
MOBILE ROBOT MODELING USING LOCAL MODEL

NETWORKS

E. N. Skoundrianos and S.G. Tzafestas

Intelligent Robotics and Automation Laboratory

Division of Signals, Control and Robotics

School of Electrical and Computer Engineering

National Technical University of Athens

Zographou 15773, Athens, Greece

e-mail: tzafesta@softlab.ntua.gr

Abstract - This article deals with the modeling issue of plants with unknown description. The

modeling approach is based on the Local Model Network structure. Local Models perform local lineariza-

tion and their structure is quite similar to the Takagi-Sugeno fuzzy models. Local Neural Models (LNM)

function as linear filters, giving a satisfying estimation for the plant’s output within parts of the operating

regime. Their training is performed off-line, which ensures a reliable method. The method is applied on the

RobuterTM mobile robot.

Keywords: Local Model Networks, modeling, mobile robot

1. Introduction

The modeling problem of a mobile robot is a

well studied issue in the research area of robotics

and automation for at least two decades [11], [12],

[13]. The difficulty in the use of classical mechan-

ics for the production of the dynamic equations of

mobile robots is one of the most significant obsta-

cles that one has to face when dealing with the

modeling issue. Even if one can produce these

equations for a specified robot, the identification is

not an easy task due to the complexity of the equa-

tions. For the avoidance of this obstacle one can

utilize fuzzy, neural or neuro-fuzzy techniques [1],

[5], [9], [14]. The utilization of several simple sub-

models that all together form a complex model that

covers the whole of the operating regime of the

plant is the main idea behind these techniques. One

structure that achieves the former idea is the Local

Model Network structure.

In this paper a training strategy for a Local

Model Network used for modeling of mobile ro-

bots is proposed. Moreover, the proposed tech-

nique has been successfully applied to a mobile

robot.

2. Modeling via Local Model Networks

2.1 General issues

The absence of an analytical model in many

cases, as well as the uncertainty about the values of

the model parameters when such a model is known,

leads to the use of modeling techniques. In this

paper Local Model Networks (LMN) are used for

system modeling, but have also been used for rela-

tive applications like control [2].

To use LMNs for system modeling one has

to determine the parameters to be included in the

operating point (O.P.) description. In the mobile

robot’s case, the voltages applied to the two robot

motors (vL=u1(t) , vR=u2(t)) is satisfying informa-

tion:

O.P. = [u1(t) u2(t)] = [vL(t) vR(t)] (1)

The operating regime includes all the operating

points where the plant is capable of functioning.

The LMNs modeling approach suggests the divi-

sion of the operating regime in parts, and the corre-

lation of each one with a Local Model that ap-

proximates the plant behavior within the respective

part of the operating regime. Linear Neural Net-

works are used in this paper as Local Models.

2.2 Local Model Network structure

This paper deals with Discrete Time MIMO

systems. Each Local Model produces a linear esti-

mation of the current value of the system’s output,

depending on the previous ones as well as on the

past input values:

ŷ (k) = a11l⋅ ŷ 1(k-1) + a21l⋅ ŷ 1(k-2) + ...

+ an1l⋅ ŷ 1(k-n)

+ a12l⋅ ŷ 2(k-1) + a22l⋅ ŷ 2(k-2) + ...

+ an2l⋅ ŷ 2(k-n) + ...

+ a1ql⋅ ŷ q(k-1) + a2ql⋅ ŷ q(k-2) + ...

+ anql⋅ ŷ q(k-n) (2)

+ b11l⋅ u1(k-1) + b21l⋅ u1(k-2) + ...

+ bm1l⋅ u1(k-m)

+ b12l⋅ u2(k-1) + b22l⋅ u2(k-2) + ...

+ bm2l⋅ u2(k-m) + ...

+ b1pl⋅ up(k-1) + b2pl⋅ up(k-2) + ...

+ bmpl⋅ up(k-m)

hence

ŷ (k) = A1l⋅ ŷ (k-1) + ... + Anl⋅ ŷ (k-n)

+ b1l⋅u(k-1)+ ... + bml⋅u(k-m) (3)

, l = (l1, l2, …, lµ) , l1...µ = 1,…,δ

where:

µ is the number of parameters in the operating

point

δ is the number of parts each parameters range is

divided into.

n, m are the model classes with respect to the out-

put and input signals, p and q are the numbers of

inputs and outputs respectively.

The vector l points to a Local Model or the corre-

lated part of the operating regime.

 In the special case n=m=1 the model takes

the following simple form:

ŷ (k) = A⋅ ŷ (k-1) + b⋅u(k-1) (4)

Equation (3) gives the description of the

next output value estimation each LM performs.

This estimator (predictor) is trained within a spe-

cific part of the operating regime. The division of

the operating regime in parts takes place before

training. The range of each variable included in the

operating point description is determined and then

divided in δ sub-ranges. The desirable operating

regime parts are combinations of these sub-ranges

for all variables. Since there are µ operating point

parameters and each range is divided into δ sub-

ranges, there are r = δµ operating regime parts and

respective Local Models.

Once there is a LM trained for each part of

the operating regime, the training is complete and

the model functions as shown in eq (5). Of course

instead of having a winner-take-all strategy (which

is the case in eq. 5), it is always possible to have a

multi-model participation for the model output.

This is accomplished by using participation

weights, depending on the operating point. At each

time, the winner network is the network correlated

to the part of the operating regime where the plant

is currently operating.

ŷ (k) = A1l1⋅ ŷ (k-1) +...+ Anl1⋅ ŷ (k-n)

 + b1l1⋅u(k-1) +...+bml1⋅u(k-m) , O.P.∈ Pl1

ŷ (k) = A1l2⋅ ŷ (k-1) +...+ Anl2⋅ ŷ (k-n)

+ b1l2⋅u(k-1) +...+ bml2⋅u(k-m) , O.P.∈ Pl2

…. (5)
ŷ (k) = A1lr⋅ ŷ (k-1) +...+ Anlr⋅ ŷ (k-n) +

+ b1lr⋅u(k-1) +...+ bmlr⋅u(k-m) , O.P.∈ Plr

,where r is the number of Local Models and Pl

(l = l1, … , lr) are the operating regime parts.

The LMNs structure, along with a possible

participation weight function, is shown in Fig. 1.

LM weights
(constant)

Participation weights
(depending on the
operating point)

. . .

. . . .
.
.

Σ

Σ

Σ

Σ

Hidden layer

output

ƒ

ƒ

ƒ

i
n
p
u
t
s

a) LMN structure

winner r 0 1 2 3 4 . . .

Participation weight

 # of LM

b) participation weights

Fig. 1 Local model network structure

2.3 Training

The training of the LMN must result to ma-

trices Ail, vectors bjl and parts Pl, where i=1,...,n ,

j=1,...,m and l = l1,…,lr. The training method pro-

posed in this paper is an off-line method. Input and

output samples are obtained within each operating

part, and then the recursive process of adjusting the

weights is applied in order to match model and

plant behavior.

Each Local Model is trained using the fol-

lowing strategy:

• Initial values y(0), ŷ (0) and u(0) are randomly

chosen within the respective operating regime

part.

• At each time k we provide a system input u(k)

and measure the output y(k). The system input

must obviously vary within the range specified

by the respective part. A constant value equal to

the initial one (u(k) = u(0) for each k), is an ef-

fective choice.

• Model output:

ŷ (k) = A1l⋅y(k-1) +...+ An l⋅y(k-n) + b1 l⋅u(k-1)

+...+ bm l⋅u(k-m)
and error: e(k) = y(k) - ŷ (k)

are calculated.
• A training rule is used (delta rule, recursive

least squares, etc.) to adjust the parameters which

function as weights on a linear neural network,

until the error drops below a threshold. Here the

recursive least squares (RLS) rule is employed

[7].

The above process may be repeated, without

resetting the weights (parameters) of course, using

other initial values of the same operating regime

part, in order to ensure that each Local Model cap-

tures the whole behavior of the plant and the

weights converge.

3. Application to the RobuterTM mobile robot

The proposed approach was applied to the

robot shown in figure 2. This robot is named Ro-

buter and is manufactured by the RoboSoft com-

pany.

The main purpose of the robot is to move

autonomously in indoor environments and perform

service tasks. Detailed information about the

RoboSoft’s structure and figures can be found in

[10].

Fig. 2: Picture of the RoboSoft

In the case of the mobile robot, the model

describes the relationship between the voltage ap-

plied to the wheels and the speed of the wheels.

This is a non-linear relationship mostly due to the

static friction and the non-linear torque curve of

each motor. The combination of linear sub-models

with local validity is the way LMNs deal with non-

linearity, as described earlier.

The l-th subnetwork of the LMN structure should

have the following general form:

 ωL(k) = aL
0l· ωL(k) + aL

1l· ωL(k-1) + …

+ aL
nl· ωL(k-n)

+ bL
0l· vL(k) + bL

1l· vL(k-1) + … (6)

+ bL
ml· vL(k-m)

, l = (l1, l2) , l1 , l2 = 1,…,δ

(δ : the number of parts the range of each parame-

ter –within the operating point- is to be divided).

Naturally, there is an identical equation for the

right wheel.

The model described is an equation of dif-

ferences (since the method deals with discrete-time

systems) between the input vL(k) which represents

the amount of voltage being sent to the left motor,

and the speed ωL(k).

ωL

vL

Fig. 3 Input and output signals (left wheel)

A priori knowledge of the system can be

used for the determination of the orders m and n.

The order n can be zero if the transitory state is

unimportant, which is the case here. The order m is

chosen to be 1 for better interpretation of the re-

sults.

Hence, we have:

ωL(k) = bL
0l· vL(k) , l = (l1, l2) (7)

The cross-dependence between the two

wheels is another major issue and must also be

included in the model. If, for instance, there is zero

voltage on one wheel, the motor will act like a

brake, and the static friction produced by the un-

movable wheel will also affect the other wheel.

Since the coefficients of eq. (6) and (7) depend on

the operating point which includes both voltages vL

, vR the model takes the cross-dependence between

the two wheels into account.

The input voltage on each wheel is a pa-

rameter within the range -4000 , … , 4000 (techni-

cally this range can be increased up to -10000, … ,

10000). The bi-dimensional operating regime,

formed by the two parameters (vL, vR), must be

divided into parts. Each local model is then trained

within the respective part of the operating regime,

as described earlier. This procedure results to the

attainment of the coefficients bL
0l and bR

0l which

are presented in figure 4.

-4000
-2500

-500
500

2500
4000

-4000

-2500

-500
500

2500

4000
-1

0

1

2

3

4

5

6
x 10 -4

(a)

-40000
-2500

-500
500

2500
4000

-4000
-2500

-500
-2500

2500
4000

-1

0

1

2

3

4

5

6
x 10 -4

(b)
Fig. 4: The coefficients (a) bL

0l and (b) bR
0l

Due to the simplicity of eq. (7), one could easily

produce the relationship between the two input

voltages vL, vR and the speeds of both wheels ωL,

ωR. This is shown on fig. 5. The resulting relation-

ship has the form of a dead-zone function. This is a

typical behavior in electrical motors and is related

to a number of phenomena (i.e. static friction).

-4000
-3000

-2000
-1000

0
1000

2000
3000

4000

-4000

-2000

0

2000

4000
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(a)

-4000
-3000

-2000 -1000 0 1000 2000 3000
4000

-4000

-2000

0

2000

4000
-1.5

-1

-0.5

0

0.5

1

1.5

2

(b)

Fig.5: relationship between (a) input vL and out-

put ωL, (b) input vR and output ωR .

The model was tested on the robot and some of the

produced results are presented in figures 6-7.

0 2 4 6 8 10 12 14 16 18 20
-1.5

-1

-0.5

0

0.5

1

1.5 robot
model

time (sec)

speed (rad/sec)

0 2 4 6 8 10 12 14 16 18 20

-0.1

-0.05

0

0.05

0.1

0.15

time (sec)

error (rad/sec)

Fig. 6a: model performance and error

(sinus input) for the left wheel

0 2 4 6 8 10 12 14 16 18 20

-1

-0.5

0

0.5

1
robot

model

speed (rad/sec)

time (sec)

0 2 4 6 8 10 12 14 16 18 20

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

time (sec)

error (rad/sec)

Fig. 6b: model performance and error

(sinus input) for the right wheel

0 5 10 15 20 25 30 35 40
-0.5

0

0.5

1

1.5

2

robot

model

time (sec)

speed (rad/sec)

0 5 10 15 20 25 30 35 40
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

time (sec)

error (rad/sec)

 Fig. 7a: model performance and error

(varying step input) for the left wheel

0 5 10 15 20 25 30 35 40
-1

-0.5

0

0.5

1

1.5

2

robot

model

speed (rad/sec)

0 5 10 15 20 25 30 35 40
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25
error (rad/sec)

Fig. 7b: model performance and error

(varying step input) for the right wheel

4. Discussion Issues

In the following we provide a discussion of some

points which need some further clarification:

1. The architecture of the robot includes a PC and

the subsystem of the robot’s base that controls the

motors and sensors of the robot. The base is oper-

ated by the AlbatrosTM operating system that runs

under a Motorolla 68000 processor. The commands

are sent to the base from the PC via the serial port.

This setup results to a very convenient data acqui-

sition subsystem.

2. The angular velocity is not measured directly

since no relative option is provided by the manu-

facturer. The command “pos” uses the propriocep-

tive sensors (internal sensors, for instance optical

encoders or potentiometers) to calculate the posi-

tion of the wheels (PL, PR). The command loop

time ∆T is also measured by the PC application (a

C++ program), and the velocity is calculated as:

T
kPkP

kV LL
L ∆

−−
=

)1()(
)(.

3. The velocity commands are issued directly to

the motors (open loop – not regulated by a low-

level PID control process). This is adjusted by the

Albatros “serv” command. The command “move”

is applying the voltage to the wheels.

4. Concerning the selection of the number of the

local models and the criteria to establish the

bounds, we would like to point out the following.

The method could be enhanced in a way that could

allow automatic detection of the bounds of the lo-

cal models. This could be implemented by com-

pressing or expanding the model bounds during

training in order to keep the training error within

some predefined limits. This adjustment however,

would dramatically increase the computational

complexity without analogous increase of the

method’s efficiency. The use of some a priori

knowledge of the system to be modelled (usually

available) is a much more efficient way to deal

with this issue. One could increase the number of

local models (and use relatively compressed

bounds) in the areas where the non-linearities of

the system are heavier. However, if this knowledge

is unavailable, one could start with an even divi-

sion of the operating regime and later, if necessary,

repeat the training by adding local models in areas

where some mismatch is observed.

5. Some mismatches can be noticed, i.e. in figure

6a and 6b near the low velocities range (where the

presence of friction and motor “dead-zone” is in

fact vivid). The model is built in this sense in order

to deal with all non-linearities mentioned and, ob-

viously, includes friction and the “dead-zone” of

the motor actuators. If these non-linearities were

unimportant then the operating regime division

would be unnecessary and a linear model would

work satisfactorily. However, the training was per-

formed under the assumption of an even distribu-

tion of models throughout the operating regime.

Also, the number of the models was selected rela-

tively small (about 400) in order to achieve a train-

ing time of less than an hour. In order to improve

the performance of the model in a neighbourhood

of the operating region, one could select a higher

number of models to cover the specific area. There-

fore this is not really a handicap of the method, but

more of a result of the selection of the training pa-

rameters.

5. Conclusions

In this paper we have shown how the Local Model

Network structure can be used for mobile robot

modeling. The proposed method is based on the

general idea of local linearization. Linear models

are trained locally and then are combined together

to produce the overall model. The paper proposes a

generic, yet very suitable for the mobile robot case,

training strategy. The results shown in this paper

are very satisfactory since, using the proposed

method a model for the RobuterTM mobile robot is

created. The model achieves sufficiently small

modeling errors, and has been used in a series of

applications i.e. control and fault diagnosis, where

the comparison with other methodologies [3], [4],

[6], [8] has shown better performance in many

cases.

6. References

1. Babuska R., Fuzzy Modeling for Control. Klu-

wer Academic Publishers, Boston, 1998.

2. Brown M.D., Lightbody G., Irwin G.W.

Nonlinear internal model control using local

model networks, IEE Proc.-Control Theory

Appl., Vol. 144, No. 6, November 1997

3. Desai J.P., Ostrowski J.P. and Kumar V., Mod-

eling and Control of Formations of Non-

holonomic Mobile Robots, IEEE trans. on Ro-

botics and Automation, Vol.17, No. 6, 2001,

pp. 905-907.

4. Dixon W.E., Walker I.D., Dawson D.M. and

Hartranft J.P., Fault Detection for Robot Ma-

nipulators with Parametric Uncertainty: A pre-

diction-Error Based Approach, IEEE trans. on

Robotics and Automation, Vol.16, No. 6, 2000,

pp. 689-699.

5. Driankov D., Eklund P.W. and Ralescu A.L.,

Fuzzy Logic and Fuzzy Control, Springer Ver-

lag, 12/1994.

6. Frank P.M., Alcora Garcia E. and Koppen-

Seliger B., Modelling for Fault Detection and

Isolation versus Modelling for Control,

Mathematical and Computer Modelling of Dy-

namical Systems, Vol. 7, No. 1, 2001, pp. 1-46.

7. Haykin S., Adaptive Filter Theory, Prentice-

Hall Inc. (ISBN: 0-13-322760-X, Englewood

Cliffs, N.J.), 1996.

8. Kim Y.H. and Lewis F.L., Neural Network

Output Feedback Control of Robot Manipula-

tors, IEEE trans. On Robotics and Automation,

Vol.15, No. 2, 1999, pp. 301-309.

9. Tzafestas C.S. and Tzafestas S.G., Fuzzy and

Neurofuzzy Approaches to Mobile Robot Path

and Motion Planning Under Uncertainty, In:

S.G. Tzafestas (ed.), Soft Computing in systems

and Control Technology, World Scientific, Sin-

gapore/London, 1999, pp. 193-220.

10. Tzafestas C.S. Teleplanning by Human Dem-

onstration for VR-based Teleoperation of a

Mobile Robotic Assistant. Proc of the 10th

IEEE International Workshop on Robot-Human

Interactive Communication (ROMAN’2001)

2001, pp. 462-467.

11. Tzafestas S.G. and Tzafestas E.S., Learning,

Reasoning, and problem solving in Robotics,

In: S.Y. Nof (ed.), Handbook of Industrial Ro-

botics (ch.20), John Wiley & Sons, 1999,

pp. 373-392.

12. Tzafestas S.G., Tzamitzi M.P. and Rigatos

G.G., Autonomous Robot Motion Planning and

control in Uncertain Environments: Overview

and a New Algorithm Based on Sliding-Mode

Control, In: S.G. Tzafestas (ed.) Advances in

Intelligent Autonomous Systems, Kluwer,

Dordrecht / Boston, 1999, pp. 267-288.

13. Watanabe K. Shiraishi Y., Tzafestas S.G.,

Tank J. and Fukuda T., Feedback control of an

omnidirectional autonomous platform for mo-

bile service robots, J. Intel and Robotic Syst.,

Vol. 22, Nos. 3-4, 1998, pp. 315-330.

14. Zavlangas P.G. and Tzafestas S.G., Industrial

Robot Navigation and Obstacle Avoidance Em-

ploying Fuzzy Logic, J. Intell. & Robotic Sys-

tems, Vol. 27, Nos. 1-2, 2000, pp. 85-97.

	Session Index
	Author Index

