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Abstract

We consider the efficient solution of the coprime factoriza-
tion basedH∞ controller approximation problems by us-
ing frequency-weighted balancing related model reduction ap-
proaches. It is shown that for a class of frequency-weighted
performance preserving coprime factor reduction as well as for
a relative error coprime factor reduction method, the compu-
tation of the frequency-weighted controllability and observ-
ability grammians can be done by solving Lyapunov equa-
tions of the order of the controller. The new approach can be
used in conjunction with accuracy enhancing square-root and
balancing-free techniques developed for the balancing related
coprime factors based model reduction.

1 Introduction

Using theH∞ controller synthesis methodology (see for exam-
ple [19]) often leads to controllers whose orders are too large
for practical use. Therefore, in such cases it is necessary to per-
form controller reduction by determining a lower order approx-
imation of the original controller. Controller reduction prob-
lems are often formulated as specialfrequency-weighted model
reduction(FWMR) problems, where the frequency-weights are
chosen to enforce closed-loop stability and an acceptable per-
formance degradation when the low order controller is used
instead the original high order one [1].

The idea to apply frequency-weighted balancing techniques to
reduce the stable coprime factors of the controller has been dis-
cussed in several papers [1, 8, 18]. For the reduction of con-
trollers originating fromH∞ synthesis several methods have
been proposed [4, 5, 16, 2]. While the frequency-weights in
[1, 8] have been primarily chosen to guarantee closed-loop sta-
bility, the H∞ controller reduction mainly focusses on pre-
serving the performance bounds achieved by the original con-
trollers. Interestingly, many stability/performance preserv-
ing controller reduction problems have very special structure
which can be exploited when developing efficient numerical
algorithms for controller reduction. For example, it has been
shown in [15] that for the frequency-weighted balancing re-
lated approaches applied to several controller reduction prob-
lems with the special stability/performance enforcing weights
proposed in [1], the computation of grammians can be done
by solving reduced order Lyapunov equations. Similarly, it
was shown recently in [14] that this is also true for a class of

frequency-weighted coprime factor controller reduction meth-
ods.

In this paper, we address the efficient solution of frequency-
weighted balancing-related coprime factor controller reduction
problems for the special stability and performance preserv-
ing frequency-weights proposed in [4, 5]. We show that for
the reduction of theH∞ central controller, the computation
of frequency-weighted grammians for the coprime factor con-
troller reduction can be done efficiently by solving Lyapunov
equations of the order of the controller. The Lyapunov equa-
tions can be solved directly for the Cholesky factors of the
grammians, thus allowing the application of the balancing-free
square-root accuracy enhancing method for coprime factor re-
duction [13].

Notation. Throughout the paper, the following notational con-
vention is used. The bold-notationG is used to denote a state-
space systemG := (A,B,C, D) with the transfer-function
matrix (TFM)

G(λ) = C(λI −A)−1B + D :=
[

A B
C D

]
.

According to the system type,λ is either the complex variables
appearing in the Laplace transform in the case of a continuous-
time system or the variablez appearing in theZ-transform in
the case of a discrete-time system. Throughout the paper we
denoteG(λ) simply asG, when the system type is not relevant.
The bold-notation is used consistently to denote systems corre-
sponding to particular TFMs:G1G2 denotes the series cou-
pling of two systems having the TFMG1(λ)G2(λ), G1 + G2

represents the (additive) parallel coupling of two systems with
TFM G1(λ)+G2(λ), G−1 represents the inverse systems with
TFM G−1, [G1 G2 ] represents the realization of the com-
pound TFM with[ G1 G2 ], etc.

2 Coprime factor controller reduction

Consider G := (A, B,C, D), an n-th order state-space
model and letK be a stabilizing controller with a stabiliz-
able and detectablenc-th order state space realizationK :=
(Ac, Bc, Cc, Dc). The solution of the a frequency-weighted
coprime factor controller reduction problem (see for example
[1, 8]) consists in computing an approximation of the coprime
factors of the controller. Specifically, theFrequency-Weighted
Left Coprime Factor Reduction(FWLCFR)Problemis: given a
left coprime factorization(LCF) K = Ṽ −1Ũ of the controller,
find Kr, an rc-th order approximation ofK, in a LCF form



Kr = Ṽ −1
r Ũr, such that the weighted approximation error

‖W̃o[ Ũ − Ũr Ṽ − Ṽr ]W̃i‖∞, (1)

is minimized. Similarly, theFrequency-Weighted Right Co-
prime Factor Reduction(FWRCFR)Problemis: given aright
coprime factorization(RCF) K = UV −1 of the controller,
find Kr, anrc-th order approximation ofK, in the RCF form
Kr = UrV

−1
r , such that the weighted approximation error

‖Wo

[
U − Ur

V − Vr

]
Wi‖∞, (2)

is minimized. In (1) and (2),̃Wo, W̃i, Wo andWi are stable
weighting TFMs, which are specially chosen to enforce closed-
loop stability and performance.

Balancing related FWMR techniques which attempt to min-
imize (1) or (2) can be used to determine reduced order
controllers. The following procedure to solve the FWLCFR
Problem is based on the FWMR approach proposed by Enns
in [3]:

FWLCFR Procedure.

1.Compute the controllability grammian of[ Ũ Ṽ ]W̃i and
the observability grammian of̃Wo[ Ũ Ṽ ] and define ac-
cording to [3], appropriatenc order frequency-weighted
controllability and observability grammiansPE andQE , re-
spectively.

2.Using PE and QE in place of standard grammians of
[ Ũ Ṽ ], determine a reduced order approximation[ Ũr Ṽr ]
by applying, for example, thebalanced truncation(BT)
method [9] or thesingular perturbation approximation
(SPA) [7].

3.FormKr = Ṽ−1
r Ũr.

A completely similar procedure can be used to solve the
FWRCFR Problem:

FWRCFR Procedure.

1.Compute the controllability and observability grammians of[
U
V

]
Wi and Wo

[
U
V

]
, respectively, and define ac-

cording to [3], appropriatenc order frequency-weighted
controllability and observability grammiansPE andQE , re-
spectively.

2.Using PE and QE in place of standard grammians of[
U
V

]
, determine

[
Ur

Vr

]
, a reduced order approximation,

by applying either the BT method [9] or the SPA [7].

3.FormKr = UrVr
−1.

In this paper we focus on the efficient and numerically accurate
computation of low order controllers by using these procedures
to solve the frequency-weighted coprime factorization based

H∞ controller reduction problems formulated in [4]. Let

M =
[

M11 M12

M21 M22

]
(3)

be the TFM used to parameterize all admissibleγ-suboptimal
controllers [19]. It follows thatK can be expressed in terms of
a lowerlinear fractional transformation(LFT) in the form

K = Fl(M,Q) := M11 + M12Q(I −M22Q)−1M21,

where Q is a stable and proper rational matrix satisfying
‖Q‖∞ < γ. Since for standardH∞ problems bothM12 and
M21 are invertible and minimum-phase [19], a ”natural” LCF
of the central controller (Q = 0) asK0 = Ṽ −1Ũ can be ob-
tained with

Ũ = M−1
12 M11, Ṽ = M−1

12

while a ”natural” RCF of the central controller asK0 = UV −1

can be obtained with

U = M11M
−1
21 , V = M−1

21

These coprime factorizations can be used to perform un-
weighted coprime factor controller reduction using accuracy
enhancing model reduction algorithms [13].

The frequency weighted left coprime factor reduction formu-
lated in [4] is one sided with

W̃o = I, W̃i = Θ̃−1

[
γ−1I 0

0 I

]
(4)

where

Θ̃ =

[
Θ̃11 Θ̃12

Θ̃21 Θ̃22

]
:=

[
M21 −M22M

−1
12 M11 −M22M

−1
12

M−1
12 M11 M−1

12

]

Note thatΘ̃ is stable, invertible and minimum-phase. With the
help of the submatrices of̃Θ it is possible to expressK also as

K = (Θ̃22 + QΘ̃12)−1(Θ̃21 + QΘ̃11)

and thus the central controller is factorized asK0 = Θ̃−1
22 Θ̃21.

Similarly, a frequency-weighted right coprime factor reduction
can be formulated with the one sided weights

Wo =
[

γ−1I 0
0 I

]
Θ−1, Wi = I (5)

where

Θ =
[

Θ11 Θ12

Θ21 Θ22

]
:=

[
M12 −M11M

−1
21 M22 M11M

−1
21

−M−1
21 M22 M−1

21

]

Note that this time we have

K = (Θ12 + Θ11Q)(Θ22 + Θ21Q)−1

and the central controller is factorized asK0 = Θ12Θ−1
22 .

The importance of the above frequency-weighted coprime fac-
tor reduction can be seen from the following result [4].



Theorem 2.1 Let K0 be a stabilizing continuous-timeγ-
suboptimalH∞ central controller, and letKr be an approx-
imation of K0 computed by applying either theFWLCFR
Procedureor FWRCFR Procedure. ThenKr stabilizes the
closed-loop system and preserves theγ-suboptimal perfor-
mance, provided the weighted approximation error (1) or (2)
is less than1/

√
2.

We conjecture that this result holds also in the discrete-time,
and can be proved along the lines of the proof provided in [19].

An alternative approach toH∞ controller reduction uses the
relative error method as suggested in [17]. Using this ap-
proach in conjunction with the LCF reduction we can define
the weights as

W̃o = [ Ũ Ṽ ]+, W̃i = I (6)

where[ Ũ Ṽ ]+ denotes a stable right inverse of[ Ũ Ṽ ]. A vari-
ant of this approach (see [19]) is to perform a relative error co-
prime factor reduction on an invertible augmented minimum-
phase system[ Ũa Ṽa ] instead of[ Ũ Ṽ ]. In our case,̃Θ can be
taken as the augmented system. Thus this method essentially
consists of determining an approximatioñΘr of Θ̃ by mini-
mizing the relative error̃∆r = Θ̃−1(Θ̃ − Θ̃r). The reduced
controller is recovered from the sub-blocks (2,1) and (2,2) of
Θ̃r asKr = Θ̃−1

r,22Θ̃r,21.

A relative error RCF reduction can be formulated with the
weights

Wo = I, Wi =
[

U
V

]+

(7)

where

[
U
V

]+

denotes a stable left inverse of

[
U
V

]
. Alter-

natively, an augmented relative error problem can be solved by
approximatingΘ by a reduced order systemΘr which mini-
mizes the relative error∆r = (Θ − Θr)Θ−1. The reduced
controller is recovered from the sub-blocks (1,2) and (2,2) of
Θ̃r asKr = Θr,12Θ−1

r,22. This method has been also considered
in [2] for the case of normalized coprime factorH∞ controller
reduction.

The main computational burden in applying to these problems
either theFWLCFR or FWRCFR procedure is the compu-
tation of the grammians at Step 1. Apparently, the computa-
tion of grammians involves the solutions of at least one Lya-
punov equation of order2nc. In this paper we show that for the
method of [4] as well as for the augmentation based relative er-
ror methods, the frequency-weighted grammians can be com-
puted by solving Lyapunov equations each of ordernc. Com-
plete formulas for both continuous- and discrete-time systems
are given for both LCF and RCF based approaches.

In a separate section, we discuss shortly the direct computation
of the Cholesky factors of the frequency-weighted grammians.
This is a prerequisite for the applicability of the balancing-free
square-root accuracy-enhancing techniques to coprime factor
controller reduction of [13], along the lines of the model re-
duction methods developed for the BT in [12] and SPA in [11].

3 Efficient solution of frequency-weightedH∞
controller reduction problems

3.1 LCF controller reduction

We consider the efficient computation of the frequency-
weighted controllability grammian at Step 1 of theFWLCFR
Procedure for the weights defined in (4). Let consider a real-
ization of the parameterization TFMM (3) in the form

M =




Â B̂1 B̂2

Ĉ1 D̂11 D̂12

Ĉ2 D̂21 D̂22




Note that for the central controller we have(Ac, Bc, Cc, Dc) =
(Â, B̂1, Ĉ1, D̂11). SinceM12 andM21 are stable, minimum-
phase and invertible TFMs, it follows that̂D12 and D̂21 are
invertible, Â, Â − B̂2D̂

−1
12 Ĉ1 andÂ − B̂1D̂

−1
21 Ĉ2 are all sta-

ble matrices, i.e., have eigenvalues in the open left half plane
for a continuous-time controller and in the interior of the unit
circle for a discrete-time controller. The realizationsΘ̃ =
(A

Θ̃
, B

Θ̃
, C

Θ̃
, D

Θ̃
) andΘ̃−1 = (A

Θ̃−1 , BΘ̃−1 , CΘ̃−1 , DΘ̃−1)
can be computed as [19]

Θ̃ =




Â− B̂2D̂
−1
12 Ĉ1 B̂1 − B̂2D̂

−1
12 D̂11 −B̂2D̂

−1
12

Ĉ2 − D̂22D̂
−1
12 Ĉ1 D̂21 − D̂22D̂

−1
12 D̂11 −D̂22D̂

−1
12

D̂−1
12 Ĉ1 D̂−1

12 D̂11 D̂−1
12




Θ̃−1 =




Â− B̂1D̂
−1
21 Ĉ2 −B̂1D̂

−1
21 B̂2 − B̂1D̂

−1
21 D̂22

D̂−1
21 Ĉ2 D̂−1

21 D̂−1
21 D̂22

Ĉ1 − D̂11D̂
−1
21 Ĉ2 −D̂11D̂

−1
21 D̂12 − D̂11D̂

−1
21 D̂22




Since the realization of[ Ũ Ṽ ]W̃i has order2nc, it fol-
lows that the solution of the controller reduction problem for
the special weights defined in (4) involves the solution of a
Lyapunov equation of order2nc to determine the frequency-
weighted controllability grammianPE and a Lyapunov equa-
tion of ordernc to compute the observability grammianQE .
The following result shows that it is always possible to solve
two Lyapunov equations of ordernc to compute the frequency-
weighted grammians for the special weights in (4).

Lemma 3.1 The frequency-weighted controllability grammian
PE and observability grammianQE according to Enn’s choice
[3] satisfy, according to the system type: continuous-time (c) or
discrete-time (d), the corresponding Lyapunov equations

(c)

{
A

Θ̃−1PE + PEAT

Θ̃−1
+ B̃

Θ̃−1B̃
T

Θ̃−1
= 0

AT

Θ̃
QE + QEA

Θ̃
+ C̃T

Θ̃
C̃

Θ̃
= 0

(d)

{
A

Θ̃−1PEA
Θ̃−1 + B̃

Θ̃−1B̃
T

Θ̃−1
= PE

AT

Θ̃
QEA

Θ̃
+ C̃T

Θ̃
C̃

Θ̃
= QE

whereB̃
Θ̃−1 = B

Θ̃−1diag(γ−1I, I) andC̃
Θ̃

= D̂−1
12 Ĉ1.

Proof: We can construct immediately the realization of
[ Ũ Ṽ ]W̃i := (Ai, Bi, Ci, Di) with



Ai =

[
Â− B̂2D̂

−1
12 Ĉ1 B̂1D̂

−1
21 Ĉ2 − B̂2D̂

−1
12 Ĉ1

0 Â− B̂1D̂
−1
21 Ĉ2

]
(8)

Bi =

[
γ−1B̂1D̂

−1
21 −B̂2 + B̂1D̂

−1
21 D̂22

−γ−1B̂1D̂
−1
21 B̂2 − B̂1D̂

−1
21 D̂22

]

and letP i andQ be the controllability grammian of[ Ũ Ṽ ]W̃i

and the observability grammian of[ Ũ Ṽ ], respectively. Ac-
cording to the system type,P i andQ satisfy the corresponding
Lyapunov equations

(c)

{
AiP i + P iA

T

i + BiB
T

i = 0
AT

Θ̃
Q + QA

Θ̃
+ (D̂−1

12 Ĉ1)T D̂−1
12 Ĉ1 = 0

(d)

{
AiP iA

T

i + BiB
T

i = P i

AT

Θ̃
QA

Θ̃
+ (D̂−1

12 Ĉ1)T D̂−1
12 Ĉ1 = Q

PartitionP i in accordance with the structure ofAi in (8)

P i =

[
P 11 P 12

P
T

12 P 22

]
(9)

such thatP 11 is annc × nc matrix. Enns defines in [3]PE =
P 11 andQE = Q as the frequency-weighted controllability
and observability grammians, respectively.

Consider the transformation matrixT

T =
[

Inc −Inc

0 Inc

]

It is easy to see that the controllability grammiañPi for the
transformed pair(Ãi, B̃i) := (T−1AiT, T−1Bi) has the form
P̃i = diag(0, Pi), wherePi satisfies the appropriate Lyapunov
equation

(c) A
Θ̃−1Pi + PiA

T

Θ̃−1
+ B̃

Θ̃−1B̃
T

Θ̃−1
= 0

(d) A
Θ̃−1PiAΘ̃−1 + B̃

Θ̃−1B̃
T

Θ̃−1
= Pi

(10)

The grammian in the original coordinate basis results as

P i = T P̃iT
T =

[
Pi −Pi

−Pi Pi

]

Thus, the frequency-weighted controllability grammian ac-
cording to Enns’ method isPE = Pi, the leadingnc × nc

block ofP i. 2

Remark. It is easy to see that[ Ũ Ṽ ]W̃i = [ 0 I ], thus com-
plete pole-zero cancellation takes place between the system to
be reduced and the input weight. This situation is typical for
several frequency-weighted controller reduction problems (see
for instance [1, 15, 19]) and can be addressed by using Enns’
choice of frequency-weighted grammians.

3.2 Relative error LCF reduction

The relative error approximation of̃Θ is in fact a FWMR prob-
lem with the weightsWo = Θ̃−1 andWi = I. We have the
following straightforward result [19, Theorem 7.5]:

Lemma 3.2 The frequency-weighted controllability grammian
PE and observability grammianQE for Enns’ method [3] sat-
isfy, according to the system type, the corresponding Lyapunov
equations

(c)

{
A

Θ̃
PE + PEAT

Θ̃
+ B

Θ̃
BT

Θ̃
= 0

AT

Θ̃−1
QE + QEA

Θ̃−1 + CT

Θ̃−1
C

Θ̃−1 = 0

(d)

{
A

Θ̃
PEA

Θ̃
+ B

Θ̃
BT

Θ̃
= PE

AT

Θ̃−1
QEA

Θ̃−1 + CT

Θ̃−1
C

Θ̃−1 = QE

Remark. For the relative error method with the weights given
in (6), a right inverse can be immediately constructed as

[ Ũ Ṽ ]+ =
[

M−1
21 M22

M12 −M11M
−1
21 M22

]

A realization of the output weightWo = [ Ũ Ṽ ]+ is given by

Wo =

[
A

Θ̃−1 B̃
Θ̃−1

C
Θ̃−1 D̃

Θ̃−1

]

where B̃
Θ̃−1 = B

Θ̃−1 [ 0 I ]T and D̃
Θ̃−1 = D

Θ̃−1 [ 0 I ]T .
Thus, the grammiansPE andQE used in Lemma 3.2 are the
controllability grammian of[ Ũ Ṽ ] and the observability gram-
mian of[ Ũ Ṽ ]+, respectively. 2

3.3 RCF controller reduction

We consider the efficient computation of the frequency-
weighted controllability grammian at Step 1 of theFWRCFR
Procedurefor the weights defined in (5). The realizationsΘ =
(AΘ, BΘ, CΘ, DΘ) andΘ−1 = (AΘ−1 , BΘ−1 , CΘ−1 , DΘ−1)
can be computed as [19]

Θ =




Â− B̂1D̂
−1
21 Ĉ2 B̂2 − B̂1D̂

−1
21 D̂22 B̂1D̂

−1
21

Ĉ1 − D̂11D̂
−1
21 Ĉ2 D̂12 − D̂11D̂

−1
21 D̂22 D̂11D̂

−1
21

−D̂−1
21 Ĉ2 −D̂−1

21 D̂22 D̂−1
21




Θ−1 =




Â− B̂2D̂
−1
12 Ĉ1 B̂2D̂

−1
12 B̂1 − B̂2D̂

−1
12 D̂11

−D̂−1
12 Ĉ1 D̂−1

12 −D̂−1
12 D̂11

Ĉ2 − D̂22D̂
−1
12 Ĉ1 D̂22D̂

−1
12 D̂21 − D̂22D̂

−1
12 D̂11




Since the realization ofWo

[
U
V

]
has order2nc, it follows

that the solution of the controller reduction problem for the spe-
cial weights defined in (5) involves the solution of a Lyapunov
equation of order2nc to determine the frequency-weighted
controllability grammianPE and a Lyapunov equation of or-
der nc to compute the observability grammianQE . The fol-
lowing result shows that it is always possible to solve two
Lyapunov equations of ordernc to compute the frequency-
weighted grammians for the special weights in (5).

Lemma 3.3 The frequency-weighted controllability grammian
PE and observability grammianQE for Enns’ method [3] sat-
isfy, according to the system type, the corresponding Lyapunov



equations

(c)

{
AΘPE + PEAT

Θ + B̃ΘB̃T
Θ = 0

AT
Θ−1QE + QEAΘ−1 + C̃T

Θ−1C̃Θ−1 = 0

(d)

{
AΘPEAT

Θ + B̃ΘB̃T
Θ = PE

AT
Θ−1QEAΘ−1 + C̃T

Θ−1C̃Θ−1 = QE

where B̃Θ = BΘ

[
0
I

]
= B̂1D̂

−1
21 and CΘ−1 =

diag(γ−1I, I)CΘ−1 .

Proof: We can construct the realization ofWo

[
U
V

]
:=

(Ao, Bo, Co, Do) with the matrices

Ao =

[
Â− B̂2D̂

−1
12 Ĉ1 −B̂1D̂

−1
21 Ĉ2 + B̂2D̂

−1
12 Ĉ1

0 Â− B̂1D̂
−1
21 Ĉ2

]
(11)

Co =

[
−γ−1D̂−1

12 Ĉ1 γ−1D̂−1
12 Ĉ1

Ĉ2 − D̂22D̂
−1
12 Ĉ1 −Ĉ2 + D̂22D̂

−1
12 Ĉ1

]

Let P andQo be the controllability and observability gram-

mians of

[
U
V

]
andWo

[
U
V

]
, respectively. According to

the system type,P andQo satisfy the corresponding Lyapunov
equations

(c)

{
AΘP + PAT

Θ + B̃ΘB̃T
Θ = 0

A
T

o Qo + QoAo + C
T

o Co = 0

(d)

{
AΘPAT

Θ + B̃ΘB̃T
Θ = P

A
T

o QoAo + C
T

o Co = Qo

PartitionQo in accordance with the structure of the matrixAo

in (11)

Qo =

[
Q11 Q12

Q
T

12 Q22

]
(12)

whereQ22 is annc×nc matrix. The approach proposed by [3]
defines

PE = P, QE = Q22 (13)

as the frequency-weighted observability grammian.

Consider the transformation matrixT

T =
[

Inc Inc

0 Inc

]

It is easy to see that the observability grammianQ̃o for the
transformed pair(Ão, C̃o) := (T−1AoT, CoT ) has the form

Q̃o =
[

Qo 0
0 0

]

whereQo satisfies the appropriate Lyapunov equation

(c) AT
Θ−1Qo + QoAΘ−1 + C̃T

Θ−1C̃Θ−1 = 0
(d) AT

Θ−1QoAΘ−1 + C̃T
Θ−1C̃Θ−1 = Qo

(14)

The grammian in original coordinates results as

Qo = T−T Q̃oT
−1 =

[
Qo −Qo

−Qo Qo

]

According to Enns’ method, the frequency-weighted observ-
ability grammian isQE = Qo, the trailingnc×nc block ofQo

in (12). 2

3.4 Relative error RCF reduction

The relative error approximation ofΘ is a FWMR problem
with the weightsWo = I andWi = Θ−1. We have the fol-
lowing straightforward result [19, Theorem 7.5]:

Lemma 3.4 The frequency-weighted controllability grammian
PE and observability grammianQE for Enns’ method [3] sat-
isfy, according to the system type, the corresponding Lyapunov
equations

(c)
{

AΘ−1PE + PEAT
Θ−1 + BΘ−1BT

Θ−1 = 0
AT

ΘQE + QEAΘ + CT
ΘCΘ = 0

(d)
{

AΘ−1PEAΘ−1 + BΘ−1BT
Θ−1 = PE

AT
ΘQEAΘ + CT

ΘCΘ = QE

Remark. For the relative error method with the weights given
in (6), a left inverse can be immediately constructed as

[
U
V

]+

= [M22M
−1
12 M12 −M22M

−1
12 M11 ]

A realization of the input weightWi =
[

U
V

]+

is given by

Wi =

[
AΘ−1 BΘ−1

C̃Θ−1 D̃Θ−1

]

whereC̃Θ−1 = [ 0 I ]CΘ−1 andD̃Θ−1 = [ 0 I ]DΘ−1 . Thus,
the grammiansPE andQE used in Lemma 3.4 are the control-

lability grammian of

[
U
V

]+

and the observability grammian

of

[
U
V

]
, respectively. 2

4 Square-root techniques

Accuracy enhancing balancing-free square-root techniques for
coprime factor model reduction have been proposed in [13]
along the lines of similar methods developed for the BT in
[12] and SPA in [11]. The key computation in the proposed
procedures is the determination of the Cholesky factors of the
grammians such thatPE = SEST

E and Q = RT
ERE . The

method of Hammarling [6] can be generally employed to solve
the Lyapunov equations in question directly for the Cholesky
factors. Having these factors, the reduction of coprime factors
can be performed by computing two truncation matricesL and
T using the singular value decomposition

RESE =
[

U1 U2

]
diag(Σ1,Σ2)

[
V1 V2

]T



with Σ1 = diag(σ1, . . . , σrc
), Σ2 = diag(σrc+1, . . . , σnc

) and
σ1 ≥ . . . ≥ σrc > σrc+1 ≥ . . . ≥ σnc ≥ 0. Thesquare-root
method determinesL andT as [10]

L = Σ−1/2
1 UT

1 RE , T = SEV1Σ
−1/2
1 .

If the original system is highly unbalanced, potential accuracy
losses can be induced in the reduced model if either of the trun-
cation matricesL or T is ill-conditioned (i.e., nearly rank defi-
cient). To avoid ill-conditioned truncation matrices,balancing-
freeapproaches can be used, as for example, thebalancing-free
square-rootalgorithm for the BT introduced by [12]. Similar
formulas have been developed for the SPA approach in [11].

5 Conclusions

Efficient and numerically reliable balancing related compu-
tational approaches have been proposed for the frequency-
weighted coprime factorsH∞ controller reduction with spe-
cial frequency weights enforcing closed-loop stability and per-
formance. To compute lower order approximations of the co-
prime factors, ”natural” coprime factorizations of the central
H∞ controller are used, which result from the parameteriza-
tion of all suboptimalH∞ controllers. We developed com-
plete formulas to compute the frequency-weighted grammians
for both LCF and RCF based reductions, which are generally
applicable for the reduction of all types ofH∞ controllers, pro-
vided the associated parameterization of all controllers is also
available. To compute the grammians, in all cases it is suffi-
cient to solve two Lyapunov equations of the order of the con-
troller. Therefore, the new procedures are sensibly more ef-
ficient than the standard frequency-weighted balancing based
reduction approach. The frequency weighted grammians can
be determined directly in Cholesky factored forms to facilitate
the application of square-root and balancing-free accuracy en-
hancing techniques.
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