3
1a

3
2 − 57124440a4

1a
3
2 + 1003427217a4

2

+357191240a1a
4
2 + 128010888a2

1a
4
2 − 30466368a3

1a
4
2

+91843237a5
2 + 57115746a1a

5
2 + 11424888a2

1a
5
2

+5940378a6
2 + 7616592a1a

6
2 + 952074a7

2))/
(1081600(16 + 4a1 + a2)2(4− 2a2

1 + 4a2 + a2
2)

2), (51)

where the characteristic polynomial of̂A is denoted by
det(zI2 − Â) = z2 + a1z + a2. Investigation of the upper
boundWd shows a number of interesting properties for this
example.

(i) The expression forWd is rational, despite the fact that
square roots appear in intermediate calculations and that
the two largest eigenvalues of a4 × 4 matrix have to be
summed.

(ii) The boundWd is not sharp everywhere on the domain of
stable matriceŝA, but it happens to be sharp at the in-
tended approximation̂Σ.

(iii) The boundWd can be handled by our software. We are
able to compute all of its stationary points and to deter-



mine itsglobal maximum.It turns out that there is a sin-
gle global maximum forWd within the stability domain; it
is located at the intended approximationΣ̂. Together with
(ii) this proves thatΣ̂ is the unique globally optimalH2

approximation of order 2 ofΣ.

(iv) Using the techniques of [8, 9], the rational boundWd is
transformed into apolynomialexpression when investi-
gating global maximality at the approximation̂Σ. This
polynomial should then be nonnegative everywhere on the
stability domain. As it happens, the polynomial is actually
nonnegative on the whole ofR2, which means that there
is no need to employ Schur parameters. (The use of Schur
parameters would double the total degrees of the numer-
ator and denominator polynomials involved, and largely
increase the number of terms.)

A popular technique to show nonnegativity of a poly-
nomial is by writing it as a sum of squares of polyno-
mials, for which (numerical) semi-definite programming
software is available in Matlab. Although not every non-
negative polynomial admits such a decomposition, many
polynomials do and counterexamples are not easily con-
structed. However, the available software breaks down
on the polynomial of the present example, indicating no
such decomposition to exist! Therefore, other (symbolic,
exact) methods from constructive algebra were used to es-
tablish nonnegativity of this polynomial.

As it turns out, the polynomial has 7 global minima, of
which only one is in the feasible area.

9 Conclusions

1. We have employed a state space approach to derive a
bound on the achievable quality of ak-th orderH2 ap-
proximation to a given stable system of ordern. Fork = 1
this bound is sharp and reduces the model reduction prob-
lem to a rational optimization problem in a single variable.

2. We have presented a nontrivial multivariable example of
a stable system with two inputs and two outputs of or-
der 4 and an associated unique globally optimalH2-
approximation of order 2. To the best of our knowledge,
this is the first such example reported in the literature.
(The cases for which global optimality results of this kind
are available are usually limited either to the scalar case,
or to the casek = 1, or to the casek = n − 1, see for
instance [6].)

3. We have pursued anad hoc technique, involving exact
methods from constructive algebra, to establish global op-
timality of the approximation of the example. The success
of this approach gives rise to a couple of research ques-
tions:
(i) Why is the bound sharp at the approximationΣ̂?
(ii) Why does the bound have a global maximum at the
approximation̂Σ?
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