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Abstract

This paper presents a general methodology of controller design
by the hybrid neuro-inverse control with the knowledge-based
nonlinear separation for industrial nonlinear systems. In in-
dustrial nonlinear systems, various kinds of uncertainties may
cause serious deterioration of system performances. Unfortu-
nately, these uncertainties are usually difficult to identify and
compensate from the entire system point of view. With using
the knowledge-based nonlinear separation, nonlinear dynam-
ics of a nonlinear system is possibly separated into the input-
output nonlinear static part and the nonlinear dynamic part to
form a nonlinear separation structure. Hence, partial nonlin-
ear factors of the nonlinear system are described by the input-
output nonlinear static part. Uncertainties in the nonlinear sys-
tem are bounded in the nonlinear dynamic part. In the pro-
posed hybrid neuro-inverse control method, the input-output
nonlinear static part is controlled by an inverse controller. A
neurocontroller with a rigidly defined and trained neural net-
work using available prior knowledge of the nonlinear system
is constructed for the control of the nonlinear dynamic part.
With respect to some cases, a PID controller is supplementarily
employed to reduce the influence from big uncertainties in the
nonlinear dynamic part. Owing to using the knowledge-based
nonlinear separation and a PID controller, the neurocontroller
is only needed to control a part of the original nonlinear dy-
namics of industrial nonlinear systems contaminated by uncer-
tainties. The structure of the neural network employed in the
neurocontroller becomes simpler and the consumption of time
in training is reduced. Meanwhile, system performances of the
nonlinear system can be improved by the proposed method.
Based on this method, high-precision contour control of indus-
trial articulated robot arm was solved. It demonstrated the gen-
erality, practicality and significant potential of this method for
realizing the high-performance control of industrial nonlinear
systems.

1 Introduction

In industrial nonlinear systems, compensation of uncertainties
is one of the important means to improve system performances.

Conventionally, an industrial nonlinear system is modeled by a
series of differential equations or discrete equations, in which
uncertainties are simplified as constants or typical statistical
distributions. Based on the model of the system, uncertain-
ties are always compensated by the states or output feedback.
However, if high system performances are required in indus-
trial nonlinear systems, such as high precision, high speed, etc.,
the impact of uncertainties, as the main reason of deterioration
of system performances, must be taken into account seriously
and compensated precisely.

To reduce the influence of uncertainties upon system perfor-
mances of industrial nonlinear systems, a vast number of new
approaches on the control of nonlinear systems by neural net-
works has increased significantly in recent years [3, 4, 7, 8].
The use of the learning ability of neural networks helps the de-
sign of controllers to be rather flexible, especially when system
dynamics are complicated and highly nonlinear with many un-
certainties. In order to enable the designed nonlinear controller
with neural networks acceptable to industries, almost all above
approaches attempted to narrow down the gap between theory
and applications. When employing a neural network controller
(neurocontroller) for an actual industrial nonlinear system to
improve system performances, one of the crucial problems is
how to design a powerful neurocontroller with a simple struc-
ture and lesser time in training. Concerning this problem, sev-
eral approaches have been exploited, such as the design of var-
ious architectures of neurocontrollers, development of hybrid
control methods, improvement of learning algorithms, on-line
training, use of prior knowledge, etc.

However, many kinds of neurocontrollers with simple struc-
tures always need a tremendous amount of training data in or-
der to include all possible operating conditions. Hence, the
training time undertaken is lengthy. They are difficult to apply
to a wide range of real-time control problems [8]. Moreover,
this problem may become more serious when these neurocon-
trollers try to control complex and highly nonlinear systems
with uncertainties.

The method proposed in this paper is a hybrid neuro-inverse
control approach with the knowledge-based nonlinear separa-
tion. It is simple and well suited for industrial applications
meanwhile it can improve system performances remarkably.
Additionally, it combined various kinds of approaches men-
tioned above for improving system performances. With this
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Figure 1: Nonlinear separation structure and controller of
hybrid neuro-inverse control approach with knowledge-based
nonlinear separation

method, a complex industrial nonlinear system with uncertain-
ties is separated into several parts using prior knowledge. A hy-
brid control method is adopted for controlling different parts,
where a neurocontroller is mainly responsible for the compen-
sation of the nonlinear dynamic part contaminated by uncer-
tainties and an inverse controller is to compensate the nonlinear
static part. In addition, this method emphasizes the use of prior
knowledge for the controller construction. Therefore, a pow-
erful neurocontroller with a simple structure and lesser time in
training can be implemented. Comparing with the neurocon-
troller for the entire nonlinear system control, the structure of
neurocontroller designed by the proposed method for the non-
linear dynamic part becomes simpler. And this method has
great potential for realizing real-time control. Besides, differ-
ent types of neural network architectures, learning algorithms,
etc., can be integrated into this method for various kinds of in-
dustrial nonlinear systems.

2 Hybrid Neuro-Inverse Control Approach
with Knowledge-based Nonlinear Separation

2.1 Nonlinear separation structure

The knowledge-based nonlinear separation method is to model
a nonlinear system based on the prior knowledge obtained from
a mathematical model and actual field data of the system [6].
With this method, a nonlinear system can be described by a
nonlinear separation structure as illustrated in the right side
of Fig.1. The nonlinear separation structure consists of three
parts: input nonlinear static part, nonlinear dynamic part and
output nonlinear static part. The input nonlinear static part
conducts the nonlinear transformation of the control input. The
output nonlinear static part represents the nonlinear relation be-
tween the output variables and the states of the system under
the steady state. They can be defined by a known mathematical
model or an approximation model identified by the actual data.
The other part of original nonlinear dynamics contaminated by
uncertainties is regarded as the nonlinear dynamic part of the
system.

The input nonlinear static part expressed by the functiong with

the vector control inputu is

xu(t) = g[u(t)], (1)

wherexu denotes the output of the input nonlinear static part.
The nonlinear dynamic part, expressed by the functionf with
the state variablesx, the output of the input nonlinear static
partxu, the exogenous inputw and the uncertain factorv, is

ẋ(t) = f(x(t),xu(t),w(t), υ(t)). (2)

The output nonlinear static part expressed by the functionh
with the vector outputy is

y(t) = h[x(t)]. (3)

This model is the improvement of the nonlinear separation
model proposed in [6] by replacing the linear dynamic part with
the nonlinear dynamic part.

2.2 Inverse controller of nonlinear static part

In the knowledge-based nonlinear structure, the input nonlin-
ear static functiong and the output nonlinear static functionh
are supposed to describe rigorously by a mathematical model
without any uncertainties. Therefore, the control of the input-
output nonlinear static part is carried out by the inverse control
method.

In general, the controller of the input nonlinear static part is

u(t) = g−1[(xd)u(t)], (4)

where(xd)u is the control input of the input nonlinear static
part. The controller of the output nonlinear static part is

xd(t) = h−1[yd(t)], (5)

whereyd andxd denote the input and the output of the con-
troller of the output nonlinear static part, respectively. The
above inverse controller can be derived from nonlinear static
models as long as nonlinear static models are reversible. If non-
linear static models are irreversible, there are two approaches
for defining inverse controllers. One is to transform the nonlin-
ear static model into a reversible form through the appropriate
approximation. Another approach is to employ the inverse pro-
cess of the knowledge-based nonlinear separation to define an
inverse controller of the nonlinear static part [6].

Besides, since the nonlinear static part is defined under the
steady state of the system, the nonlinear static part is hard to
be contaminated by uncertainties. It means that uncertainties
are merely laid in the nonlinear dynamic part. Although it can
not guarantee that an input-output nonlinear static part could
represent the overall nonlinear factors of the original nonlinear
system, the input-output nonlinear static part is at least taking
away some of the nonlinear factors of the original nonlinear
system. Therefore, the nonlinear factors of the original non-
linear system can be reduced. The compensation process of
uncertainties in the nonlinear dynamic part can undoubtedly
become easy to carry out. Furthermore, system performances
can be possibly improved.



2.3 Neurocontroller of nonlinear dynamic part

In an industrial nonlinear system, PID control is an effective
approach to reduce the big influence of uncertainties in the
system. Therefore, in the proposed method, a PID controller
is also employed like conventional control methods to set up
the controller as illustrated in the left side of Fig.1 in order to
reduce the big influence of uncertainties in the nonlinear dy-
namic part. As we above mentioned, the function of PID con-
trol is insufficient to achieve the high performance control per-
fectly. Therefore, besides the installation of PID controller for
the nonlinear dynamic part, a neurocontroller is designed for
the nonlinear dynamic part in the proposed method to improve
system performances.

A neurocontroller mainly consists of a neural network for con-
trolling the nonlinear dynamic partf contaminated by uncer-
tainties. Since the learning capability of neural networks, it
has proved that any nonlinear functions can be approximated
to any desired accuracy by a two-layer neural network with a
sufficiently large number of neurons, over a compact domain
of a finite dimensionally formed space [1]. Therefore, the fea-
tures of adaptiveness and robustness of the system with respect
to uncertainties can be improved and thereby the high perfor-
mance control of the system can be achieved. Besides, since
most of the nonlinear factors have been brought away by the
nonlinear static part and the big influence of uncertainties in
the nonlinear dynamic part has been reduced by the PID con-
trol, it becomes much easier for neural networks to realize the
desired high performance. The parameters of neural networks
also converge more easily during the process of training.

The nonlinear dynamic part is as given in (2). If the output
of the controller of the nonlinear dynamic part is supposed as
(xd)u, the controller of the nonlinear dynamic part is expressed
by

(xd)u(t) = f̄(xd(t), ẋd(t),w(t), υ(t)). (6)

If concerning the effect of the PID control further, the equation
(6) is then changed into

(xd)u(t) = f̂(xd(t), ẋd(t), ω(t)), (7)

whereω denotes the remained uncertainties in the nonlinear
dynamic part with a PID controller.

Many kinds of neural networks can be adopted to design the
neurocontroller of the nonlinear dynamic part. For instance,
a three-layer feedforward neural network, as one of the typi-
cal neural networks, is adopted here. The inputs of the neural
network are the objective values of elements of the statexd

and its differentialẋd, as well as the remained uncertaintiesω.
The output of the neural network is the objective control signal
(xd)u, which will be put into the controller of the input nonlin-
ear static part. Linear nodes with linear functions can be used
for the input layer and the output layer of the neural network.
The units in the hidden layer can be defined by some typical
nodes, such as gaussian nodes, sigmoid nodes, etc. Therefore,
the neurocontroller for the nonlinear dynamic part of the sys-
tem is described by

(xd)u(t) =

N∑
i=1

wipi(x
d(t), ẋd(t), ω(t)), (8)

wherepi denotes the activation function of the neural network
unit andN denotes the number of hidden nodes.

In order to define appropriate neural network components and
enable the parameters of neural network nodes to converge eas-
ily, prior knowledge on the nonlinear dynamic part of the sys-
tem is very helpful to determine the structure and the initial pa-
rameters of the neural network as well, even only with a given
linear dynamic model. When defining initial parameters of a
neural network, such as weights of units, coefficients of acti-
vation functions of units, etc, they can be given arbitrarily or
determined with a known inverse nonlinear dynamic model or
an identification model built by the actual data of the system.
Some typical learning algorithms can be chosen for the above
neural networks, such as backpropagation method, etc.

3 High-Precision Contour Control of Industrial
Articulated Robot Arm

Contour control is one of the important working patterns of
industrial articulated robot arm (IARA). High-precision and
high-speed movement is the expected performances of contour
control in industry. IARA contains many uncertainties from
its mechanism and working circumstance during the working
process, such as friction, gravity, interference between robot
links, parameter errors in the adopted model, disturbance, and
so on. In order to realize the high-precision contour control of
IARA with the high-speed movement, it is necessary to reduce
the influence of these uncertainties. Therefore, a hybrid neuro-
inverse nonlinear control with the knowledge-based nonlinear
separation is employed for the contour control of IARA.

3.1 Nonlinear separation structure of industrial articu-
lated robot arm

In this research, a two-joint IARA is concentrated. The nonlin-
ear separation structure of this robot arm is constructed based
on the physical model of mechanism. Fig.2 illustrates the sys-
tem architecture of one link of IARA with a neurocontroller.
From this figure, the nonlinear separation structure of IARA
can be defined as below.

The functiong of the input nonlinear static part as (1) is defined
by the inverse kinematics which refers to the space transforma-
tion from the cartesian coordinate to the joint coordinate, as





xu
1 = arctan u1

u2
+ arccos [

(l1)2−(l2)2+u2
1+u2

2

2l1
√

u2
1+u2

2

]

xu
2 = π − arccos [

(l1)2+(l2)2−u2
1−u2

2
2l1l2

],
(9)

whereuj(j = 1, 2) is the trajectory in the cartesian coordinate,
xu

j (j = 1, 2) is the trajectory in the joint coordinate,lj(j =
1, 2) is the length of the robot link.

Similarly, the functionh of the output nonlinear static part as
(3) is defined by the kinematics which refers to the space trans-
formation from the joint coordinate to the cartesian coordinate,
as {

y1 = l1 sin x1 + l2 sin (x1 + x2)
y2 = l1 cos x1 + l2 cos (x1 + x2),

(10)
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Figure 2: System architecture of industrial articulated robot arm

wherexj(j = 1, 2) is the trajectory in the joint coordinate,
yj(j = 1, 2) is the trajectory in the cartesian coordinate.

The other part of the original nonlinear dynamics is defined as
the nonlinear dynamic partf in (2) of the nonlinear separation
structure of IARA, which can be described by Euler-Lagrange
equations as





[(k1)
2JM

1 + m1(l
G
1 )2 + m2{(l1)2 + (lG2 )2}

+m1(l1)
2/3 + m2(l2)

2/3]ẍ1/(Kp
1Kv

1 Kτ
1 )

+ẋ1/Kp
1 + x1 + U1 = xu

1

{(k2)
2JM

2 + m2(l
G
2 )2 + m2(l2)

2/3}ẍ2

/(Kp
2Kv

2 Kτ
2 ) + ẋ2/Kp

2 + x2 + U2 = xu
2 ,

(11)

wherexu
j (j = 1, 2) is the control signal in the joint coor-

dinate,xj , ẋj , ẍj(j = 1, 2) are the actual joint trajectory,
velocity and acceleration,Kp

j (j = 1, 2) is the position loop
gain,Kv

j (j = 1, 2) is the velocity loop gain,Kτ
j (j = 1, 2) is

the torque coefficient,JM
j (j = 1, 2) is the inertial coefficient,

mj(j = 1, 2) is the mass of robot link,kj(j = 1, 2) is the gear
ratio,lj(j = 1, 2) is the length of robot link,lGj (j = 1, 2) is the
length between the axis and the center of gravity.Uj(j = 1, 2)
is the uncertainty. Due to the installation of position loop gain,
velocity loop gain as well as torque coefficient, a PI controller,
as a semi-closed loop, has been given for the control of the
nonlinear dynamic part. Therefore, the influence of the origi-
nal uncertainties of IARA has been reduced and the uncertainty
U in (11) denotes the remained uncertainty of IARA.

3.2 Neuro-inverse controller of industrial articulated
robot arm

As illustrated in the left side of Fig.2, a hybrid neuro-inverse
controller for each link of IARA contains three parts. Based
on the inverse control, the controllerg−1 in (4) of the input
nonlinear static part of IARA is defined by the kinematics as

{
u1 = l1 sin (xd

1)
u + l2 sin ((xd

1)
u + (xd

2)
u)

u2 = l1 cos (xd
1)

u + l2 cos ((xd
1)

u + (xd
2)

u),
(12)

where(xd
j )

u(j = 1, 2) is the objective control input in the joint
coordinate,uj(j = 1, 2) is the control input in the cartesian
coordinate.

Similarly, the controllerh−1 in (5) of the output nonlinear static

part is defined by the inverse kinematics as





xd
1 = arctan

yd
1

yd
2

+ arccos [
(l1)2−(l2)2+(yd

1 )2+(yd
2 )2

2l1

√
(yd

1 )2+(yd
2 )2

]

xd
2 = π − arccos [

(l1)2+(l2)2−(yd
1 )2−(yd

2 )2

2l1l2
],

(13)

whereyd
j (j = 1, 2) is the objective trajectory in the cartesian

coordinate,xd
j (j = 1, 2) is the objective trajectory in the joint

coordinate.

For controlling the nonlinear dynamic part of the nonlinear sep-
aration structure of IARA, a gaussian neural network (GNN) is
adopted [5]. For each link of IARA, there is a gaussian neu-
rocontroller including one GNN. With the method of the se-
lection of GNN structure [9], each GNN has four input nodes
which represent the realizable objective joint trajectoryxd, ve-
locity ẋd, acceleration̈xd and the compensation value of the
uncertaintyUd. GNN also has eight hidden nodes and one
output node. If defining the initial parameters of GNN by the
known Euler-Lagrange equations (11) [9], the gaussian neuro-
controller for the first link of IARA can be expressed by

(xd)u = 1.321

(
w1

ẍd
1

Ẍ1max

+ w2
ẋd

1

Ẋ1max

+ w3
xd

1

X1max
+ w4

Ud
1

U1max

)
,

(14)
where w1 = 0.757C1Ẍ1max, w2 = 0.757Ẋ1max/Kp

1 ,
w3 = 0.757X1max, w4 = 0.757U1max and C1 =
((k1)2JM

1 + m1(lG1 )2 + m2{(l1)2 + (lG2 )2} + m1(l1)2/3 +
m2(l2)2/3)/(Kp

1Kv
1Kτ

1 ). Similarly, the gaussian neurocon-
troller for the second link of IARA can be expressed by

(xd)u = 1.321

(
w1

ẍd
2

Ẍ2max

+ w2
ẋd

2

Ẋ2max

+ w3
xd

2

X2max
+ w4

Ud
2

U2max

)
,

(15)
wherew1 = 0.757C2Ẍ2max, w2 = 0.757Ẋ2max/Kp

2 , w3 =
0.757X2max, w4 = 0.757U2max and C2 = ((k2)2JM

2 +
m2(lG2 )2 + m2(l2)2/3)/(Kp

2Kv
2Kτ

2 ).

A well-defined trial in the actual system is made to get the com-
pensation values of uncertainties. In the trial, the realizable ob-
jective joint trajectory for training and its velocity, acceleration
as well as small arbitrary values representing the compensation
values of uncertainties are put into the GNN whose parameters
are defined with initial parameters beforehand. And then GNN
generates control signals and these signals are used to control
the actual system. The errors between the actual output joint
trajectoryxj and the realizable objective joint trajectoryxd

j are
supposed as the compensation values of uncertainties, which



can be calculated by

Uj = xd
j − xj (j = 1, 2). (16)

With the realizable objective joint trajectory, its velocity, ac-
celeration and the above generated compensation values of un-
certainties, regarded as the teaching pattern, the well-defined
GNN is trained to generate optimal control signals. The back-
propagation algorithm is used as the learning algorithm.

3.3 Experimental work

In order to verify the effectiveness of the proposed method for
the high-performance contour control of IARA, an experiment
work has been carried out. The object of the experiment is an
actual Performer MK3S produced by Yahata Co., Japan.

According to the controller construction method for IARA in
3.2, the process of the controller construction for the Performer
MK3S was firstly carried out.

As (12), the inverse controller of the input nonlinear static part
is the kinematics of IARA described by

{
u1 = 0.25 sin (xd

1)
u + 0.215 sin ((xd

1)
u + (xd

2)
u)

u2 = 0.25 cos (xd
1)

u + 0.215 cos ((xd
1)

u + (xd
2)

u).
(17)

Similarly, according to (13), the inverse controller of the out-
put nonlinear static part is the inverse kinematics of IARA de-
scribed by





xd
1 = arctan

yd
1

yd
2

+ arccos [
0.0163+(yd

1 )2+(yd
2 )2

0.5
√

(yd
1 )2+(yd

2 )2
]

xd
2 = π − arccos [

0.109−(yd
1 )2−(yd

2 )2

0.1075
].

(18)

In order to build an appropriate gaussian neurocontroller for
IARA, first of all, the definition of the gaussian neurocontroller
structure was made. The gaussian neurocontroller with initial
parameters determined by the known Euler-Lagrange equations
for the first link of IARA is given by (14), whereC1 = 7.67×
10−4, w1 = 5.81 × 10−4Ẍ1max, w2 = 0.03Ẋ1max, w3 =
0.757X1max andw4 = 0.757U1max. Similarly, the gaussian
neurocontroller for the second link of IARA is given by (15),
whereC2 = 2.84 × 10−4, w1 = 2.15 × 10−4Ẍ2max, w2 =
0.03Ẋ2max, w3 = 0.757X2max andw4 = 0.757U2max.

For obtaining proper parameters of the GNN in order to con-
struct the final neurocontroller of IARA, a training trajectory in
the cartesian coordinate was defined by (see Fig.3(a))





yd
1 = R cos(0.2πt) + R cos(0.2πt)/5

yd
2 = R sin(0.2πt) + R sin(0.2πt)/5

0 ≤ t ≤ 10[s].

(19)

The radiusR of the training trajectory is 2[cm]. In addi-
tion, the teaching patterns were generated by the following
method. With (18), the training trajectory was transformed
from the cartesian coordinate into the joint coordinate. Af-
ter sampled by the time interval∆t, the training trajectory
xd

i (i = 1, 2) and its relative velocitẏxd
i , acceleration̈xd

i in the
joint coordinate calculated by the Euler equations asẋd

i (t) =
{xd

i (t)−xd
i (t−1)}/∆t andẍd

i (t) = {ẋd
i (t)− ẋd

i (t−1)}/∆t,
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Figure 3: Experiment results of training trajectory

and small arbitrary values representing the compensation val-
ues of the uncertaintyUd

i , were put into the current GNN with-
out training. Next, the output of the GNN(xd

i )
u was trans-

formed by (17) from the joint coordinate into the cartesian co-
ordinate. Then, the output of the entire neuro-inverse controller
of IARA, i.e., the control signalui, was employed to under-
take the contour control of the Performer MK3S. Although the
actual output trajectory of the Performer MK3S was not satis-
fied due to the influence from the uncertainties comparing with
the objective trajectory, the compensation values of uncertain-
ties can be obtained by (16) through the experiment. Even-
tually, the teaching patterns, including the training trajectory
xd

i (i = 1, 2) and its relative velocitẏxd
i , acceleration̈xd

i in the
joint coordinate as well as the compensation values of uncer-
taintiesUd

i , were generated.

With these teaching patterns, the training process was carried
out. The training rateη was selected as a small value of 0.001
because the GNN is already closed to the inverse nonlinear dy-
namic part of IARA due to its rigid definition of the structure
and its initial parameters based on the known Euler-Lagrange
equations of IARA given in (11). With the teaching patterns,
the parameters of GNN can be updated until convergence. Af-
ter the training process, the parameters of GNN were fixed for
the gaussian neurocontroller.

Fig.3(b) illustrates the experimental results of the training tra-
jectory under enlarged scale in the cartesian coordinate. The
solid line represents the objective trajectory. The dashed line,
named by “Initial”, represents the actual trajectory of IARA
controlled by the neuro-inverse controller whose gaussian neu-
rocontroller was not trained. The dash dot line, named by “Fi-
nal”, represents the actual trajectory of IARA controlled by the
well-trained neuro-inverse controller.

From these results, it proves that the actual trajectory controlled
by the well-trained neuro-inverse controller is more accurate
than the actual trajectory controlled by the neuro-inverse con-
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Figure 4: Experiment results of test trajectory comparing with
modified taught data method

troller without training. The system performance has been im-
proved using the proposed control method.

In order to evaluate the effectiveness of the proposed control
method and also illustrate the adaptive feature of the gaussian
neurocontroller, a circle trajectory which is different from the
training trajectory (see Fig.4(a)) was defined as an evaluation
trajectory, which is described by





yd
1 = R cos(0.2πt)

yd
2 = R sin(0.2πt)

0 ≤ t ≤ 10.
(20)

The experimental setup was exactly the same as the experiment
for the training trajectory. Fig.4(b) illustrates the experimental
results for the evaluation trajectory. In addition, the compari-
son with the modified taught data method, which was presently
used in IARA, was made. In the modified taught data method,
the linear dynamic model was used to control the nonlinear dy-
namic part of the nonlinear separation structure of IARA with-
out considering uncertainties [2].

In Fig.4(b), the solid line represents the objective evaluation
trajectory. The dashed line represents the actual trajectory of
IARA controlled by the modified taught data method, named
by “MTD”. The dash dot line represents the actual trajec-
tory controlled by the proposed control method, named by
“GNN+UC”. From the comparison, it is quite distinct that the
actual trajectory controlled by the proposed method is more
precise than that controlled by the modified taught data method.

4 Conclusion

A general hybrid neuro-inverse control approach with the
knowledge-based nonlinear separation for industrial nonlinear
systems was proposed and it was successfully applied for the
high-precision contour control of industrial articulated robot
arm. This method provides a simple approach to design a
high-performance controller for the industrial nonlinear sys-

tem. The original system is separated into the input-output
nonlinear static part and the nonlinear dynamic part based on
the physical model or actual field data. An inverse controller
is designed for the control of the input-output nonlinear static
part and a neurocontroller is used for the control of the non-
linear dynamic part contaminated by uncertainties. With this
method, high system performances of different systems can be
achieved even with different situation of prior knowledge. The
compensation of uncertainties becomes much easy and accu-
rate by the neurocontroller, because the neurocontroller is only
responsible for the control of the nonlinear dynamic part in-
stead of the entire nonlinear system. In addition, a powerful
neurocontroller with a simple structure and lesser time in train-
ing can be implemented. As a general method, the proposed
method has a great potential for realizing the high-performance
control for various kinds of industrial nonlinear systems.
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