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In this paper, we address the efficient solution of frequency-

Abstract weighted balancing-related coprime factor controller reduction
. - . . . problems for the special stability and performance preserv-

We consider the efficient solution of the coprime factonz%g frequency-weights proposed in [4, 5. We show that for

fuon based?o cpntroller app.rOX|mat|0n problems by, YSthe reduction of théH ., central controller, the computation
ing frequency-weighted balancing related model reduction frequency-weighted grammians for the coprime factor con-

proaches. Itis shown that for a class of frequency-weightganer reduction can be done efficiently by solving Lyapunov

performance preserving coprime factor reduction as well as cﬁuations of the order of the controller. The Lyapunov equa-
a relative error coprime factor reduction method, the comp,

: f the f ahted labili 4 ob tons can be solved directly for the Cholesky factors of the
ta:;[!?n of the .requency-t\)/velgj te bcontrlola llity and obser Jrammians, thus allowing the application of the balancing-free
a lity grammians can be done by solving Lyapunov equ quare-root accuracy enhancing method for coprime factor re-
tions of the order of the controller. The new approach can %Ction [13]

used in conjunction with accuracy enhancing square-root and
balancing-free techniques developed for the balancing relatéatation. Throughout the paper, the following notational con-

coprime factors based model reduction. vention is used. The bold-notatidr is used to denote a state-
space systentx := (A, B,C, D) with the transfer-function
matrix (TFM)

1 Introduction

Using theH ., controller synthesis methodology (see for exam- Al B

ple [19]) often leads to controllers whose orders are too large ~ G(A\) = C(AM — A)"'B+ D := {T‘T} :

for practical use. Therefore, in such cases it is necessary to per-

form controller reduction by determining a lower order approx-

imation of the original controller. Controller reduction probAccording to the system typa,is either the complex variable
lems are often formulated as spediauency-weighted modelappearing in the Laplace transform in the case of a continuous-
reduction(FWMR) problems, where the frequency-weights argme system or the variable appearing in theZ-transform in
chosen to enforce closed-loop stability and an acceptable gbe case of a discrete-time system. Throughout the paper we
formance degradation when the low order controller is usdénoteG(\) simply asGG, when the system type is not relevant.
instead the original high order one [1]. The bold-notation is used consistently to denote systems corre-

. . . . sponding to particular TFMs(G G, denotes the series cou-
The idea to apply frequency-weighted balancing techniques 11%ng of two systems having the TFIZ; (A\)Ga(\), G1 + Ga

reduce the stable coprime factors of the controller has been (?'esl'resents the (additive) parallel coupling of two systems with
cussed in several papers [1, 8, 18]. For the reduction of ¢ P P pling y

o . FEm G1(\)+Ga()\), G represents the inverse systems with
trollers originating fromH,, synthesis several methods hav FM G-, [G, G| represents the realization of the com-

been proposed [4, 5, 16, 2]. While the frequency-weights In .
[1, 8] have been primarily chosen to guarantee closed-loop é%o_und TEMwith[ Gy G2 ], ete.

bility, the H, controller reduction mainly focusses on pre-

serving the performance bounds achieved by the original cgh- Coprime factor controller reduction
trollers. Interestingly, many stability/performance presery- .
ing controller reduction problems have very special structu?eons'derGr = (4,B,C, D) an n-th order. state—spgpe
which can be exploited when developing efficient numeric odel and letK be a stabilizing controller W't.h a.stablhz-
algorithms for controller reduction. For example, it has be le and detectable.-th orQer state space reallzatch\'::
shown in [15] that for the frequency-weighted balancing réAC’BC’CC’DC)' The solution of the a frequency-weighted
lated approaches applied to several controller reduction pr

prime factor controller reduction problem (see for example
lems with the special stability/performance enforcing weigh}s’ 8]) consists in computing an approximation of the coprime
proposed in [1], the computation of grammians can be do

tors of the controller. Specifically, th@equency-Weighted
by solving reduced order Lyapunov equations. Similarly,

eft Coprime Factor Reductigif WLCFR)Problemis: given a
. " D=
was shown recently in [14] that this is also true for a class ft coprime factorizatiofL.CF) X' = V="U of the controller,

ind K., anr.-th order approximation oK, in a LCF form



K, = 17;1[770, such that the weighted approximation error  H, controller reduction problems formulated in [4]. Let

W0 — T, V — VWil oo, @ M:[ 3)

My Mo
My Moo

is minimized. Similarly, theFrequency-Weighted Right Co-pe the TFM used to parameterize all admissipiguboptimal
prime Factor ReductiofFWRCFR)Problemis: given aright  controllers [19]. It follows tha# can be expressed in terms of

coprime factorization(RCF) K = UV ™! of the controller, g jowerlinear fractional transformatior{LFT) in the form
find K., anr.-th order approximation oK, in the RCF form

K, = U,V,~!, such that the weighted approximation error K = Fi(M,Q) := My; + M15Q(I — MapQ) ™' Moy,

U-U, where () is a stable and proper rational matrix satisfying
[Wo { VoV } Willoos (2) ||Q|lss < . Since for standar@{.. problems both\/;, and
M3y, are invertible and minimum-phase [19], a "natural” LCF

—_ - — — 177 -
is minimized. In (1) and (2)V,, W, W, andW; are stable ff.the central controller@ = 0) asKo = V=" can be ob
é\_lned with

weighting TFMs, which are specially chosen to enforce close
loop stability and performance.

U=M3' My, V=DM

, , , _while a "natural” RCF of the central controller & = UV !
Balancing related FWMR techniques which attempt to MRS be obtained with

imize (1) or (2) can be used to determine reduced order

controllers. The following procedure to solve the FWLCFR U= M11M2_11, V = M2—11
Problem is based on the FWMR approach proposed by Enns
in [3]: These coprime factorizations can be used to perform un-

weighted coprime factor controller reduction using accuracy

enhancing model reduction algorithms [13].
FWLCFR Procedure.

- ) SO The frequency weighted left coprime factor reduction formu-
1.Compute the controllability grammian ¢1U V|W; and |ated in [4] is one sided with

the observability grammian 6W,[U V| and define ac-

cording to [3], appropriate:. order frequency-weighted W,=1 W,=06" { ~IT 0 } @)
controllability and observability grammiai#¥; andQ g, re- 7 ' 0 1
spectively. where
2.Using Pr and Qg in place of standard grammians of L
[U V], determine a reduced order approximati@h. V, ] | ©11 O12 | [ Moy — Mop My Myy — Moo My,
by applying, for example, théalanced truncation(BT) T Oy B9 | M My, M5
method [9] or thesingular perturbation approximation
(SPA) [7]. Note that® is stable, invertible and minimum-phase. With the
3.FormK, = \Nf;lﬂr. help of the submatrices @ it is possible to expresk™ also as
A completely similar procedure can be used to solve the K = (033 4 Q013) (021 + QO11)

FWRCFR Problem: o
and thus the central controller is factorizedras = 9;21621.

FWRCFR Procedure. Similarly, a frequency-weighted right coprime factor reduction

N N ) can be formulated with the one sided weights
1. Compute the controllability and observability grammians of

—1
g W; and W, g } respectively, and define ac- W, = [ 70 I ? ] ol w,=1 (5)
cording to [3], appropriate:. order frequency-weighted
controllability and observability grammiad¥; andQp, re- Where
spectively. [©1 612 [ Mg — My My, Moy My My,'
2.Using Pg and Qg in place of standard grammians of = = | Oy Og | — My, My, Myt
U U,

\4 r
by applying either the BT method [9] or the SPA [7].

3.FormK, = U, V, '

} , determine{ v ] , areduced order approximationyote that this time we have

K = (012 4+ 011Q)(O22 + 02:Q) "
. . _ 71

In this paper we focus on the efficient and numerically accura%gd the central controller is factorized A = ©1205;

computation of low order controllers by using these procedur&se importance of the above frequency-weighted coprime fac-

to solve the frequency-weighted coprime factorization basemt reduction can be seen from the following result [4].



Theorem 2.1 Let K, be a stabilizing continuous-time- 3 Efficient solution of frequency-weightedH,
suboptimalH ., central controller, and letk,. be an approx- controller reduction problems

imation of K, computed by applying either thEWLCFR

Procedureor FWRCFR Procedure ThenK, stabilizes the 3.1 LCF controller reduction

closed-loop system and preserves thsuboptimal perfor-
mance, provided the weighted approximation error (1) or (
is less tharl /v/2.

e consider the efficient computation of the frequency-
eighted controllability grammian at Step 1 of tR&VLCFR
Procedurefor the weights defined in (4). Let consider a real-

We conjecture that this result holds also in the discrete-tin{é?t'on of the parameterization TEM (3) in the form

and can be proved along the lines of the proof provided in [19]. n ‘ B, DB,

An alternative approach bl controller reduction uses the M= | C,| Dy D

relative error method as suggested in [17]. Using this ap- Cy | Doy Doy

proach in conjunction with the LCF reduction we can define

the weights as Note that for the central controller we haié., B., C., D.) =

— T (ﬁ, §1,51,f)11). Since M7, and M»; are stable, minimum-
Wo=[UV]", Wi=I (6) phase andAin\iertibIe TFMs, it foﬂowsAthAaIlgAand Dy, are

where[ U V |* denotes a stable right inverse|df V ]. Avari- nvertible, 4, 4 — ByDyy Cy andA — B1 Dy, C, are all sta-

ant of this approach (see [19]) is to perform a relative error :El—e matrices, i.e., have eigenvalues in the open left half plane
prime factor reduction on an invertible augmented minimu ora contmuqus-tlme_controller and in the |nte_r|or .of~the unit
phase systerfﬁa ‘7(1] instead oﬂﬁ ‘7]_ In our case® can be circle for a discrete-time fontroller. The realizatio®s =
taken as the augmented system. Thus this method essent g’Bé’Oé’Dé) and®~* = (4 Bg-1:C5-1,Dg4)
consists of determining an approximatién. of © by mini- can be computed as [19]

o-1°

. . AT A A .
mizing the-_ relative errof\, = ©~ (0 — ©,.). The reduced A - B,D\C, ‘ B, - B,D'Dyy  —B.Dy}
controller is recovered from the sub-blocks (2,1) and (2,2) ~——= =~ 1~ = ~—= 7= ===
3 =15 = | Oy — DyaD5'Cy | Doy — Dag D7yt D1y —Dae D7y
O. askK, 2671 e . 2 b 22/\12 1 21 ! 22/\ 12 11 22 12
rESEr T Un2atnal DirC DD D}
1 11
A relative error RCF reduction can be formulated with the 2 ~ 1A —~ Alil PN A_lli 3
weights _ A= Bi1Dy; Gy | —B1Dyy By — BiDy; Doy
wo—1, wi—| U] @ € T, G | D DaiDe
SO 7 Cy — D11D3y' Co|=D11 D3y Diy — D1y Dy Do |

+ ~ ~ —~—
where v denotes a stable left inverse fU . Alter- Since the realization of U V|W; has order2n., it fol-

. v . v Ipws that the solution of the controller reduction problem for
natively, an augmented relative error problem can be solvedtﬁ

% special weights defined in (4) involves the solution of a
approximating® by a reduced order syste@,. which mini- . ) i
mizes the relative errad, — (6 — ©,)0~. The reduced Lyapunov equation of ordeln. to determine the frequency

controller is recovered from the sub-blocks (1,2) and (2,2) wfe|ghted controllability grammiaik’; and a Lyapunov equa-

0, ask, — 97«,129;%2- This method has been also considere[']zn of ordern. to compute the observability grammi&hg.

. : . e following result shows that it is always possible to solve
in [2] for the case of normalized coprime factdt,, controller .
reduction. two Lyapunov equations of order. to compute the frequency-

weighted grammians for the special weights in (4).
The main computational burden in applying to these problems
either theFWLCFR or FWRCFR procedure is the compu-|emma 3.1 The frequency-weighted controllability grammian
tation of the grammians at Step 1. Apparently, the computgy, and observability grammia@ 5 according to Enn’s choice
tion of grammians involves the solutions of at least one Lygs] satisfy, according to the system type: continuous-time (c) or

punov equation of orden... In this paper we show that for thegiscrete-time (d), the corresponding Lyapunov equations
method of [4] as well as for the augmentation based relative er-

ror methods, the frequency-weighted grammians can be com- (C){ Ag_.Pe+ PEx‘%_l + Bg_lég_l =0

puted by solving Lyapunov equations each of ordgr Com- ALQrp + QA= + CLCO~ =0
. . . ) (S] e ©
plete formulas for both continuous- and discrete-time systems ~
are given for both LCF and RCF based approaches. () A(?)APEA@L#LF@AB@,] = Pg
: : . . ALQpA~ +CLCOx = Qg
In a separate section, we discuss shortly the direct computation e e e ©

of the Cholesky factors of the frequency-weighted grammians ~ B , = ~  ~_1n
This is a prerequisite for the applicability of the balancing—fre‘gh(:“rejgé—1 o Bé—ld'ag (v~'1,I)and Cg =D Cr
square-root accuracy-enhancing techniques to coprime factor _ ) o
controller reduction of [13], along the lines of the model re2f00f: _We can construct immediately the realization of

duction methods developed for the BT in [12] and SPA in [11JU VWi := (4;, B;, C;, D;) with



Lemma 3.2 The frequency-weighted controllability grammian
Pr and observability grammia® i for Enns’ method [3] sat-

T_D.D-lA pBp-l1A N N-1A
A, = A—=ByDy, C1 By 21 ai%l 12 Gy (8) isfy, according to the system type, the corresponding Lyapunov
0 A= B1Dyy Oy equations
5 _ | 7'BiDay) —Ba+ BiDy)' D Az Py + PpAL + BBL =0
"7 | -7 'Biby' By BiDy' D O\ 4L Qp+Qrag, +CL C5, =0
21 21 -1 Et+Wpdy_, + 5.0 =
and letP; andQ be the controllability grammian ¢f0 V |W; AgPpAg + BzBL — Py
and the observability grammian §1J V], respectively. Ac- A%,lQEAéfl + Cé,lca:)fl = Qg

cording to the system typ&; and( satisfy the corresponding

Lyapunov equations . . : :
yap q Remark. For the relative error method with the weights given

——  ——T — =T
(©) AiPi+PiA; +BB;, =0 in (6), a right inverse can be immediately constructed as
ALQ + QA5 + (D' C)' DY,/ Cy = 0 .

ie)i —T — T _ [5‘ ‘7}"’ — ]\/[21 M22
(d) AP A; +Bi‘Bz‘ = P; Mg — My My My

ALQAZ + (DR C)TDR Cr = Q o . o

A realization of the output weight’, = [U V |t is given by

Partition P; in accordance with the structure af in (8)

_ P, P
= P 9) Cs., | D,
Py P N N
_ . o where By , = Bz ,[0 I" and D5 , = Dg [0 I]".
such thatP’y is ann. x n. matrix. Enns defines in [Pz =  Thus, the grammian®z and Qs used in Lemma 3.2 are the
Py andQp = Q as the frequency-weighted controllabilitycontrollability grammian of U V ] and the observability gram-
and observability grammians, respectively. mian of [ U \7]+ respectively. g
Consider the transformation matrix
T { In, —In, ] 3.3 RCF controller reduction
B 0 I,

N We consider the efficient computation of the frequency-
It is easy to see that the controllability grammi&n for the weighted controllability grammian at Step 1 of tR&/RCFR
transformed paifA;, B;) := (T~YA; T, T~ B;) has the form Procedurefor the weights defined in (5). The realizatioBs=
P, = diag(0, P;), whereP; satisfies the appropriate Lyapuno4e, Be, Ce, De) and®~! = (Ag-1, Be-1,Co-1, De-1)

equation can be computed as [19]
~ . . Z ~~ NI — -~ fny /\7 ~ oy o~y /\7 oy ~ /\7 A
(C) Aeflpz + PzA@:/l + Bi/(_j):1 B@—l 0 (10) A— BlD21102 ‘ 32 _ B1D211D22 BID211
(d) Ag . PA5 .+ Bg.Bg_, = b © = | ) — D11D;,'Cy | D1y — D11D;,' Doy Dy1 Dy
o o - - —-Dy'C —Dy'D Dy}
The grammian in the original coordinate basis results as 21 2 21 ~22 21
B o P _p A- B,Dy,C | BsDyy By — ByDyy Dy
P, =THTT = : ; 0 'l= _D-IC D) —-D7'D
—P P; R P | P J12 1
Cy — Dy D15 Cy D22Df21 Dy — Doy D1, D1y

Thus, the frequency-weighted controllability grammian ac-

cording to Enns’ method iy = P;, the leadingn,. x n.

block of P;. g Since the realization oW, has ordern,., it follows

U
v
Remark. Itis easy to see thdl/ V ]W; = [0 I], thus com- thatthe solution of the controller reduction problem for the spe-
plete pole-zero cancellation takes place between the systerfilf weights defined in (5) involves the solution of a Lyapunov
be reduced and the input weight. This situation is typical féduation of ordern. to determine the frequency-weighted
several frequency-weighted controller reduction problems (se@ntrollability grammianPz and a Lyapunov equation of or-

for instance [1, 15, 19]) and can be addressed by using Enfi§" 7. to compute the observability grammig)y. The fol-
choice of frequency-weighted grammians. lowing result shows that it is always possible to solve two

Lyapunov equations of ordet. to compute the frequency-

32 Relative error LCE reduction weighted grammians for the special weights in (5).

The relative error approximation 6f is in fact a FWMR prob- Lemma 3.3 The frequency-weighted controllability grammian
lem with the weightdV, = ©—! andW; = I. We have the Pg and observability grammia® x for Enns’ method [3] sat-
following straightforward result [19, Theorem 7.5]: isfy, according to the system type, the corresponding Lyapunov



equations The grammian in original coordinates results as

(C) A@PE + PEAg + E@Egv _ =0 @o = ’T*T@OT*1 = |: QO _QO :|
A5 Qe + QpAer + G5 1Comr = 0 @ Qo
4 AT 4 BoBT According to Enns’ method, the frequency-weighted observ-
(d) ?PE o™t B@BQT - = Pp ability grammian iQ g = Q,, the trailingn. x n. block of @,
Ag-1QrAe-1+Cg 1Ce-1 = Qp in (12). 0
~ 0 ~ o~
where Boe = Be [ 7 ] = BiD;' and Ce-1 = 3.4 Relative error RCF reduction
diag(y~'1,1)Co-1. The relative error approximation @ is a FWMR problem

with the weightsiV, = I andW; = ©~'. We have the fol-

Proof: We can construct the realization Wo|: g } .— lowing straightforward result [19, Theorem 7.5]:

(Ao, Bo, Co, D,) with the matrices Lemma 3.4 The frequency-weighted controllability grammian
S A P Pg and observability grammia® g for Enns’ method [3] sat-
T _ | A= BD Gt —BiDy Co + BaDyy Gy (11) isfy, according to the system type, the corresponding Lyapunov
0 0 A~ B D;'Cy equations
_1 1 AR-1A A@71PE+PEAT,1 —|—B(_)713T,1 =0
c, = - DGy 7 Dy G ( ){ ASQE + QEAe@-i- C@T)C@) o 0

Cy — 1322131_2161 —Ch + 1322131_2161

Pg

(d) A@71PEA@71 + B@71Bg,1
QF

ALQrAe + CECo

Let P and @, be the controllability and observability gram-

mians of{ g } andWo[ g ] respectively. According to Remark. For the relative error method with the weights given

ol ; . in (6), a left inverse can be immediately constructed as
the system typel” and(@), satisfy the corresponding LyapunovI ©) nv : lately u

equations ult _ _

g [ v } = [ Moo M;' Mys — Moy M5 My ]
A'0,+Q94,+C.C, =0

@ { AoPAL + BoBY = P

© {A@P+PA5+§@§5 =0 .
A realization of the input weighit; = [ g } is given by

ZZ@OZO + 6560 = @o W, = A@_l Be-
o . _ ' Co-1 | Do
Partition@, in accordance with the structure of the matdx
in (11) o whereCg-1 = [0 I]Co-1 andDg-1 = [0 I]Dg-1. Thus,
— Q1 ®@ie the grammiang’s andQ g used in Lemma 3.4 are the control-
Qo=| =T = (12) 0t
Qiz Qo lability grammian of{ v ] and the observability grammian
whereQ,, is ann.. x n. matrix. The approach proposed by [3]
defines of { v ] respectively. O
PE:P7 QEZQQQ (13)
as the frequency-weighted observability grammian. 4 Square-root techniques

Consider the transformation matfix . . .
Accuracy enhancing balancing-free square-root techniques for

T — { I, In, ] coprime factor model reduction have been proposed in [13]
0 I, along the lines of similar methods developed for the BT in
~ [12] and SPA in [11]. The key computation in the proposed
It is easy to see that the observability grammi@n for the procedures is the determination of the Cholesky factors of the
transformed pait4,, C,) := (T~'A,T,C,T) has the form grammians such thaP; = SpST andQ = RLRp. The
~ 0, 0 method of Hammarling [6] can be generally employed to solve
Qo = { 00 0 } the Lyapunov equations in question directly for the Cholesky
factors. Having these factors, the reduction of coprime factors
where(), satisfies the appropriate Lyapunov equation can be performed by computing two truncation matritesnd

T = T using the singular value decomposition
(C) A@*IQO + QOAG):l + 99*10@_1 =0 (14)

(d) AL ,QuAe-1 +CT_, o —Q, RpSp=[ Ui U, |diag(Z1,%) [ Vi Vo ]"



with Y1 = diag(al, ey O’TC), Yo = diag(o,.C_H, ey O'nc) and
01> ...20p, > 0Op41 > ... > 0pn, > 0. Thesquare-root
method determines andT as [10]

L=%""UTRy, T=5sVi%;">

If the original system is highly unbalanced, potential accuracy
losses can be induced in the reduced model if either of the tru

cation matriced. or 7' is ill-conditioned (i.e., nearly rank defi-
cient). To avoid ill-conditioned truncation matricéslancing-
freeapproaches can be used, as for examplehafencing-free

[6] S. J. Hammarling.

square-rootalgorithm for the BT introduced by [12]. Similar [g]
formulas have been developed for the SPA approach in [11].

5 Conclusions

Efficient and numerically reliable balancing related complg-

10]

tational approaches have been proposed for the frequency-
weighted coprime factor${,, controller reduction with spe-

cial frequency weights enforcing closed-loop stability and pdit1]
formance. To compute lower order approximations of the co-
prime factors, "natural” coprime factorizations of the central
Hoo controller are used, which result from the parameteriza-

tion of all suboptimal¥ ., controllers. We developed com-11

plete formulas to compute the frequency-weighted grammians
for both LCF and RCF based reductions, which are generally
applicable for the reduction of all types&f,, controllers, pro-
vided the associated parameterization of all controllers is also
available. To compute the grammians, in all cases it is su '-3]
cient to solve two Lyapunov equations of the order of the coh-
troller. Therefore, the new procedures are sensibly more ef-
ficient than the standard frequency-weighted balancing based
reduction approach. The frequency weighted grammians can
be determined directly in Cholesky factored forms to facilitate
the application of square-root and balancing-free accuracy 4]
hancing techniques.
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