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precision contour control, industrial articulated robot arm  uncertainties are simplified as constants or typical statistical
distributions. Based on the model of the system, uncertain-
Abstract ties are always compensated by the states or output feedback.
However, if high system performances are required in indus-
This paper presents a general methodology of controller desijal nonlinear systems, such as high precision, high speed, etc.,
by the hybrid neuro-inverse control with the knowledge-bas#ae impact of uncertainties, as the main reason of deterioration
nonlinear separation for industrial nonlinear systems. In iaf system performances, must be taken into account seriously
dustrial nonlinear systems, various kinds of uncertainties magd compensated precisely.
cause serious deterioration of system performances. Unfo
nately, these uncertainties are usually difficult to identify arﬁj

" reduce the influence of uncertainties upon system perfor-

te f th i ; int of vi With ances of industrial nonlinear systems, a vast number of new
compensate from the entire system point orview. YVith ust proaches on the control of nonlinear systems by neural net-

the knowledge-based nonlinear separation, nonlinear dynafjiy s has increased significantly in recent years [3, 4, 7, 8].

ics of a no?lmear sy;tem IS p(zjssrl]bly sef?arateg Into t_he NPYHe use of the learning ability of neural networks helps the de-
output nonlinear static part and the nonlinear dynamic pa”,é%n of controllers to be rather flexible, especially when system
form a nonlinear sepgratlon structure. Henc_e, partial nqnll ynamics are complicated and highly nonlinear with many un-
ear factors of the nonlinear system are described by the inp rtainties. In order to enable the designed nonlinear controller

output nonlinear static part. Uncertainties in the nonlinear SY§ith neural networks acceptable to industries, almost all above

tem are bounded in the nonlinear dynamic part. In the IorQ'proaches attempted to narrow down the gap between theory

pos?d hybrid heuro-inverse cltlbnérgl met_hod, the mputl—loutp d applications. When employing a neural network controller
nonlinear static part is controlled by an inverse controller. eurocontroller) for an actual industrial nonlinear system to
neurocontroller with a rigidly defined and trained neural net;

. . . X prove system performances, one of the crucial problems is

yvork using available prior knowledge of the nonlinear _SyStewa to design a powerful neurocontroller with a simple struc-

{/sv_cr:)nstructed for the control S]ICDthe nonlllme_ar dyn?mlc Pathre and lesser time in training. Concerning this problem, sev-
Ith respect to some cases, a controlleris supplementagjy, approaches have been exploited, such as the design of var-

emp_oned to redgce the inflqence fro!”” big uncertainties in t"’tg.&s architectures of neurocontrollers, development of hybrid
nonl!near dynamlg part. Owing to using the knowledge-basg ntrol methods, improvement of learning algorithms, on-line
nonlinear separation and a PID controller, the neurocontrolier

is only needed to control a part of the original nonlinear dy-

namics of industrial nonlinear systems contaminated by uncktowever, many kinds of neurocontrollers with simple struc-
tainties. The structure of the neural network employed in titéres always need a tremendous amount of training data in or-
neurocontroller becomes simpler and the consumption of tirder to include all possible operating conditions. Hence, the
in training is reduced. Meanwhile, system performances of ttigining time undertaken is lengthy. They are difficult to apply
nonlinear system can be improved by the proposed methtia wide range of real-time control problems [8]. Moreover,
Based on this method, high-precision contour control of induéis problem may become more serious when these neurocon-
trial articulated robot arm was solved. It demonstrated the gdrellers try to control complex and highly nonlinear systems
erality, practicality and significant potential of this method fowith uncertainties.

realizing the high-performance control of industrial nonlineqrhe method proposed in this paper is a hybrid neuro-inverse
systems. control approach with the knowledge-based nonlinear separa-

tion. It is simple and well suited for industrial applications
1 Introduction meanwhile it can improve system performances remarkably.

Additionally, it combined various kinds of approaches men-

In industrial nonlinear systems, compensation of uncertaintigsned above for improving system performances. With this
is one of the important means to improve system performances.

ining, use of prior knowledge, etc.
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hybrid neuro-inverse control approach with knowledge-based y(t) = hx(¢)]. ©)]

nonlinear separation _ _ _ _ _
This model is the improvement of the nonlinear separation

model proposed in [6] by replacing the linear dynamic part with
the nonlinear dynamic part.
method, a complex industrial nonlinear system with uncertain-
tiesis Separated into several parts USing prior knOW|Edge. A I'B/‘Z Inverse controller of nonlinear static part
brid control method is adopted for controlling different parts,
where a neurocontroller is mainly responsible for the compéii-the knowledge-based nonlinear structure, the input nonlin-
sation of the nonlinear dynamic part contaminated by uncéar static functiory and the output nonlinear static functién
tainties and an inverse controller is to compensate the nonlingkg supposed to describe rigorously by a mathematical model
static part. In addition, this method emphasizes the use of pifgthout any uncertainties. Therefore, the control of the input-
knowledge for the controller construction. Therefore, a poveutput nonlinear static part is carried out by the inverse control
erful neurocontroller with a simple structure and lesser time ethod.
training can be implemented. Comparing with the neurocopy general, the controller of the input nonlinear static part is
troller for the entire nonlinear system control, the structure of
neurocontroller designed by the proposed method for the non- u(t) = g ' [(xh" ()], 4)

linear dynamic part becomes simpler. And this method ha . . . . .
y P P %ere(xd)“ is the control input of the input nonlinear static

great potential for realizing real-time control. Besides, differ? ; X X
: : . art. The controller of the output nonlinear static part is

ent types of neural network architectures, learning algorlthnps,

etc., can be integrated into this method for various kinds of in- x4(t) = [y ()], (5)

dustrial nonlinear systems.
wherey? andx? denote the input and the output of the con-

. troller of the output nonlinear static part, respectively. The
2 Hybrld Neuro-Inverse  Control Approach above inverse controller can be derived from nonlinear static

with Knowledge-based Nonlinear Separation oqels as long as nonlinear static models are reversible. If non-

linear static models are irreversible, there are two approaches
for defining inverse controllers. One is to transform the nonlin-
The knowledge-based nonlinear separation method is to moe@t static model into a reversible form through the appropriate
a nonlinear system based on the prior knowledge obtained fragproximation. Another approach is to employ the inverse pro-
a mathematical model and actual field data of the system [6§ss of the knowledge-based nonlinear separation to define an
With this method, a nonlinear system can be described bynserse controller of the nonlinear static part [6].

nonllinear separatipn structure as llustrated in th_e right Sig%sides, since the nonlinear static part is defined under the
of F|g._1. The no_nlmear sgparaﬂon str_ucture conSI_sts of thrgt ady state of the system, the nonlinear static part is hard to
pa:ts.tmpult_ ”°”"”f"’§ statu; pz;rrt], n_onllr:ear dl_ynamlct pt"_"rt B contaminated by uncertainties. It means that uncertainties
output noniinear static part. € input nonlinear static patt, merely laid in the nonlinear dynamic part. Although it can

co?dutcts t?.e nonhtmta_ar tra:lsformamintor:‘the c?ntrol 'nFL{[' T'B t guarantee that an input-output nonlinear static part could
outputnoniinear static part represents the nonlinear retation pes o sent the overall nonlinear factors of the original nonlinear

:\évee? tkzje O;thut%/ﬁrlablesbang tfhe Ztebltes |Sf the sys:ﬁm ut tem, the input-output nonlinear static part is at least taking
€ steady state. They can be delined by a known mathematyg y some of the nonlinear factors of the original nonlinear

model or an approximation model identified by the actual da stem. Therefore, the nonlinear factors of the original non-
The other part of original nonlinear dynamics contaminated lﬂ—l_?ear system can E)e reduced. The compensation process of
uncertainties is regarded as the nonlinear dynamic part th tertainties in the nonlinear dynamic part can undoubtedly

system. become easy to carry out. Furthermore, system performances
The input nonlinear static part expressed by the fungfiaith can be possibly improved.

2.1 Nonlinear separation structure



2.3 Neurocontroller of nonlinear dynamic part wherep; denotes the activation function of the neural network

) ) ) ) _unit andN denotes the number of hidden nodes.
In an industrial nonlinear system, PID control is an effective

approach to reduce the big influence of uncertainties in tHeorder to define appropriate neural network components and
system. Therefore, in the proposed method, a PID Contr0|@}ab|e the parameters of neural network nodes to converge eas-
is also employed like conventional control methods to set ilg Prior knowledge on the nonlinear dynamic part of the sys-
the controller as illustrated in the left side of Fig.1 in order ti¢M is very helpful to determine the structure and the initial pa-
reduce the big influence of uncertainties in the nonlinear digmeters of the neural network as well, even only with a given
namic part. As we above mentioned, the function of PID cofitear dynamic model. When defining initial parameters of a
trol is insufficient to achieve the high performance control pefeural network, such as weights of units, coefficients of acti-
fectly. Therefore, besides the installation of PID controller fafation functions of units, etc, they can be given arbitrarily or
the nonlinear dynamic part, a neurocontroller is designed fétermined with a known inverse nonlinear dynamic model or

the nonlinear dynamic part in the proposed method to |mpro§@ identification model built by the actual data of the system.
system performances. Some typical learning algorithms can be chosen for the above

] . neural networks, such as backpropagation method, etc.
A neurocontroller mainly consists of a neural network for con-

trolling the nonlinear dynamic pat contaminated by uncer- . .. )
tainties. Since the learning capability of neural networks, @ High-Precision Contour Control of Industrial
has proved that any nonlinear functions can be approximated Articulated Robot Arm

to any desired accuracy by a two-layer neural network with
sufficiently large number of neurons, over a compact domai
of a finite dimensionally formed space [1]. Therefore, the fegl

tures of adaptiveness and robustness of the system with res Lol in industry. IARA tai tainties f
to uncertainties can be improved and thereby the high perfSP-n rol in Ingustry. contains many uncertainties from

mance control of the system can be achieved. Besides, siﬁ%éﬂeChan'sm and _W(_)rklng C|r<_:um_stance during the working
most of the nonlinear factors have been brought away by rocess, such as friction, gravity, interference between robot

nonlinear static part and the big influence of uncertainties ks, parameter errors in the adopted model, disturbance, and

the nonlinear dynamic part has been reduced by the PID ¢ g-on- I.n order FO realize the high—prec_:is_,ion contour control of
trol, it becomes much easier for neural networks to realize t RA with the high-speed movement, itis necessary to reduce

desired high performance. The parameters of neural netwo influence_ of these uncertainties. Therefore, a hybrid neuro-

also converge more easily during the process of training. inverse nonlinear control with the knowledge-based nonlinear
separation is employed for the contour control of IARA.

The nonlinear dynamic part is as given in (2). If the output

of the controller of the nonlinear dynamic part is supposed

(x4)“, the controller of the nonlinear dynamic partis expressg

by

ntour control is one of the important working patterns of
dustrial articulated robot arm (IARA). High-precision and
-speed movement is the expected performances of contour

Nonlinear separation structure of industrial articu-
lated robot arm

dyvury  Frod .d

() = FOC),X7(1), w(t), v(t)). ®) " In this research, a two-joint IARA is concentrated. The nonlin-
Igcc_mfﬁmmﬂ the e(‘;f‘_e(f[t of the PID control further, the equatiogy separation structure of this robot arm is constructed based
(6) is then changed into on the physical model of mechanism. Fig.2 illustrates the sys-

(xH(t) = f(x (1), % (1), w(t), (7) tem architecture of one link of IARA with a neurocontroller.
wherew denotes the remained uncertainties in the nonlinaiom this figure, the nonlinear separation structure of IARA
dynamic part with a PID controller. can be defined as below.

Many kinds of neural networks can be adopted to design thae fur_lctiong of_the inp_ut non_Iinear static part as (1) is defined
neurocontroller of the nonlinear dynamic part. For instancléy the inverse kinematics which refers to the space transforma-

a three-layer feedforward neural network, as one of the tyﬁf?” from the cartesian coordinate to the joint coordinate, as

cal neural networks, is adopted here. The inputs of the neural (11)2— (1) 2 402

network are the objective values of elements of the stédte zy = arctan  + arccos [W]

and its differentiakk?, as well as the remained uncertainties L

The output of the neural network is the objective control signal

(x)", which will be put into the controller of the input nonlin-y o ¢, (j = 1,2) is the trajectory in the cartesian coordinate,

ear static part. Linear nodes with linear functions can be useg,”. ; . : - . .

for the input layer and the output layer of the neural network; (7 = 1,2) is the trajectory in the joint coordinaté;(; =

The units in the hidden layer can be defined by some typica?) IS the length of the robot link.

nodes, such as gaussian nodes, sigmoid nodes, etc. Therefjtailarly, the functionk of the output nonlinear static part as

the neurocontroller for the nonlinear dynamic part of the syg) is defined by the kinematics which refers to the space trans-

tem is described by formation from the joint coordinate to the cartesian coordinate,
as

N
dyu gy — (k¢ (1) % = lisinzy + l2sin (z1 + x2)
X t w;pi (xX°(t), x% (), w(t)), (8) Y1 1 1
(=" (t) E (x(8), %% (1), w(®)) {thCOMﬁZQCOS(mm)? (10)

9
l2)27u%7u§} ( )

1 11)%+
Ty = T — arccos [( ) (21112



Neurocontroller 3 Nonlinear dynamics of industrial articul ated robot arm
|

Kinematics
Inver se Kinematics
Kinematics
v

8
ko]
&
c
<
3
:

Input layer Hidden layer Output layer

Figure 2: System architecture of industrial articulated robot arm

wherez;(j = 1,2) is the trajectory in the joint coordinate,part is defined by the inverse kinematics as

y; (4 = 1,2) is the trajectory in the cartesian coordinate.
iai i icg i i z¢ = arctan v + arccos [(11)2—(12)2+(y;’)2+(y‘21 -
The other part of the original nonlinear dynamics is defined as vd 21 /(2 +(yd)2 (13)

the nonlinear dynamic pajtin (2) of the nonlinear separation J (112 +(12)?— (v ) — (u)?
structure of IARA, which can be described by Euler-Lagrange \ #2 =7~ arccos | ily s
equations as

wherey?(j = 1,2) is the objective trajectory in the cartesian

[(k1)2TM +mi(19)? + ma{(1)? + (19)?} coord!nate;rfj(j = 1,2) is the objective trajectory in the joint
—|—m1(l1)2/3 4 MQ(12)2/3]I1/(K{)K{)KI—) COOI’dIna'[e.

+id1/KY + 21+ Uy = af (1) For controlling the nonlinear dynamic part of the nonlinear sep-
{(k2)?J2" + ma(15)? + ma(l2)?/3}i2 aration structure of IARA, a gaussian neural network (GNN) is
J(KZK5K3) + 2/ K3 + @9 + Us = w3, adopted [5]. For each link of IARA, there is a gaussian neu-

rocontroller including one GNN. With the method of the se-

wherez¥(j = 1,2) is the control signal in the joint coor- Ieg;i%n of GNN strr]uctur? [9],|eacr_1 GNN has four ir:g(;:t nodes
dinate,z;, %;, #;(j = 1,2) are the actual joint trajectory,:N !f rgpreser?tt ?rgglzat()jtethobjectlveJomtt.tra]ecl VVF];"th
velocity and accelerationk”(j = 1,2) is the position loop octty -, accde eratonr: and the compensation vaiue of the

. . ) i\ . ) . uncertaintyU“. GNN also has eight hidden nodes and one
gain, Kj(j = 1,2) is the velocity loop gainK7 (j = 1,2) IS qutput node. If defining the initial parameters of GNN by the
the torque coefficient/} (j = 1,2) is the inertial coefficient, known Euler-Lagrange equations (11) [9], the gaussian neuro-
m;(j = 1,2) is the mass of robot link;; (j = 1, 2) is the gear controller for the first link of IARA can be expressed by
ratio, [;(j = 1,2) is the length of robot link$’ (j = 1,2) is the ) ) ) )
length between the axis and the center of gravity(j = 1,2 dyvu &1 x§ xf Uy
is the uncertainty. Due to the installation of po\isvir%fon loop )gailgg,c )" =182 <w1 Ximas T Ximas tws Ximaz s Ulmw) ’
velocity loop gain as well as torque coefficient, a PI controller, . . (14)
as a semi-closed loop, has been given for the control of th8€re w1 = 0.757C1 X1mae, w2 = 0.757X1mas/ K7,
nonlinear dynamic part. Therefore, the influence of the origﬁ’-3 = 0757 X1mag, wa = 0.75TUyne, and Oy =

2 TM G\2 2 G2 2
nal uncertainties of IARA has been reduced and the uncertai %1) le + m%,(llv) j’ ma{(11)” + ()"} + ma(la)"/3 +
U in (11) denotes the remained uncertainty of IARA 2(l2)”/3)/(KTKT K7 ). Similarly, the gaussian neurocon-
' troller for the second link of IARA can be expressed by

3.2 Neuro-inverse controller of industrial articulated d &4 &g zd Ug
b (z9)* = 1.321 [ wn + wa— w3 + wy )
robot arm Xomaz Xomas Xomax Usmax
(15)

As illustrated in the left side of Fig.2, a hybrid neuro-inversgi ora,, — be _ X KP _
controller for each link of IARA contains three parts. Base w1 0'757€2 2maz, w2 = 0757 QL”‘”/ 2 u]@
. 1 . 057 Xomazy Wa = 0.75TUzman and Cy = ((kz) J2 +
on the inverse control, the controllgr* in (4) of the input 162 12/3) /(KP KO KT
nonlinear static part of IARA is defined by the kinematics as"2(2)” +ma(12)*/3)/ (K K3 K3).
A well-defined trial in the actual system is made to get the com-

pensation values of uncertainties. In the trial, the realizable ob-
(12) jective joint trajectory for training and its velocity, acceleration
as well as small arbitrary values representing the compensation
values of uncertainties are put into the GNN whose parameters
where(z4)"(j = 1,2) is the objective control input in the joint @€ defined with initial parameters beforehand. And then GNN
coordina{teu»(j = 1,2) is the control input in the cartesiandenerates control signals and these signals are used to control
; I ’ the actual system. The errors between the actual output joint
coordinate. . : S :
trajectoryz; and the realizable objective joint traject@rg/ are
Similarly, the controlle~! in (5) of the output nonlinear static supposed as the compensation values of uncertainties, which

ur = Iy sin ()" + Iz sin () + (z9)¥)
uz = Iy cos ()" 4 Iz cos ()™ + (z3)*),



can be calculated by (a) Objective trajectory

Uj=zf—z; (j=12). (16)

With the realizable objective joint trajectory, its velocity, ac- =
celeration and the above generated compensation values of un-
certainties, regarded as the teaching pattern, the well-defined

GNN is trained to generate optimal control signals. The back-
propagation algorithm is used as the learning algorithm.

(b) Experiment results

0158 : /?mp\;ﬁed' - f\rmlifiedI i
3.3 Experimental work —Otjetive 0zl |
=== Fina
In order to verify the effectiveness of the proposed method for =0T 1E
the high-performance contour control of IARA, an experiment R Y R
work has been carried out. The object of the experiment is an o9 N Wi -y \
actual Performer MK3S produced by Yahata Co., Japan. s s e o Oy ma e s

Time [s] Time [s]
According to the controller construction method for IARA in
3.2, the process of the controller construction for the Performer Figure 3: Experiment results of training trajectory
MKS3S was firstly carried out.

As (12), the inverse controller of the input nonlinear static part

is the kinematics of IARA described by and small arbitrary values representing the compensation val-

uy = 0.25sin (z§)* + 0.215 sin ((z{)" + (z4)*) ues of the uncertainty/{, were put into the current GNN with-
{ uz = 0.25 cos (z§)" + 0.215cos ()" + (z4)"). (A7) out training. Next, the output of the GNI4)* was trans-

formed by (17) from the joint coordinate into the cartesian co-
Similarly, according to (13), the inverse controller of the ougyrdinate. Then, the output of the entire neuro-inverse controller

put nonlinear static part is the inverse kinematics of IARA d&; |ARA ie.. the control signal;, was employed to under-

scribed by take the contour control of the Performer MK3S. Although the
2 = arctan é + arccos [0,0163+(yg)2+(yg>2 e_lctual output tr_ajectory of the Performer _MI_<38 was nc_Jt satl_s-

vg 05/ (WH2 +(v3)? g) fied du_e to the m_fluence from the uncertainties comparing Wl_th
2¢ = 7 — arccos [0»109—5}/1?0)725—@%)2 ]. the objective trajectory, the compensation values of uncertain-

ties can be obtained by (16) through the experiment. Even-
In order to build an appropriate gaussian neurocontroller fually, the teaching patterns, including the training trajectory
IARA, first of all, the definition of the gaussian neurocontrollez¢(i = 1, 2) and its relative velocity:¢, acceleratiori:¢ in the
structure was made. The gaussian neurocontroller with initjalnt coordinate as well as the compensation values of uncer-
parameters determined by the known Euler-Lagrange equatitiatiesU¢, were generated.

for the first link of IARA is given by (14), wher€'; = 7.67 x
1074, wy = 5.81 x 107* X1 as, w2 = 0.03X 1m0z, w3 =
0.757 X 1maz @Ndwy = 0.757U1 4, Similarly, the gaussian
neurocontroller for the second link of IARA is given by (15)

With these teaching patterns, the training process was carried
out. The training rate was selected as a small value of 0.001
because the GNN is already closed to the inverse nonlinear dy-
whereCy = 2.84 x 10-4 wy = 2.15 x 104X g, 100, Wy — hami_c part of IARA due to its rigid definition of the structure
0.03X a0, W3 = 0.757 Xy ar andwy = 0.757Usmus. and |t_s initial parame_ters _based on Fhe known E_uIer-Lagrange
equations of IARA given in (11). With the teaching patterns,
For obtaining proper parameters of the GNN in order to cothe parameters of GNN can be updated until convergence. Af-
struct the final neurocontroller of IARA, atraining trajectory irier the training process, the parameters of GNN were fixed for

the cartesian coordinate was defined by (see Fig.3(a)) the gaussian neurocontroller.
¥y = Rcos(0.27t) + Rcos(0.27t) /5 Fig.3(b) illustrates the experimental results of the training tra-
y5 = Rsin(0.2mt) + Rsin(0.27t)/5 (19) jectory under enlarged scale in the cartesian coordinate. The
0 <t<10[s]. solid line represents the objective trajectory. The dashed line,

The radiusR of the training trajectory is 2[cm]. In addi- named by “Initial”, represents the actual trajectory of IARA

tion. the teaching patterns were generated by the followiﬁontm”ed by the neuro-inverse controller whose gaussian neu-
| 9P g y régcontroller was not trained. The dash dot line, named by “Fi-

method.  With (.18)’ the Framm.g trajectpr_y was trgnsformepal,,’ represents the actual trajectory of IARA controlled by the
from the cartesian coordinate into the joint coordinate. Af-

ter sampled by the time intervakt, the training trajectory well-trained neuro-inverse controller.

x4(i = 1,2) and its relative velocity:¢, acceleratiori¢ in the From these results, it proves that the actual trajectory controlled
joint coordinate calculated by the Euler equations:dg@) = by the well-trained neuro-inverse controller is more accurate
{xd(t) —2d(t— 1)} /At andid(t) = {2¢(t) —2¢(t —1)}/At, than the actual trajectory controlled by the neuro-inverse con-
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tem. The original system is separated into the input-output
nonlinear static part and the nonlinear dynamic part based on
the physical model or actual field data. An inverse controller
is designed for the control of the input-output nonlinear static
part and a neurocontroller is used for the control of the non-
linear dynamic part contaminated by uncertainties. With this
method, high system performances of different systems can be
achieved even with different situation of prior knowledge. The
compensation of uncertainties becomes much easy and accu-
rate by the neurocontroller, because the neurocontroller is only
responsible for the control of the nonlinear dynamic part in-
stead of the entire nonlinear system. In addition, a powerful
neurocontroller with a simple structure and lesser time in train-
ing can be implemented. As a general method, the proposed
method has a great potential for realizing the high-performance
control for various kinds of industrial nonlinear systems.

Figure 4: Experiment results of test trajectory comparing with

modified taught data method

troller without training. The system performance has been im-

proved using the proposed control method.
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