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Abstract

This paper deals with a new filtering problem for linear un-
certain discrete-time stochastic systems with randomly vary-
ing sensor delay. The system measurements are subject to ran-
domly varying sensor delays, which often occur in information
transmissions through networks. The problem addressed is the
design of a linear filter such that, for all admissible parameter
uncertainties and all probabilistic sensor delays, the error state
of the filtering process is mean square bounded, and the steady-
state variance of the estimation error for each state is not more
than the individual prescribed upper bound. We show that the
filtering problem under consideration can effectively be solved
if there are positive definite solutions to a couple of algebraic
Riccati-like inequalities or linear matrix inequalities. We also
characterize the set of desired robust filters in terms of some
free parameters.

1 Introduction

In classical Kalman minimum variance filtering, it is implic-
itly assumed that the signal models are exactly known, and the
noise sources are stationary white noise signals with known
statistics. Unfortunately, these assumptions limit the applica-
tion of minimum variance filters as in many situations only an
approximate signal model is available and/or the statistics of
the noise sources are not fully known or unavailable. To han-
dle the above problem, in recent years, two alternative design
methods have been developed, namely, the H filtering and
the robust filtering approaches. The main point of the H, fil-
tering theory is to design an estimator that ensures a bound on
the induced L,-norm of the operator from the noise signals to
the estimation error, while the robust filtering theory aims at
guaranteeing an upper bound to the quadratic cost (i.e. estima-
tion error variance) in spite of various parameter uncertainties,
and subsequently minimizing this upper bound locally.

In many practical filtering problems, such as the tracking of a
maneuvering target and data fusion subject to highly stochastic
disturbances, the filtering performance requirements are often
described in terms of the upper bounds on the error variances
of estimation, see e.g. [10, 11, 15]. The conventional filtering
methods, however, are usually difficult to be applied in dealing

with this class of constrained variance filtering problems. For
instance, the theory of weighted least-squares estimation ([8])
minimizes a weighted scalar sum of the error variances of the
state estimation, but minimizing a scalar sum does not ensure
that the multiple variance requirements will be satisfied.

The so-called error covariance assignment (ECA) theory was
initiated in [15] to provide a closed form solution for directly
placing the specified steady-state estimation error covariance
to a linear system. Subsequently, based on the ECA theory,
a more general filtering method, namely, variance-constrained
filtering method, has been developed, and applied to some more
realistic systems, such as parameter uncertain systems [10],
sampled-data systems [11], and bilinear systems [12]. On the
other hand, besides the system parameter uncertainties, it has
been well recognized that the time delay is also often the main
cause of instability and poor performance of systems. Re-
cently, the filter design problems for uncertain time-delay sys-
tems have begun to receive research attention, see e.g. [13].

So far, in most relevant literature, the time-delay is always
assumed to be deterministic. However, for a large class of
practical applications, the time delay may occur in a random
way. A typical case is the network-based information trans-
mission process. In such a case, random delay is induced by
an asynchronous time-division-multiplexed network that serves
as a data communications link between the spatially dispersed
components of the integrated “decision” and “control” systems
[6]. Examples include the signal receiving process of a mobile
phone based in a network, the vehicle management system of
future generation aircraft, etc., where the sensor (receiver) data
is subjected to randomly varying delays induced by the net-
work before they arrive at their respective destinations. There-
fore, new filtering methods are needed for signal processing in
a delayed environment of network-based systems.

It should be pointed out that, if the system measurements con-
tain random time-delays, the noise statistics cannot be exactly
known, and subsequently the traditional robust and/or H, fil-
tering approaches are not applicable to this case. So far, there
have been very few results appeared to cope with the filter de-
sign problem for parameter uncertain system having randomly
delayed outputs. An error covariance assignment method was
developed in [16] for the state estimation problem of linear
random models with sensor delay, but the system uncertainty
(modeling error) was not taken into account. On the other
hand, due to the appearance of both the parameter uncertainty



and random delay, the use of popular minimum variance fil-
tering approach seems very difficult. Instead, the constrained
variance filtering method might be more practical because of
its flexibility. Up to now, to the best of the authors’ knowledge,
the issue of variance-constrained filtering on parameter uncer-
tain systems with randomly varying sensor delay has not been
fully investigated and remains to be important and challenging.

In this paper, we are concerned with the filter design problem
for linear uncertain discrete-time stochastic systems with ran-
domly varying sensor delay. The parameter uncertainties are
allowed to be time-varying and norm-bounded, and appear in
the system state matrix. The system measurements are subject
to randomly varying sensor delays, which often occur in in-
formation transmission through network. We are interested in
designing linear filters such that, for all admissible parameter
uncertainties and all probabilistic sensor delays, the error state
of the filtering process is mean square bounded, and the steady-
state variance of the estimation error of each state is not more
than the individual prescribed upper bound.

2 Problem formulation and preliminaries

Let the digital signal be generated from the following linear
uncertain discrete-time stochastic system

F(k+1) = (A+ AA(K)E(k) + w(k), (1)
and the delayed sensor model be described by

g(k) = Cak)+o(k), )
y(k) = (1—~(&)gk) +v(k)GE-1),  @3)

where & € R" is a state vector, y € RP is an actual mea-
sured output vector, and A and C' are known constant matrices.
w(k) € R™ and 9(k) € RP are mutually uncorrelated zero
mean Gaussian white noise sequences with respective covari-
ance W > 0and V > 0. The initial state #(0) has the mean
Z(0) and covariance P(0), and is uncorrelated with both w(k)
and o(k). AA(F) is a real-valued uncertain matrix satisfying

AA(k) = MF(k)N, F(k)FT(k) < I, 4)

and M and N are known constant matrices of appropriate di-
mensions which specify how the elements of the nominal ma-
trix A are affected by the uncertain parameters in . The pa-
rameter uncertainties in A A are said to be admissible if (4)
holds.

The stochastic variable v(k) € R is a Bernoulli distributed
white sequence taking values on 0 and 1 with

Prob{y(k) = 1} = £{(k)} := %, (5)

where 4 € R is a known constant, and v(k) € R is assumed to
be independent of w(k), o(k), and Z(0). Therefore, we have

Prob{y(k) =0} =1-7, (6)
o3 = E{(v(k) =)’} = (1 = 9)7. (7)

Remark 2.1 The time-varying parameter uncertainty struc-
ture as in (4) has been frequently used in the problems of robust
filtering and control of uncertain systems (see e.g. [10]). The
system measurement mode (3) was introduced in [16], which
can be used to represent the system output subject to randomly
varying state delay. It is observed that, at kth sampling time,
the actual system output takes the value §(k — 1) with proba-
bility 7, and the value g (k) with probability 1 — 7. The cor-
responding scalar 4 (0 < 4 < 1) could be estimated through
statistical tests, and some related discussions can be found in
[14].

Throughout the paper, the following assumption is made.

Assumption 2.1 The matrix A is Schur stable (i.e., all eigen-
values of A are located within the unit circle in the complex
plane).

By defining
=[50 |a=[1 5] o
M= [ ]‘04 } ,N:==[N 0],AA(k) :== MF(k)N, (9)

[10 } (10)
Da(y(k)) = [(1 — 4(W) T, (KT, w(k) = { 2 } ,
1)

a compact representation of the system (1)-(3) can be given as
follows:

z(k+1) = (A+AA®R))z(k) + Dyw(k),
y(k) = C(v(k))z(k) + Da(v(k))v(k),

where v(k) is an zero mean Gaussian white noise sequence
with covariance

(12)
(13)

e[V 2],

0V
and is independent of w(k), y(k), and 2(0). Note that C(~y(k))
and D, (y(k)) are functions of the stochastic variable v(k), and
therefore the system (12)-(13) is in fact a stochastic parameter
system.

(14)

Define

C=ECHEN =] 1-7C AC ]. (15)
The linear filter is of the following structure

ik +1) = Gi(k) + K (y(k) — Ci(k)), (16)

where (k) € R?" means the state estimate of the stochastic
parameter system (12)-(13), and the constant matrices G and
K are filter parameters to be scheduled.



The steady-state estimation error covariance is defined by

Xee = lim Xee(k) := Jim Ele(k)eT (K)], (A7)

where

The purpose of this paper is to design the filter parameters, G
and K, such that for all admissible parameter perturbations in
AA and all randomly varying sensor delay, 1) the matrix se-
quence X..(k) is convergent, and 2) the steady-state value,
X.., of the sequence X . (k), satisfies

[Xee]ii Sa?a Z:1127

,2n, (18)

where [X..];; means the steady-state variance of ith error state

and o? (i = 1,2, - -, 2n) denotes the prespecified steady-state

error estimation variance constraint on the ith state.

3 Some preéiminary results

Introducing now a new stochastic sequence
C*(y(k)) == C(v(k)) = C,

we can see that C¢(y(k)) € RP*2" is a zero mean stochastic
matrix sequence. Then, we obtain from (12)-(15) and (17) that

(19)

y(k) = Ci(k) = C°(v(k))x(k) + Ce(k) + Da(y(k))v(k),
and hence

e(k+1) =[A+ A4 — G — KC*(v(k))]a(k) + (G
— KC)e(k) + Dyw(k) - KD,

Again, for convenience of later analysis, we define

[ xk) _| A 0
zy(k) = [ e(k) }’ A= [ Ak G-KC }’ “
Mf_[%}ﬂ Np=[N 0], AAs=MFN;,
(22)
B Dyw(k)
wy(k) = [ Dyw(k) - KDs(y(k)o(k) |* )
X (k) = E[xf(k)xf (k)] = [ ))gji((:)) )){;::gl’:; } - @)

where
Ag :=A -G — KC®(v(k)).

Considering (12) and (20), we obtain the following augmented
system
.Tf(k‘-Fl) :(Af+AAf).Tf(k)+wf(k), (25)

where w¢ (k) denotes a zero mean Gaussian white noise se-
quence.

Remark 3.1 It is mentionable that there are stochastic se-
quences C°(y(k)) and Dy(~y(k)) involved in Ay and wy(k),
respectively. This makes the augmented system (25) a stochas-
tic parameter one, which reflects the characteristic of randomly
varying sensor delays. Notice that in the literature, the ro-
bust filtering problem for stochastic parameter systems has not
gained much attention mainly because of the complexity of the
statistics analysis.

We first analyze the second-order information of the aug-
mented noise w (k). From the statistical property of v(k), the
definition (11), and the relation V' = diag{V, V'}, we have

ED:(v(k))V DS (v(k)] = (1 =7V +3V =V,  (26)
and hence
Wy = Elwsk)wy (k)]
_ D\WDT D\WDY @)

D,wDY D,WDT + KVKT

Now, noticing that X, (k) = diag{X(k) X(k — 1)} where
X (k) == E[(k)FT (k)] we have

(28)

Furthermore, considering (28) and using the statistics of the
noises w(k), v(k) and, in particular, C¢(y(k)), X (k) defined
in (24) is found to satisfy

X(k+1) = (A, +AA)X (k) (An +AA)T + TX T+ Wy,

(29)
where
A 0
An = [ A-G G-KC }
0
= l Ga-n)"xie ¢ o)

and W; is defined in (27).

We know from [1, 3] that, if the state of the system (25) is
mean square bounded, then the steady-state covariance X of
the system (25) defined by

X == lim X(k) =

k— oo

[ X.’E.’E

Xze :|
XT

31
X.. (31)
exists and satisfies the following discrete-time modified Lya-
punov equation

X = (Ap + AA)X (A + AA)T + TXTT + Wy, (32)



Remark 3.2 It also follows from [1, 3] that, there exists a
unique symmetric positive semi-definite solution to (32) if and
only if

p{(An + AAp) @ (A + AAp)+ T J} <1,  (33)

where p is the spectral radius and ® is the Kronecker product.
Furthermore, we know from [1, 3] that the condition (33) is
equivalent to the mean square boundedness of the state of the
system (25). Hence, we conclude that, if there exists a positive
definite solution to the equation (32), then (33) holds, and the
convergence of X (k) in (24) is guaranteed to a constant value
X.

The purpose of this paper, which has been given in the previous
section, can now be restated as follows: design the filter param-
eters, G and K, such that for all admissible parameter uncer-
tainties and all probabilistic sensor delays, 1) the augmented
system (25) is mean square bounded, i.e., then (33) holds; 2)
the steady-state error covariance X.. satisfies

[Xee]ii S CM?, 1= 1127 T ,2TL. (34)

4 Main resultsand proofs

In this section, we shall first characterize an upper bound on
the steady-state error covariance X satisfying (32) in terms of
some free parameters, and let this upper bound meet the pre-
specified variance constraints (34), and then we shall parame-
terize all desired filter gains with which the resulting steady-
state error covariance is not more than the obtained upper
bound.

To start with, we recall the following lemmas that will be
needed in the proof of our main results.

Lemma4.1 [2] Given matrices = € R**" and T € RSX?.
There exists a solution X € R"*! to the matrix equation
EX = Yifandonlyif (/—Z2")Y = 0, where =* denotes the
Moore-Penrose inverse of =. Furthermore, all solutions can be
parameterized by

X =T+ (I-E"5)Z,
where Z € R"*? is an arbitrary matrix.
Lemma4.2 [9] Let a positive scalar ¢ > 0 and a positive

definite matrix Q; > 0 be such that N;Q;N/ < eI, and
AAf = MfF(k:)Nf with F(k)FT(k) <l Then
(An + AAf)Qf(An + AAf)T
< An(QF' —e 'NfNp)TAL +eMeMf (35)

holds for all admissible perturbations A A.
Lemma 4.3 [10] For a given negative definite matrix IT < 0

(IT € R2"*2n), there always exists a matrix L € R>"*P (p <
2n) such that T + LLT < 0.

Lemma4.4 (Schur complement) Given constant matrices

01, Qo, Q3 where Q; = Qf and 0 < Q5 = QF then
Q1 + 070510, < 0if and only if
Ql Qg _Q2 QB
|: Qg —QQ < 0 or Qg”' Ql < O

Lemma4.5 (Matrix Inverse Lemma) Let A, B, C and D be
given matrices of appropriate dimension with A, D, and D' +
C A~ B being invertible, then

(A+BDC) '=At'-A'BD'+CcAa'B)tCcA.

For presentation convenience, we define:

d = A-G) (P! - 'NTN)HA-)T
+eMM™ + DyWDT, (36)
¢ = [C C], (37)
A = AP ' - 'NTN), (38)
R = 3(1-%)CPCT +CPCT +V, (39)
o := &+GPGT-P,—-GP,CTR 1CP,GT. (40)

It is shown in the following theorem that the solution to the
problem of variance-constrained filtering with random sensor
delay is related to several quadratic matrix inequalities.

Theorem 4.1 Assume that there exist a positive scalar ¢ such
that the following two quadratic matrix inequalities

AP, AT — P, + AP NT(eI - NPLNT)"INP AT
+eMMT + DyWDT <0,
MI=%®+GPGT - P, -GP.CTRICRGT <0,

(41)
(42)

respectively, have positive definite solutions P; and P, and
also ¢ and P, satisfy NP,NT < eI and

(I = AAY)(eMMT + DyWDT) =0, (43)

where AT denotes the Moore-Penrose inverse of A, and in (42),

G=A+[A(eMMT + DywD]))T. (44)
Moreover, let L € R?*"*P (p < 2n) be an arbitrary matrix
satisfying IT + LLT < 0 (see Lemma 4.3), and U € RP*?
be an arbitrary orthogonal matrix (i.e., UUT = I). Then, the
filter (16) with the parameters determined by (44) and

K =GP,0TR™' + LUR™'/?, (45)
will be such that, for all admissible parameter uncertainties in
A A and random sensor delays, 1) the state of the augmented

system (25) is mean square bounded; 2) the steady-state error
covariance X,, meets X, < P».



Proof: Define Py := diag(P:, P»). Then, it follows directly
from Lemma 4.2 and the definitions (36)-(40) that

(Ap + AApPy(An + AANT — Pp + TP JT + W,
< An(P;' — e 'NfNy)TT AT + eMeM[ — Py

VTP T Wy = U = [ ii iz } (46)
where
U, = AP —e'NTN)7'AT - P
+eMM?T + DyWDT, (47)
Uy = AP —e 'NTN)YHA-G)T
+eMMT + DyWDT, (48)
Ty = (A-G)(P[' - 'NTN)HA-)T

+(G - KC)P,(G - KO)T
+eMMT — P, +5(1 - 7)) KCP,CTKT

+D,WDT + KVKT (49)

It follows immediately from Lemma 4.5 that
(Pt —e 'NTN)"' =P, + PANT(eI - NP, NT)"!NP,,
and therefore the inequality (41) implies that ¥'1; < 0.

Next, notice that the matrix A is singular. It then follows from
4.1 that, there exists a solution G such that ¥, = 0 if and only
if (43) holds. Furthermore, if (43) is true, (44) gives a solution.
Hence, substituting the expression of G in (44) into (48) leads
to U5 = 0 easily.

Moreover, we now consider ¥,5. By using the definitions (36)-
(40), we can rearrange (49) as follows

®+ (G- KO)P(G-KCO)" - P,

+5(1 - 9)KCP,CTKT + KVK™

= ®+GPGT — P+ K[y(1—-4)CP.CT
+CPCT + VIKT — GP,CTKT — KCP,GT

= ®+GRPGT - P, -GP,CTR'CPRGT
+ (KRY? — GP,CTR™1/?)
-(KR1/2 _ GPQC_’TR_I/Q)T

= [+ (KR'Y?>-GP,CTR™'/?)

(KRY? - GP,CTR™'/*)T,

\1’22 =

(50)
Noticing the expression of K = GP,CTR~' + LUR /2 in
(45) and the fact that UU T = I, we have

(KR'?—G@P,CTR™'/*)(KR'?—GP,CTR™'/*)T = LLT.

Thus, it follows from (50), the definition of the matrix L (L €
R?7*P) and the inequality (42) that W, =1 + LLT < 0.

To this end, we can conclude that ¥ < 0. Therefore, it follows
from (46) that

(Ap+AAp) P (A +AAN)T =P+ TP T < =W+ < 0,
(51)

which leads to (33). As discussed earlier in Section 11 (see Re-
mark 3.2), we know that the state of the augmented system (25)
is mean square bounded, and there exists a symmetric positive
semi-definite solution to (32). The first claim of this theorem is
then proved.

Furthermore, subtract (32) from (51) to give

(An + AAp)(Pr — X)(An + AAp)T

~(P—X)+J(P;-X)JT <¥ <0 (52)
which indicates again from Remark 3.2 that Py — X > 0 and
therefore

Xee = [X]a2 < [Prlae = Po.

This completes the proof of this theorem. O

Remark 4.1 We know from Theorem 4.1 that, if the conditions
of Theorem 4.1 are all met, and the positive definite solution
P, > 0 satisfies

[P2)ii < af

i 1=1,2,---,2n, (53)
then the filter (16) determined by (44)-(45) will be such that:
1) the augmented system (25) is mean square bounded; and
2) [Xeelii < [P2)is < @2, i = 1,2,---,2n. Hence, the de-
sign objective of variance-constrained robust filter with ran-
dom sensor delays will be accomplished. Note that the exis-
tence of a positive definite solution to (41) implies the asymp-
totical Schur stability of system matrix A, and then the Assump-

tion 2.1 should hold.

Remark 4.2 In the present filter design method, there exists
much explicit freedom, such as the choices of the free parame-
ters 7 € R2"*27 in (44), L (L € R™*? satisfies I+ LL7T < 0),
the orthogonal matrix U € RP*P, etc. We could use the result-
ing freedom to achieve more expected performance constraints
(e.g., the transient requirement and reliability behavior on the
filtering process).

Before discussing the numerical algorithm, we first point out
that, (41) can be transformed into the following linear matrix
inequality (LMI) by using the Schur Lemma (Lemma 4.4):

Ay AP NT

NP AT —e14+NPNT | <0

(54)
where A4 := AP, AT — P, + eMM™ + DyWDY¥. The in-
equality (54), together with the inequality constraint

—eI+ NP NT <0, (55)

are both linearone > 0 and P; > 0.

Hence, we can employ the standard LMI techniques in [4] to
solve (41) and (55) for e > 0 and P, > 0, subjected to the
linear constraint (43). Note that due to the special structures of
A, M, N, D, and W, (43) is not very restrictive as there are



many zero entries. After ¢ and P; are obtained, the inequal-
ity (42) becomes a standard Riccati-like matrix inequality, and
some related solving algorithms can be found in [7], etc.

Summing up the results obtained, we have the following corol-
lary.

Corollary 4.1 If there exist a positive scalar ¢ > 0 and two
positive definite matrices P, > 0, P» > 0 such that the
LMIs (54)(55), the equation (43), and the matrix Riccati in-
equality (42) hold, and P, > 0 satisfies [P2];; < aF (i =
1,2,---,2n.), then the filter (16) determined by (44)-(45) will
achieve the desired robust filtering performance for uncertain
systems with random sensor delay.

The simulation results, which verify that our expected perfor-
mance is well achieved, are omitted here due to space limita-
tion.

5 Conclusions

In this paper, the linear filtering problem has been considered
for parameter uncertain discrete-time stochastic systems ran-
domly varying sensor delay. This problem has been tackled
by assigning an upper bound to the steady-state error covari-
ance, and by parameterizing the set of all filter gains that could
achieve such an upper bound. It has been shown that, the prob-
lem is solvable if several linear matrix inequalities or Riccati-
like matrix inequalities have positive definite solutions. In par-
ticular, the characterization of the desired filter gains has been
given in terms of some ‘free’ parameters, and much design flex-
ibility have been offered, which could be utilized to achieve
more expected performance requirements.
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