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Abstract

This paper considers a necessary and sufficient condition for a
multiple input discrete-time linear system to be positive reach-
able based on the Jordan canonical form. It is pointed out that
the reachability of a given system can be reduced to those of its
subsystems with nonnegative eigenvalues. Because the dimen-
sion of the subsystem is much smaller than that of the given
system, the reachability test can be simplified considerably.

1 Introduction

While the problem of unconstrained controllability of linear
systems is completely solved [3], no more than fragmentary
results are available in the constrained cases. As for the con-
trollability under positive input, necessary and sufficient condi-
tions for continuous-time linear systems were obtained which
arise frequently in the practical problems, such as antivibration
control of pendulums system [6], optimal control of economic
system [1], electrically heated oven system [7], and tracer ki-
netics in medical system [5]. In general, there are two types
of controllabilities considering the final state; the first is null-
controllability where the final state is the origin, on the con-
trary, the second is reachability where the final state is arbi-
trary. It is known that these two types of controllabilities differ
in discrete-time systems [4]. Reachability under positive input
was investigated by Evans et. al. for single input discrete-time
linear systems [2]. On the other hand, null-controllability un-
der positive input was discussed by the authors for multiple
input discrete-time linear systems [8]. Although reachability
under positive input may be considered to arise frequently in
the practical problems, as is mentioned above, it is unfortunate
that the generalization of the results of [2] to the multiple input
case is still incomplete. The purpose of this paper is to consider
necessary and sufficient conditions for the reachability of mul-
tiple input discrete-time linear systems with positive controls.

2 Preliminaries

Consider a multiple input discrete-time linear system described
by

S : x(k + 1) = Ax(k) + Bu(k) ; k = 0, 1, 2, . . . (1)

where

A ∈ R
n×n, B ∈ R

n×m, x(k) ∈ R
n, u(k) ∈ R

m (2)

The control input is limited to the following condition

C : 0 ≤ ui(k) < ∞ ; i = 1, 2, . . . , m (3)

where ui(k) is the i-th component of u(k).

Definition 1 The control input which satisfies condition C is
called a positive control.

Definition 2 Let xf be any final state. Then system S is called
positive reachable if there exist some positive integer N and
some positive control sequence {u(0), u(1), . . . , u(N − 1)}
which will bring the system from x(0) = 0 to x(N) = xf .

Definition 3 If xi > 0 or xi ≥ 0 for all i = 1, 2, . . . , n, then
x ≡ [x1, x2, . . . , xn]T is called a positive vector (x > 0), or a
nonnegative vector (x ≥ 0), respectively, where T denotes the
transposition.

Definition 4 (Notation)

〈〈A, B, N〉〉 ≡
[
B, AB, . . . , AN−1B

]
∈ R

n×Nm (4)

U [N ] ≡ [
u1

T , u2
T , . . . , uN

T
]T ∈ R

Nm (5)

En ≡ [1, 2, . . . , n]T ∈ R
n (6)

‖x‖ ≡ (xT x)1/2 (7)

‖A‖ ≡ max
x�=0

‖Ax‖ / ‖x‖ (8)

Furthermore, we use In as the n × n identity matrix.

Definition 5 Let A and B be transformed into

A =
[

Ã11 0
Ã21 Ã22

]
, B =

[
B̃1

B̃2

]
,

Ã11 ∈ R
ñ(1)×ñ(1) , Ã21 ∈ R

ñ(2)×ñ(1) ,

Ã22 ∈ R
ñ(2)×ñ(2) , B̃1 ∈ R

ñ(1)×m ,

B̃2 ∈ R
ñ(2)×m , n = ñ(1) + ñ(2) (9)

by a nonsingular real transformation of the state variable.
Then system S̃ described by

S̃ : x̃(k + 1) = Ã22x̃(k) + B̃2ũ(k) ; k = 0, 1, 2, . . . (10)



where
x̃(k) ∈ R

ñ(2)

is called a subsystem of S.

3 Positive Reachability

To discuss the necessary and sufficient condition for system S
to be positive reachable, we first give the following two lem-
mas. These are almost evident from the definitions and the
fact that the reachability is invariant under any nonsingular real
transformation of the state variable.

Lemma 1 System S is positive reachable, if and only if for any
n × 1 vector x, there exist a vector U [N ] such that

〈〈A, B, N〉〉U [N ] = x , U [N ] ≥ 0 (11)

Lemma 2 If system S is positive reachable, then the following
two conditions hold:

1© rank〈〈A, B, N〉〉 = n (12)

2© any subsystem of S is positive reachable.

Next, we have Theorem 1.

Theorem 1 System S is positive reachable, if and only if the
following two conditions hold:

1© rank〈〈A, B, n〉〉 = n (13)

2© there exist a vector U [N ] such that

〈〈A, B, N〉〉U [N ] = 0 , U [N ] ≥ 0 , N ≥ n (14)

ui > 0 ; i = 1, 2, . . . , n (15)

The proof is in Appendix A.

Remark 1 As is evident from the proof of Theorem 1, if system
S is positive reachable, then any final state xf can be reached
in at most N steps where N is independent on xf .

Further, we have Lemma 3.

Lemma 3 System S is positive reachable, if and only if the
following two conditions hold:

1© rank〈〈A, B, n〉〉 = n (16)

2© there exist a vector U [N ] such that

〈〈A, B, N〉〉U [N ] = ε , U [N ] ≥ 0 , N ≥ n (17)

ui > 0 ; i = 1, 2, . . . , n (18)

where ε is some n × 1 vector, and ‖ε‖ is sufficiently small.
The proof is in Appendix B.

Next we decompose system S into the following two subsys-
tems:

St : xt(k + 1) = Atxt(k) + Btu(k) (19)

Sq : xq(k + 1) = Aqxq(k) + Bqu(k) (20)

where

At ∈ R
nt×nt , Bt ∈ R

nt×m , xt(k) ∈ R
nt ,

λi(At) < 0 or Im{λi(At)} �= 0 ; i = 1, 2, . . . , nt (21)

Aq ∈ R
nq×nq , Bq ∈ R

nq×m , xq(k) ∈ R
nq ,

λi(Aq) ≥ 0 ; i = 1, 2, . . . , nq (22)

n = nt + nq (23)

and λi(A) denotes the i-th eigenvalue of A.

Then we have Lemma 4.

Lemma 4 System S is positive reachable, if and only if the
following two conditions hold:

1© rank〈〈A, B, n〉〉 = n (24)

2© system Sq is positive reachable.

The proof is given in Appendix C.

From Lemma 4, the reachability of S can basically be reduced
to that of Sq.

Next if system Sq has more than two distinct eigenvalues, then
we can decompose system Sq into the following two subsys-
tems:

Sa : xa(k + 1) = Aaxa(k) + Bau(k) (25)

Sb : xb(k + 1) = Abxb(k) + Bbu(k) (26)

where

Aa ∈ R
na×na , Ba ∈ R

na×m , xa(k) ∈ R
na ,

Ab ∈ R
nb×nb , Bb ∈ R

nb×m , xb(k) ∈ R
nb ,

0 ≤ λi(Aa) < λj(Ab) ;
i = 1, 2, . . . , na ; j = 1, 2, . . . , nb (27)

nq = na + nb (28)

Then we establish Lemma 5.

Lemma 5 System S is positive reachable, if and only if the
following three conditions hold:

1© rank〈〈A, B, n〉〉 = n (29)

2© system Sa is positive reachable.

3© system Sb is positive reachable.

The proof is given in Appendix D.

From Lemma 5, the reachability of S can be reduced to those
of its subsystems Sa and Sb.

Furthermore, if system Sq has Q distinct nonnegative eigen-
values, then we can transform Aq and Bq into the following
Jordan canonical form by a nonsingular real transformation:

Aq = block diag [A1, A2, . . . , AQ] ∈ R
nq×nq ,

Bq =
[
B1

T , B2
T , . . . , BQ

T
]T

∈ R
nq×m (30)



nq =
Q∑

i=1

n(i) (31)

Ai = block diag
[
Ai1, Ai2, . . . , Air(i)

] ∈ R
n(i)×n(i) ,

Bi =
[
Bi1

T , Bi2
T , . . . , Bir(i)

T
]T

∈ R
n(i)×m ,

n(i) =
r(i)∑
j=1

n(i, j) ; i = 1, 2, . . . , Q (32)

Aij = J [λi, n(i, j)] ∈ R
n(i,j)×n(i,j) ,

Bij =
[
b1ij

T , b2ij
T , . . . , bn(i,j)ij

T
]T

∈ R
n(i,j)×m ;

i = 1, 2, . . . , Q ; j = 1, 2, . . . , r(i) (33)

bijk ∈ R
1×m ; i = 1, 2, . . . , Q ; j = 1, 2, . . . , r(i) ;

k = 1, 2, . . . , n(i, j) (34)

where J [λ, n] denotes the lower Jordan block of order n with
eigenvalue λ. Further we can assume without loss of generality
that

0 ≤ λ1 < λ2 < · · · < λQ (35)

1 ≤ n(i, 1) ≤ n(i, 2) ≤ · · · ≤ n(i, r(i)) (36)

Then by using Lemma 5 repeatedly, we can directly obtain
Lemma 6.

Lemma 6 System S is positive reachable, if and only if the
following two conditions hold:

1© rank〈〈A, B, n〉〉 = n (37)

2© for each i = 1, 2, . . . , Q, system Si described by

Si : xi(k + 1) = Aixi(k) + Biu(k) (38)

is positive reachable.

From Lemma 6, the reachability of S can be reduced to those
of its Q subsystems Si (i = 1, 2, . . . , Q) with Q distinct non-
negative eigenvalues.

Now we introduce the following Q systems:

S∗
i : x∗

i (k + 1) = A∗
i x

∗
i (k) + B∗

i u(k) (39)

where

A∗
i ≡ λiIr(i) , λi ≥ 0 (40)

B∗
i ≡

[
bi11

T , bi21
T , . . . , bir(i)1

]T

∈ R
r(i)×m (41)

for each i = 1, 2, . . . , Q.

Then, we have Theorem 2.

Theorem 2 System S∗
i is positive reachable, if and only if the

following two conditions hold:

1© rankB∗
i = r(i) (42)

2© there exist a positive vector U i such that

B∗
i U i = 0 , U i > 0 (43)

(Proof) Applying system S for system S ∗
i in Theorem 1, we

can easily obtain Theorem 2. Q.E.D.

Remark 2 In Theorem 2, r(i) < m is necessary for system
S∗

i to be positive reachable. Thus, a single input system (m =
1) which contains any nonnegative eigenvalues is not positive
reachable. This agrees with the former results [2].

When r(i) is small, it is not so difficult to find the positive
vector U which satisfies (43). Thus the reachability of S ∗

i can
be checked easily by using Theorem 2.

Now we consider the following two systems for any positive
integers r, m, and P :

S∗ : x∗(k + 1) = A∗x∗(k) + B∗u(k) (44)

S+
P : x+(k + 1) = ΦP x+(k) + Γ P u(k) (45)

where

A∗ ≡ λIr , λ ≥ 0 , B∗ ∈ R
r×m (46)

ΦP ≡




A∗ 0 0 · · · 0
Ir A∗ 0 · · · 0
· · · · · · · · · · · · · · ·
0 · · · 0 Ir A∗


 ∈ R

rP×rP (47)

Γ P ≡




B+
1

B+
2

· · ·
B+

P


 ∈ R

rP×m (48)

B+
1 ≡ B∗ , B+

i ∈ R
r×m ; i = 1, 2, . . . , P (49)

Then we can show the following lemma by mathematical in-
duction method.

Lemma 7 System S∗ is positive reachable, if and only if sys-
tem S+

P is positive reachable.

Finally Theorem 3 can be obtained.

Theorem 3 System S is positive reachable, if and only if the
following two conditions hold:

1© rankB∗
i = r(i) (50)

2© for each i = 1, 2, . . . , Q, system S∗
i is positive

reachable.

The proof is given in Appendix E.

From Theorem 3, the reachability of S can be reduced to those
of its Q subsystems S∗

i (i = 1, 2, . . . , Q) with Q distinct non-
negative eigenvalues. Because the dimension of system S ∗

i is
much smaller than that of system S, the reachability test can be
simplified considerably by using Theorem 2 and Theorem 3.



4 Example

Consider a system S represented by

A =




−3 0 0 0 0
0 0 0 0 0
0 0 2 0 0
0 0 0 2 0
0 0 0 1 2


 ,

B =




1 2 1 −4
3 1 1 −2
1 0 −1 −2

−1 1 1 1
1 3 0 2


 (51)

where
n = 6 , m = 5 (52)

Then we have

At = −3 , Bt =
[

1 2 1 −4
]

(53)

Aq =




0 0 0 0
0 2 0 0
0 0 2 0
0 0 1 2


 ,

Bq =




3 1 1 −2
1 0 −1 −2

−1 1 1 1
1 3 0 2


 (54)

nt = 1 , nq = 4 , Q = 2 , λ1 = 0 , λ2 = 2 (55)

A1 = 0 , B1 =
[

3 1 1 −2
]

= b111 (56)

A2 =


 2 0 0

0 2 0
0 1 2


 ,

B2 =


 1 0 −1 −2

−1 1 1 1
1 3 0 2


 =


 b121

b122

b222


 (57)

n(1) = 1 , n(2) = 3 , r(1) = 1 , r(2) = 2 ,

n(1, 1) = 1 , n(2, 1) = 1 , n(2, 2) = 2 (58)

Thus we get

A∗
1 = 0 , B∗

1 =
[

3 1 1 −2
]

= b111 (59)

A∗
2 =

[
2 0
0 2

]
,

B∗
2 =

[
1 0 −1 −2

−1 1 1 1

]
=

[
b121

b122

]
(60)

rankB∗
1 = 1 = r(1) , rankB∗

2 = 2 = r(2) (61)

Choosing U 1 and U 2 as

U1 =
[

1 1 2 3
]

> 0 ,

U2 =
[

3 1 1 1
]

> 0 (62)

we have

B∗
1U1 = 0 , B∗

2U2 = 0 (63)

Thus subsystems S∗
1 and S∗

2 are positive reachable from Theo-
rem 2. On the other hand we have

rank
[
B, AB, . . . , A5B

]
= 6 (64)

Thus, system S is positive reachable from Theorem 3.

5 Conclusions

This paper presents a necessary and sufficient condition for a
multiple input discrete-time linear system to be positive reach-
able based on the Jordan canonical form. It is pointed out that
the reachability of a given system can be reduced to those of its
subsystems with nonnegative eigenvalues. Because the dimen-
sion of the subsystem is much smaller than that of the given
system, the reachability test can be simplified considerably.
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Appendix A: Proof of Theorem 1

(Proof) Necessity: If system S is positive reachable, then condi-
tion 1© is necessary by Lemma 2. Next consider the following
n × 1 vector xo

xo ≡ −〈〈A, B, n〉〉Enm (A.1)

Then there exist a vector V [M ] such that

〈〈A, B, M〉〉V [M ] = xo , V [M ] ≥ 0 , M ≥ 1 (A.2)

from Lemma 1. Next let

U [N ] ≡ [
V [M ]T ,0

]T
+ Enm , N ≡ n ;

if M < N (A.3)

U [N ] ≡ V [M ] +
[
Enm

T ,0
]T

, N ≡ M ;

if M ≥ N (A.4)

Then from (A.1)–(A.4), we obtain

〈〈A, B, N〉〉U [N ] = 0 , U [N ] ≥ 0 , N ≥ n (A.5)

ui ≡ vi + Em > 0 ; i = 1, 2, . . . , n (A.6)

Sufficiency: If condition 1© holds, then 〈〈A, B, n〉〉 contains n
linearly independent vectors. Thus for any final state x f , there
exist an nm × 1 vector V [n] such that

〈〈A, B, n〉〉V [n] = xf (A.7)

Next if condition 2© holds, then we have

〈〈A, B, N〉〉W [N ] = 0 , W [N ] ≥ 0 , N ≥ n (A.8)

wi > 0 ; i = 1, 2, . . . , n (A.9)

Thus for a sufficiently large positive number M , let

u(N − i) ≡ Mwi + vi ≥ 0 ; i = 1, 2, . . . , n (A.10)

u(N − i) ≡ Mwi ≥ 0 ; i = n + 1, n + 2, . . . , N (A.11)

Then from (A.7)–(A.11), we have

〈〈A, B, N〉〉
[
u(N − 1)T

, . . . , u(1)T
, u(0)T

]T

= xf

(A.12)

The last equation means that a positive control sequence
{u(0), u(1), . . . , u(N − 1)}will transfer the origin to the final
state xf . Therefore, system S is positive reachable. Q.E.D.

Appendix B: Proof of Lemma 3

(Proof) Necessity: If system S is positive reachable, then con-
ditions 1© and 2© in Theorem 1 hold. Because 0 is sufficiently
small, conditions 1© and 2© in Lemma 3 hold.

Sufficiency: Suppose that conditions 1© and 2© hold. Then
〈〈A, B, n〉〉 contains n linearly independent vectors. Thus there
exist an nm × 1 vector V [n] such that

〈〈A, B, n〉〉V [n] = −ε (B.1)

where ‖vi‖ (i = 1, 2, . . . , n) is sufficiently small because ‖ε‖
is sufficiently small. Next from condition 2©, there exist a vec-
tor U [N ] such that

〈〈A, B, N〉〉U [N ] = ε , U [N ] ≥ 0 , N ≥ n (B.2)

ui > 0 ; i = 1, 2, . . . , n (B.3)

If we let

W [N ] ≡ U [N ] +
[
V [n]T ,0

]T

(B.4)

then from (B.1)–(B.4), we have

〈〈A, B, N〉〉W = 0 , W ≥ 0 , N ≥ n (B.5)

wi ≡ ui + vi > 0 ; i = 1, 2, . . . , n (B.6)

Thus from Theorem 1, system S is positive reachable.
Q.E.D.

Appendix C: Proof of Lemma 4

(Proof) Necessity: System Sq is a subsystem of S. Thus if
system S is positive reachable, then conditions 1© and 2© hold
by Lemma 2.

Sufficiency: Suppose that conditions 1© and 2© hold. Then sys-
tem Sq is positive reachable. Thus from Theorem 1, there exist
a vector V [M ] such that

〈〈Aq, Bq, M〉〉V [M ] = 0 , V [M ] ≥ 0 , M ≥ nq (C.1)

vi > 0 , i = 1, 2, . . . , nq (C.2)

Next by a nonsingular transformation, we have the following
equation from (25) and (26).

A =
[

At 0
0 Aq

]
, B =

[
Bt

Bq

]
(C.3)

Now by modifying the results of [4], it is easy to derive that
there exists a polynomial f(z) with positive coefficients, such
that

f(z) ≡ fLzL + · · · + f1z + f0 (C.4)

fi > 0 ; i = 0, 1, . . . , L (C.5)

f(At) = 0 (C.6)

where L can be designated arbitrarily as far as

L � nt ≥ 1 (C.7)

Thus from (C.3)–(C.6), we obtain

f(A) =
[

f(At) 0
0 f(Aq)

]
=

[
0 0
0 f(Aq)

]
(C.8)



Therefore we get

f(A)〈〈A, B, M〉〉V [M ]

=
[

0
f(Aq)〈〈Aq, Bq, M〉〉V [M ]

]
= 0 (C.9)

considering (C.1). Here we can designate L as L � n t + M
from (C.7). If we let

ui ≡
M∑

j=1

fi−jvj ; i = 1, 2, . . . , L + M (C.10)

where

fi ≡ 0 ; i < 0 , i > L ,

vi ≡ 0 ; i > M ,

N ≡ L + M ≥ nt + nq = n (C.11)

then from (C.9)–(C.11) we obtain

〈〈A, B, N〉〉U [N ] = 0 , U [N ] ≥ 0 , N ≥ n (C.12)

ui > 0 ; i = 1, 2, . . . , n (C.13)

Therefore, by Theorem 1 system S is positive reachable.
Q.E.D.

Appendix D: Proof of Lemma 5

(Proof) Necessity: Systems Sa and Sb are subsystems of S.
Thus if system S is positive reachable, then conditions 1©– 3©
hold by Lemma 2.

Sufficiency: Suppose that conditions 1©– 3© hold. Then from
Lemma 4, it is sufficient to show that system Sq is positive
reachable.

Now by a nonsingular transformation, we have the following
equation from (25) and (26).

Aq =
[

Aa 0
0 Ab

]
, Bq =

[
Ba

Bb

]
(D.1)

Next consider the following na × 1 vector xa

xa ≡ −〈〈Aa, Ba, nq〉〉Emnq (D.2)

Then there exist a vector V [M ] such that

〈〈Aa, Ba, M〉〉V [M ] = xa , V [M ] ≥ 0 , M ≥ 1 (D.3)

from Lemma 1. Thus, by the similar way discussed in (A.1)–
(A.6), we obtain

〈〈Aa, Ba, L〉〉W [L] = 0 , W [L] ≥ 0 , L ≥ nq (D.4)

wi > 0 ; i = 1, 2, . . . , nq (D.5)

Further we consider the following nb × 1 vector xb

xb ≡ −(λb)Nc(Ab)−L−Nc〈〈Ab, Bb, L〉〉W [L] (D.6)

where λb is any eigenvalues of Ab and Nc is a sufficiently large
positive integer. Then by Lemma 1, there exist a vector Y [N b]
such that

〈〈Ab, Bb, Nb〉〉Y [Nb] = xb , Y [Nb] ≥ 0 , Nb ≥ 1 (D.7)

yi ≥ 0 ; i = 1, 2, . . . , Nb (D.8)

Next let

N = L + Nc + Nb (D.9)

U [N ] ≡
[
W [L]T ,0, (λb)−NcY [Nb]

T
]T

(D.10)

Then from (D.1)–(D.10) we have

〈〈Aq, Bq, N〉〉U [N ] =
[

ε
0

]
(D.11)

U [N ] ≥ 0 ; (D.12)

ui > 0 ; i = 1, 2, . . . , nq (D.13)

ε ≡ (λ−1
b Aa)Nc(Aa)L〈〈Aa, Ba, N〉〉Y [Nb] (D.14)

Because all of the eigenvalues of the matrix λb
−1Aa are

smaller than unity and Nc is sufficiently large, ‖ε‖ is suffi-
ciently small. Hence, by Lemma 3, system S is positive reach-
able. Q.E.D.

Appendix E: Proof of Theorem 3

(Proof) Necessity: For each i = 1, 2, . . . , Q, system S ∗
i is a

subsystem of S. Thus if system S is positive reachable, then
conditions 1© and 2© hold by Lemma 2.

Sufficiency: Suppose that conditions 1© and 2© hold. Now, we
consider the following system for each i = 1, 2, . . . , Q:

S+
i : x+

i (k + 1) = A+
i x+

i (k) + B+
i u(k) (E.1)

A+
i ≡




A∗
i 0 0 · · · 0

Ir(i) A∗
i 0 · · · 0

· · · · · · · · · · · · · · ·
0 · · · 0 Ir(i) A∗

i




∈ Rr(i)P (i)×r(i)P (i) (E.2)

B+
i ≡




B+
i1

B+
i2

. . .
B+

iP (i)


 ∈ Rr(i)P (i)×m (E.3)

B+
i1 ≡ B∗

i (E.4)

P (i) ≡ n(i, r(i)) (E.5)

Then by Lemma 7, system S+
i is positive reachable because

system S∗
i is positive reachable. It is easy to show that A+

i and
B+

i can be chosen such that system Si is a subsystem of S+
i .

Thus by Lemma 2, system Si is positive reachable. Therefore
from Lemma 6, system S is positive reachable. Q.E.D.
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