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Abstract - This article deals with the modeling issue of plants with unknown description. The 

modeling approach is based on the Local Model Network structure. Local Models perform local lineariza-

tion and their structure is quite similar to the Takagi-Sugeno fuzzy models. Local Neural Models (LNM) 

function as linear filters, giving a satisfying estimation for the plant’s output within parts of the operating 

regime. Their training is performed off-line, which ensures a reliable method. The method is applied on the 

RobuterTM mobile robot. 
 

Keywords: Local Model Networks, modeling, mobile robot 
 

1. Introduction 
 

The modeling problem of a mobile robot is a 

well studied issue in the research area of robotics 

and automation for at least two decades [11], [12], 

[13]. The difficulty in the use of classical mechan-

ics for the production of the dynamic equations of 

mobile robots is one of the most significant obsta-

cles that one has to face when dealing with the 

modeling issue. Even if one can produce these 

equations for a specified robot, the identification is 

not an easy task due to the complexity of the equa-

tions. For the avoidance of this obstacle one can 

utilize fuzzy, neural or neuro-fuzzy techniques [1], 

[5], [9], [14]. The utilization of several simple sub-

models that all together form a complex model that 

covers the whole of the operating regime of the 

plant is the main idea behind these techniques. One 

structure that achieves the former idea is the Local 

Model Network structure. 

In this paper a training strategy for a Local 

Model Network used for modeling of mobile ro-

bots is proposed. Moreover, the proposed tech-

nique has been successfully applied to a mobile 

robot. 
 

2. Modeling via Local Model Networks 

2.1 General issues 
 

The absence of an analytical model in many 

cases, as well as the uncertainty about the values of 

the model parameters when such a model is known, 

leads to the use of modeling techniques. In this 

paper Local Model Networks (LMN) are used for 



system modeling, but have also been used for rela-

tive applications like control [2]. 

To use LMNs for system modeling one has 

to determine the parameters to be included in the 

operating point (O.P.) description. In the mobile 

robot’s case, the voltages applied to the two robot 

motors (vL=u1(t) , vR=u2(t)) is satisfying informa-

tion: 

O.P. = [u1(t)  u2(t)] = [vL(t)  vR(t)]      (1) 

The operating regime includes all the operating 

points where the plant is capable of functioning. 

The LMNs modeling approach suggests the divi-

sion of the operating regime in parts, and the corre-

lation of each one with a Local Model that ap-

proximates the plant behavior within the respective 

part of the operating regime. Linear Neural Net-

works are used in this paper as Local Models. 
 

2.2 Local Model Network structure 
 

This paper deals with Discrete Time MIMO 

systems. Each Local Model produces a linear esti-

mation of the current value of the system’s output, 

depending on the previous ones as well as on the 

past input values: 

ŷ (k) = a11l⋅ ŷ 1(k-1) + a21l⋅ ŷ 1(k-2) + ...  

+ an1l⋅ ŷ 1(k-n) 

+ a12l⋅ ŷ 2(k-1) + a22l⋅ ŷ 2(k-2) + ...  

+ an2l⋅ ŷ 2(k-n) + ... 

+ a1ql⋅ ŷ q(k-1) + a2ql⋅ ŷ q(k-2) + ...  

+ anql⋅ ŷ q(k-n)                  (2)             

+ b11l⋅ u1(k-1) + b21l⋅ u1(k-2) + ...   

+ bm1l⋅ u1(k-m)  

+ b12l⋅ u2(k-1) + b22l⋅ u2(k-2) + ...  

+ bm2l⋅ u2(k-m) + ... 

+ b1pl⋅ up(k-1) + b2pl⋅ up(k-2) + ...   

+ bmpl⋅ up(k-m)  

hence 

ŷ (k) = A1l⋅ ŷ (k-1) + ... + Anl⋅ ŷ (k-n)   

+ b1l⋅u(k-1)+ ... + bml⋅u(k-m)       (3) 

, l = (l1, l2, …, lµ) ,  l1...µ = 1,…,δ 

where:  

µ is the number of parameters in the operating 

point 

δ  is the number of parts each parameters range is 

divided into. 

n, m are the model classes with respect to the out-

put and input signals, p and q are the numbers of 

inputs and outputs respectively. 

The vector l points to a Local Model or the corre-

lated part of the operating regime. 

 In the special case n=m=1 the model takes 

the following simple form: 

ŷ (k) = A⋅ ŷ (k-1) + b⋅u(k-1)                (4) 

Equation (3) gives the description of the 

next output value estimation each LM performs. 

This estimator (predictor) is trained within a spe-

cific part of the operating regime. The division of 

the operating regime in parts takes place before 

training. The range of each variable included in the 

operating point description is determined and then 

divided in δ sub-ranges. The desirable operating 

regime parts are combinations of these sub-ranges 

for all variables. Since there are µ operating point 

parameters and each range is divided into δ sub-

ranges, there are r = δµ operating regime parts and 

respective Local Models. 

Once there is a LM trained for each part of 

the operating regime, the training is complete and 

the model functions as shown in eq (5). Of course 

instead of having a winner-take-all strategy (which 

is the case in eq. 5), it is always possible to have a 

multi-model participation for the model output. 



This is accomplished by using participation 

weights, depending on the operating point. At each 

time, the winner network is the network correlated 

to the part of the operating regime where the plant 

is currently operating. 

ŷ (k) = A1l1⋅ ŷ (k-1) +...+ Anl1⋅ ŷ (k-n)  

          + b1l1⋅u(k-1) +...+bml1⋅u(k-m) , O.P.∈ Pl1 

ŷ (k) = A1l2⋅ ŷ (k-1) +...+ Anl2⋅ ŷ (k-n)  

+ b1l2⋅u(k-1) +...+ bml2⋅u(k-m) , O.P.∈ Pl2 

….         (5) 
ŷ (k) = A1lr⋅ ŷ (k-1) +...+ Anlr⋅ ŷ (k-n) +  

+ b1lr⋅u(k-1) +...+ bmlr⋅u(k-m) , O.P.∈ Plr 

,where r is the number of Local Models and Pl  

(l = l1, … , lr) are the operating regime parts. 

The LMNs structure, along with a possible 

participation weight function, is shown in Fig. 1.  
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Fig. 1 Local model network structure 
 

 

2.3 Training 
 

The training of the LMN must result to ma-

trices Ail, vectors bjl and parts Pl, where i=1,...,n  ,  

j=1,...,m and l = l1,…,lr. The training method pro-

posed in this paper is an off-line method. Input and 

output samples are obtained within each operating 

part, and then the recursive process of adjusting the 

weights is applied in order to match model and 

plant behavior. 

Each Local Model is trained using the fol-

lowing strategy: 

• Initial values y(0), ŷ (0) and u(0) are randomly 

chosen within the respective operating regime 

part. 

• At each time k we provide a system input u(k) 

and measure the output y(k). The system input 

must obviously vary within the range specified 

by the respective part. A constant value equal to 

the initial one (u(k) = u(0) for each k), is an ef-

fective choice. 

• Model output: 

ŷ (k) = A1l⋅y(k-1) +...+ An l⋅y(k-n) + b1 l⋅u(k-1) 

+...+ bm l⋅u(k-m)  
and error: e(k) = y(k) - ŷ (k) 

are calculated.   
• A training rule is used (delta rule, recursive 

least squares, etc.) to adjust the parameters which 

function as weights on a linear neural network, 

until the error drops below a threshold. Here the 

recursive least squares (RLS) rule is employed 

[7]. 

The above process may be repeated, without 

resetting the weights (parameters) of course, using 

other initial values of the same operating regime 

part, in order to ensure that each Local Model cap-

tures the whole behavior of the plant and the 

weights converge. 



3. Application to the RobuterTM mobile robot 

The proposed approach was applied to the 

robot shown in figure 2. This robot is named Ro-

buter and is manufactured by the RoboSoft com-

pany. 

The main purpose of the robot is to move 

autonomously in indoor environments and perform 

service tasks. Detailed information about the 

RoboSoft’s structure and figures can be found in 

[10].   

 
Fig. 2: Picture of the RoboSoft 

In the case of the mobile robot, the model 

describes the relationship between the voltage ap-

plied to the wheels and the speed of the wheels. 

This is a non-linear relationship mostly due to the 

static friction and the non-linear torque curve of 

each motor. The combination of linear sub-models 

with local validity is the way LMNs deal with non-

linearity, as described earlier.  

The l-th subnetwork of the LMN structure should 

have the following general form: 

 ωL(k) = aL
0l· ωL(k) + aL

1l· ωL(k-1) + … 

+ aL
nl· ωL(k-n)  

+ bL
0l· vL(k) + bL

1l· vL(k-1) + …     (6) 

+ bL
ml· vL(k-m) 

, l = (l1, l2)  ,  l1 , l2  = 1,…,δ  

(δ : the number of parts the range of each parame-

ter –within the operating point- is to be divided). 

Naturally, there is an identical equation for the 

right wheel. 

The model described is an equation of dif-

ferences (since the method deals with discrete-time 

systems) between the input vL(k) which represents 

the amount of voltage being sent to the left motor, 

and the speed ωL(k). 
 

ωL
 

vL
 

 
Fig. 3 Input and output signals (left wheel) 

A priori knowledge of the system can be 

used for the determination of the orders m and n. 

The order n can be zero if the transitory state is 

unimportant, which is the case here. The order m is 

chosen to be 1 for better interpretation of the re-

sults. 

Hence, we have: 
 

ωL(k) = bL
0l· vL(k) , l = (l1, l2)       (7) 

The cross-dependence between the two 

wheels is another major issue and must also be 

included in the model. If, for instance, there is zero 

voltage on one wheel, the motor will act like a 

brake, and the static friction produced by the un-

movable wheel will also affect the other wheel. 

Since the coefficients of eq. (6) and (7) depend on 

the operating point which includes both voltages vL 

, vR the model takes the cross-dependence between 

the two wheels into account. 

The input voltage on each wheel is a pa-

rameter within the range -4000 , … , 4000 (techni-



cally this range can be increased up to -10000, … , 

10000). The bi-dimensional operating regime, 

formed by the two parameters (vL, vR), must be 

divided into parts. Each local model is then trained 

within the respective part of the operating regime, 

as described earlier. This procedure results to the 

attainment of the coefficients bL
0l and bR

0l which 

are presented in figure 4.  
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Fig. 4: The coefficients (a) bL

0l  and (b)  bR
0l 

Due to the simplicity of eq. (7), one could easily 

produce the relationship between the two input 

voltages vL, vR and the speeds of both wheels ωL, 

ωR. This is shown on fig. 5. The resulting relation-

ship has the form of a dead-zone function. This is a 

typical behavior in electrical motors and is related 

to a number of phenomena (i.e. static friction). 
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Fig.5: relationship between (a)  input vL and out-

put  ωL, (b)  input vR and output  ωR . 

The model was tested on the robot and some of the 

produced results are presented in figures 6-7. 
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Fig. 6a: model performance and error 

(sinus input) for the left wheel 
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Fig. 6b: model performance and error 

(sinus input) for the right wheel 

0 5 10 15 20 25 30 35 40
-0.5

0

0.5

1

1.5

2

robot 

model 

time (sec) 

speed (rad/sec) 

 

0 5 10 15 20 25 30 35 40
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

time (sec) 

error (rad/sec) 

 Fig. 7a: model performance and error  

(varying step input) for the left wheel 

 



0 5 10 15 20 25 30 35 40
-1 

-0.5 

0 

0.5 

1 

1.5 

2 

robot 

model 

speed (rad/sec) 

 
 

0 5 10 15 20 25 30 35 40
-0.25 

-0.2 

-0.15 

-0.1 

-0.05 

0 

0.05 

0.1 

0.15 

0.2 

0.25 
error (rad/sec) 

 
Fig. 7b: model performance and error 

(varying step input) for the right wheel 
 

4. Discussion Issues 

In the following we provide a discussion of some 

points which need some further clarification: 

1. The architecture of the robot includes a PC and 

the subsystem of the robot’s base that controls the 

motors and sensors of the robot. The base is oper-

ated by the AlbatrosTM operating system that runs 

under a Motorolla 68000 processor. The commands 

are sent to the base from the PC via the serial port. 

This setup results to a very convenient data acqui-

sition subsystem. 

2. The angular velocity is not measured directly 

since no relative option is provided by the manu-

facturer. The command “pos” uses the propriocep-

tive sensors (internal sensors, for instance optical 

encoders or potentiometers) to calculate the posi-

tion of the wheels (PL, PR). The command loop 

time ∆T is also measured by the PC application (a 

C++ program), and the velocity is calculated as: 

T
kPkP

kV LL
L ∆

−−
=

)1()(
)( . 

3. The velocity commands are issued directly to 

the motors (open loop – not regulated by a low-

level PID control process). This is adjusted by the 

Albatros “serv” command. The command “move” 

is applying the voltage to the wheels. 

4. Concerning the selection of the number of the 

local models and the criteria to establish the 

bounds, we would like to point out the following. 

The method could be enhanced in a way that could 

allow automatic detection of the bounds of the lo-

cal models. This could be implemented by com-

pressing or expanding the model bounds during 

training in order to keep the training error within 

some predefined limits. This adjustment however, 

would dramatically increase the computational 

complexity without analogous increase of the 

method’s efficiency. The use of some a priori 

knowledge of the system to be modelled (usually 

available) is a much more efficient way to deal 

with this issue. One could increase the number of 

local models (and use relatively compressed 

bounds) in the areas where the non-linearities of 

the system are heavier. However, if this knowledge 

is unavailable, one could start with an even divi-

sion of the operating regime and later, if necessary, 

repeat the training by adding local models in areas 

where some mismatch is observed. 

5. Some mismatches can be noticed, i.e. in figure 

6a and 6b near the low velocities range (where the 

presence of friction and motor “dead-zone” is in 

fact vivid). The model is built in this sense in order 

to deal with all non-linearities mentioned and, ob-



viously, includes friction and the “dead-zone” of 

the motor actuators. If these non-linearities were 

unimportant then the operating regime division 

would be unnecessary and a linear model would 

work satisfactorily. However, the training was per-

formed under the assumption of an even distribu-

tion of models throughout the operating regime. 

Also, the number of the models was selected rela-

tively small (about 400) in order to achieve a train-

ing time of less than an hour. In order to improve 

the performance of the model in a neighbourhood 

of the operating region, one could select a higher 

number of models to cover the specific area. There-

fore this is not really a handicap of the method, but 

more of a result of the selection of the training pa-

rameters. 
 

5.  Conclusions 

In this paper we have shown how the Local Model 

Network structure can be used for mobile robot 

modeling. The proposed method is based on the 

general idea of local linearization. Linear models 

are trained locally and then are combined together 

to produce the overall model. The paper proposes a 

generic, yet very suitable for the mobile robot case, 

training strategy. The results shown in this paper 

are very satisfactory since, using the proposed 

method a model for the RobuterTM mobile robot is 

created. The model achieves sufficiently small 

modeling errors, and has been used in a series of 

applications i.e. control and fault diagnosis, where  

the comparison with other methodologies [3], [4], 

[6], [8] has shown better performance in many 

cases. 
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