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Abstract 
 
This paper deals with fusion of real-time and off-line 
measurements, formulated in terms of a nonlinear least-
squares optimization problem, and solved analytically by 
linearizing the measurement model. The proposed approach is 
applied to a planetary exploration rover, equipped with an 
EKF based localization system using fixations to unknown 
fixed landmarks. The smoothing method enables fusing the 
off-line measurements, related to the landmarks, with the real-
time EKF estimates. The analytic solution of the resulting 
optimization problem has major advantages over standard 
methods, avoiding risks of solution divergence and of 
convergence to local minima, and reducing the computational 
load. An analytic evaluation of the linearization error is 
presented, along with simulation results to demonstrate the 
effectiveness of the proposed approach. 
 
 
1. Introduction 
 
During recent years the localization of planetary rovers has 
been an important research field within the large theme of 
planetary exploration, see for example [9,10,14]. The 
localization algorithms serve two major aspects. The first is to 
enable reasonable estimation of the rover position and 
orientation (pose) that will allow reaching pre-designed goals. 
The second aspect is the mapping of the environment to help 
future localization and to serve further research on future 
missions. When distinguishing between the above tasks the 
requirements from each task can be viewed and defined 
separately. For the former real-time operation is crucial, 
whereas accuracy can be limited to some range of operability 
restrictions. Such limits can be, for example, the range of on-
board cameras that command the last phase of a trajectory 
toward a pre-designed goal during an exploratory mission. 
For the mapping task, on the other hand, it is desired to 
maximize accuracy, even at the expense of non real-time 
processing. Measurements that arrive off-line can hardly help 
resolving the localization task but can contribute to the 
solution of the mapping task.  

The MARS (Mobile Autonomous Robotic System) project is 
aimed at studying and developing techniques and methods for 
space and planetary exploration. It is part of a series of 
projects relating with the control of space systems [4,5]. 
Within the framework of this project a mobile platform, to be 
implemented as an exploratory rover, was developed. The 
MARS rover is equipped with a camera system enabling 
fixation on points of interest during motion, and producing 
on-line range and direction measurements to the fixation 
points. The rover is also equipped with wheel encoders and 
will have some other device for absolute orientation 
measurement, such as a sun sensor. A real-time extended 
Kalman estimator for the localization of the MARS rover was 
developed, in which estimation is done by fusing range and 
angle measurements to fixed unknown landmarks, along with 
the rover proprioceptive sensors’ data [2]. This system 
provides very accurate velocity estimates and good 
localization in a relative sense, but fails to remove initial 
position errors. 

 
In this paper an optimal smoothing approach is introduced, 
enabling trajectory reconstruction and correction of 
localization errors by fusing off-line measurements of the 
scene with the real-time estimates. The problem of fusing 
real-time and off-line measurements had been widely studied 
by several authors. When the underlying models are linear it 
is very convenient to use Kalman smoothers, e.g. [1,7,13], 
though it requires a forward/backward filtering strategy that 
implies at least two processes of recursive computation over 
the whole trajectory. If, on the other hand, the system is 
strongly non-linear, then it is customary either to formulate a 
linear cost function subject to nonlinear constrains as in [11], 
or to formulate a non-linear cost function and minimize it by 
some standard non-linear minimization method [12,15]. Such 
methods suffer from the risks of instability and of 
convergence to local minima. Furthermore, the iterative 
procedures used to solve the minimization problem might 
even diverge, and are quite “expensive” in terms of computer 
resources. 
 
Following [12] and [15], data fusion is reformulated as a 
nonlinear least square optimization problem. A cost function 
with a non-linear measurement model is obtained, which can 
be solved for a minimizing solution by applying some 



standard method, e.g. a quasi-Newton optimization process. 
To avoid the risks associated with iterative non-linear 
optimization methods, it is also proposed to use a linearized 
measurement model and compute a closed form solution. 
Using this approximation, the disadvantages of standard 
methods are avoided and the computational load is highly 
reduced. The approximation error is then analyzed to show 
the validity of the proposed linearized method to the 
underlying scene of the case study. 
 
The remainder of this paper is organized as follows: In the 
next section the proposed approach is presented followed by a 
presentation of the linearization method enabling an analytic 
solution. Then, in section 4 the approximation is analyzed and  
validated for the underlying scene. A simulation study 
confronting the proposed method with a standard non-linear 
optimization method is presented in section 5.  

 
2. Optimal least-squares estimation approach 
 
Consider a non-linear dynamic system of  the following form: 
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where the real-time measurement )1(y  is used to construct an 
on-line state observer producing real-time estimates of the 
system state: 

( ))1(,ˆ kkk yugx =  (2)  

Another measurement, )2(y , is available, though it is 
obtained with significant latency and cannot be used on-line:  

( ))2()2()2( , jjj xhy π=  (3)  
)2()1( ,, ππη  are assumed to be Gaussian, uncorrelated 

additive white noises. )2(y  might be asynchronous with )1(y , 
but the j time instants are well defined by the k instants, i.e. if 

)2(
jy  is defined at some time t , then there exists k such that 

Tkt ⋅= , where T is the system period. This work focuses on 
improving the state estimate by using the off-line 
measurement )2(y . 

 
Referring to the MARS case, a filtered state estimate is 
available, based on real-time measurements of distance and 
angle to some fixed unknown landmarks. The locations of the 
landmarks used (in global coordinates) are unknown when the 
on-line localization is performed. They can be derived, 
however, off-line from imagery systems of the lander and the 
rover. Once this information is available it is required to 
compute an improved (smoothed) state estimate ( x̂̂ ), based 
on the filtered estimate ( x̂ ).  
 
In what follows it is assumed that for a certain time instant k  
there exists an initial estimate kx̂  and its estimation error 

covariance matrix. Furthermore, a measurement )2(
jy  true for 

the same time instant is available such that: 
( ))2()2()2( ,

kkj xhy π=  (4)  
Omitting the time indices for simplicity, the following cost 
function is constructed at each time instant: 
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The brackets indicate the inner product operator. xP  and R  
are positive definite weight matrices that can be interpreted as 
follows: a) The first term of J  accounts for the “price” of 
changing the first estimate. A natural choice for its weight 
matrix is the inverse of the covariance matrix (accuracy) of 
the first estimation error. b) The second term accounts for the 
difference between the predicted measurement and the actual 
measured value. This term is weighed by the inverse of the 
measurement accuracy so that R is the covariance matrix of 
the measurement noise )2(π .  Using this setting, the smoothed 
state is the minimizing solution of the cost function J: 

Jx
x
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Equation (6) is solvable by applying one of the many existing 
non-linear optimization procedures. An application of one 
such a method to the MARS case, using MATLAB built-in 
routines, is demonstrated in section 5. The results are very 
accurate but the algorithm suffers from the usual problems of 
non-linear optimization methods: the need for iterative 
solution, the risk of convergence to local minima, and the 
relatively high computational load.  
 
It should be observed at this point that if a linear 
measurement model is assumed in equation (4), then equation 
(5) becomes quadratic in the variable x. The problem is then 
strictly convex, and an analytic solution can be obtained [6]: 
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where H is the linear measurement model, i.e. 
xHxh ⋅=)0,()2(  (8) 

The first term in equation (7) can be interpreted as the 
smoothing error covariance matrix: 

( ) 111)ˆ̂cov(
−−− +=− HRHPxx T

x  (9) 
 
3. Linearization of the measurement model 
 
Planetary exploration missions present severe limitations in 
terms of computational load and the reliability of the 
solutions is of extremely high importance. Those constrains 
make it easy to understand why the closed-form formula of 
equation (7) have large benefits over other possible 
procedures to solve equation (6). By introducing a nonlinear 
coordinate change, the problem can be reformulated as a 
quadratic optimization problem and solved analytically by 
means of equation (7). 



Let )(xlz = be a coordinate change which leads to a linear 
measurement model: 

)2()2()2( )( ππ +⋅=+⋅= xlHzHy  (10) 

The unknown z can be now estimated by applying equation 
(7) and substituting x̂  with )ˆ(ˆ xlz = . No modification is 
required for the R matrix since: 
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Unfortunately this approach is not valid for the P matrix since 
))ˆ()(cov()ˆcov( xlxlxx −≠− . Next an approximation for the 

latter covariance matrix, regarding the planetary rover case, is 
computed and evaluated. Using this approximation the 
optimization problem can be solved analytically by applying: 
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where zP  is the approximated covariance matrix, i.e. 
))ˆ()(cov()ˆcov( xlxlzzPz −=−≈ . 

 
Regarding now the special case of the MARS rover, the state 
vector x consists of the rover pose - ),,( rrr yx θ  and the 
camera measurements ),( ψρ  - range and angle to the 
observed landmark. See also Figure 1 and [2] for further 
details. 

T
rrr yxx ),,,,( ψρθ=  (13) 

The non-linear measurement )2(y  is the landmark location in 
global coordinates: 
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where )2(π  is the measurement noise. The exact formulation 
of measurement function is as follows: 
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A coordinate change which serves to linearize the 
measurement model is:  

)())sin(),cos(,,( xlyxz T
rrrr ≡+⋅+⋅= ψθρψθρ  (16) 

One then obtains: 
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For the application of the smoother, the covariance matrix of 
the transformed vector is needed. The latter can be computed 
with the help of a linear approximation of the coordinate 
change l(x): 
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where x̂  is the estimated state from the EKF and xP  its 
estimated error covariance matrix. Smoothing can now be  
performed by applying equation (12). 
 

4. Validation of the linear approximation 
 
In this section the linear approximation is justified by 
evaluating the approximation error for the relevant working 
environment. The following vectors are now considered: 
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Let ŝ  be an estimate of s, with sP  the estimation error 
covariance matrix. Define now the following covariance 
matrices: 
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where L̂  is the Jacobian matrix of the coordinate change, 
calculated at the estimate ŝ . The linear approximation can be 
evaluated by assessing the difference lint PPP −=∆ , 
where it is convenient to use the trace of the matrix as its 
norm, i.e. )(PtraceP = .  
 
In what follows r̂  is the estimated range, contrary to r  which 
is the true range, and similarly for the angle α .  

Taking 
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diagonal elements, one can easily compute: 
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whereas for the true distribution the following can be 
demonstrated [8]:  

Given that rr ˆ−  and αα ˆ−  have zero mean Gaussian 
distribution, i.e. 
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it follows that: 
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Since the x,y members of s are not affected by the coordinate 
change l, direct computation will show that: 
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An upper bound for the approximation error can be assessed 
now by computing: 
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When navigating the MARS rover, a reasonable requirement 
from the real-time localization system is a maximal error of 
O(100) meters in position, and of O(10-2) radians (=O(100) 
degrees) in orientation. The range estimation error is smaller 
than the range measurement error, which is of O(100) meters, 
while a reasonable range to landmarks is of O(101) meters. 
Bearing in mind that ψθα += r , and that the direction to the 
landmark, ψ , is much more accurate that the orientation rθ , 
it follows that the accuracy of α  is within the same order of 
magnitude as that of the orientation. Taking therefore: 
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where dr is the range estimation error, equation (25) can be 
further simplified by neglecting the last term with respect to 
the first one and using the fact that dr is small with respect to 
r: 

αα pdrrprrP ⋅⋅≈−≤ 2)ˆ( 22∆  (27) 
 
Finally substituting the values in (26) into equation (27) it can 
be computed that: 
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hence demonstrating that deviations from the true value are of 
negligible order which validates the use of the linear 
approximation. Further justification for the use of the 
proposed approximate method is obtained by a simulation 
study presented next. 
 
5. Algorithm evaluation – a simulation study 
 
A return mission trajectory, passing through several points of 
interest and covering roughly 250 meters, was simulated in 
MATLAB. The main error source is slippage which is a 
major problem in unstructured outdoors environment. Other 
error sources are sensors measurement errors, which are 
simulated as random noises. 
    
A first estimate of the rover position is calculated in real-time 
using the EKF estimator of [2]. The estimator makes use of 
on-line measurements available from a camera system that 
produces range and direction measurements to fixed 
landmarks. Two different landmarks are used. For the first 
part of the trajectory, measurements of an arbitrary landmark 
located at (100,60) are taken. Then, for the return journey, the 

lander located at the origin serves as a landmark. The location 
of the landmarks is unknown at the time of calculation, but 
the fact the they are fixed is implicit in the filter equations and 
enables very good estimation of true velocities. 
  
As presented in [2], the EKF estimator is not capable of 
removing initial position errors. Furthermore, the position 
estimation error covariance is growing unboundedly. A 
Monte-Carlo simulation of the EKF estimator, consisting of 
50 different runs showed that the EKF produces a position 
estimation error that varies between 3 to 6 meters, with an 
estimation error covariance starting at 25 m2 (initial 
conditions) and reaching 170 m2 (13 m 1 σ  error).  
 
The EKF estimate is first smoothed using a classic 
optimization method. Optimization is based on standard 
MATLAB routines executing a quasi-Newton method that 
uses the BFGS (Broyden-Fletcher-Goldfarb-Shanno) formula 
to predict the Hessian matrix of the cost function. After 
determining the direction of search, the minimizing solution 
is obtained by implementing a cubic-polynomial line search 
[3]. A second estimate is calculated using the closed form 
solution presented above. The two methods are compared in 
terms of accuracy, number of iterations and computation time. 
The graphs shown are based on a 50 run Monte-Carlo 
simulation. For the first landmark, a position error of 1 meter 
1 σ  on each direction (x and y) is used, having 

])1,1([diagR = . For the return trajectory a better accuracy of 
0.5 meter 1 σ , ])25.0,25.0([diagR = .  
 
5.1 Simulation results 
 
Figure 2 presents the whole simulated trajectory, clearly 
showing an improvement in the position estimation. The EKF 
estimate is biased from the true position due to initial 
condition errors that are not removed. The two smoothed 
estimates remove this bias, leaving only a small estimation 
error. The difference between the two estimates (centimeters) 
is too small to be distinguished on this scale. Figure 3 further 
illustrate the same phenomena, as the initial condition errors 
in the EKF remain throughout the whole trajectory, but are 
then removed by the smoothing process. Note in Figure 4 that 
the 1 σ  values for the two smoothing methods are clearly 
bounded and that they are closely related to the accuracy of 
the landmark measurements (the R matrix). Note also the 
clear effect of the landmark change after 250 seconds of 
motion. The average difference between the two smoothed 
estimates is within a few centimeters order of magnitude 
(Figure 5), whereas the standard deviation of both is within 
tens of centimeters order of magnitude, demonstrating no 
practical difference in accuracy between the two methods. 
 
Another important issue of comparison is the computational 
load required by each of the two smoothing processes. It was 
chosen to test this issue in a relative manner, by comparing 
average execution time per estimated point for each method 
when executed on the same processor. The execution time on 
a specific processor has no important significance as its own, 



but the comparison can shed light on the relative efficiency of 
the two processes. Using an AMD Athalon XP1700 processor 
with 252 MBRAM, an average of 40 msec is needed to 
compute a smoothed estimate for each point of interest 
(Figure 6 down), with 10-15 iterations of the minimization 
procedure (Figure 6 up). The approximated method, on the 
other hand, requires an average of 0.7 milliseconds to 
compute a smoothed estimate per each point of interest, 
executing only one single calculation per point, thus 
demonstrating circa 50 times higher efficiency.  
 
6. Conclusions 
 
A smoothing process based on optimal estimation approach 
was here presented, intended to fuse off-line measurements 
and to improve the accuracy of real-time state estimates of a 
dynamic system. By introducing a nonlinear coordinate 
change the optimization problem is solved analytically 
avoiding the risks of non-linear optimization methods. In 
particular this approach is implemented to improve the 
accuracy of a localization process for a planetary rover and its 
validity demonstrated for the underlying scene. The higher 
efficiency, and moreover the advantage of the closed-form 
solution, are of very high importance when dealing with 
planetary exploration, since problems related with iterative 
minimization procedure (e.g. possible divergence of the 
solution, convergence to local minima, the possibility of not 
finding a solution within a small enough number of iteration) 
can highly reduce the autonomy of a planetary rover. Hence 
the ability to reach a similar accuracy while avoiding such 
problems is of high benefit for a planetary rover, as is the 
significantly higher efficiency of the proposed method. 
 
It should also be pointed out that the same approach can be 
followed for any system that comply with a similar structure, 
i.e. some off-line measurements available with significant 
delay. If some initial estimate can be computed, it can be used 
as an initial guess for a constrained least squares optimization 
similar to the one presented here. To simplify the solution and 
to lower computational load, non-linear measurement models 
can be linearized by using an adequate state transformation, 
and the linearization validated following the guidelines of  
this paper. 
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Figure 1: Definition of problem variables. 
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Figure 2: The true trajectory, the EKF estimate, and the 
estimates by the two smoothing algorithms. The last two 

almost coincide. 
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Figure 3 : X-position error (up figure) and Y-position error 
(down figure) of the EKF and the two smoothing processes. 

1-sigma bounds are presented by dotted lines. 
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Figure 4: The estimation error of the two smoothing 
algorithms. 1-sigma bounds are dotted. 
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Figure 5: The difference between the two smoothing 
algorithms. 
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Figure 6: The average number of iterations per smoothed 
point (up) and the average evaluation time per point (down) 

for the quasi-Newton optimization method. The average 
evaluation time for the linearized method is 0.7 msec. 
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