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feedforward, polynomial approach. ing error dynamics is always attainable for the closed loop sys-
tem (see [4]). However, in practical applications disturbances
Abstract z affect the system resulting in a deviation between the closed

loop system trajectory and the reference trajectory. If a tracking
This contribution presents a flatness based approach for diswipserver (see [5]) is employed to reconstruct the states needed
bance decoupling and asymptotic disturbance rejection for lifer the error feedback, the closed loop system can become un-
ear and nonlinear systems with measurable disturbances. BtRble, since the tracking observer is designed on the basis of
ferent from previous flatness based approaches the disturbaadgearization about the reference trajectory. However, if the
input is regarded as an additional fictitious input. This on th@isturbances are measurable or observable, a disturbance feed-
one hand enlarges the class of systems, where flatness bdgatard controller can completely or at least asymptotically
disturbance decoupling and asymptotic disturbance rejectiorfégect the tracking errors caused by disturbances. So far dis-
feasible, and on the other hand facilitates the control designturbances were treated as time-varying parameters within the
flathess based system parametrization (see [2] and [9]). As a
consequence the flatness based approach is only possible if the
system is flat with respect to the inputdn order to enlarge the

The flatness based approach to the analysis and control of nekss of nonlinear systems, where a flatness based disturbance
linear systems (see e.g. the introductory reference [4]) is @acoupling or asymptotic disturbance rejection is possible, this
important design strategy for nonlinear control systems. In gtontribution regards the disturbance inpas an additional fic-

der to introduce the notion of flatness, considerttieorder titious input, which also SImp'IerS the parameterization of the

1 Introduction

nonlinear system system variables by the flat output. The basic idea for solv-
ing the tracking problem in the presence of disturbances is to
x= f(x,u) (1) use the flatness based parameterization of the inguid the

, i , disturbance input to obtain two differential equations, which
with & smooth vector functioi andp smooth inputsl. The 56 griven by the reference trajectory of the output to be con-
system (1) is calledifferentially) flat if there exists an output yjeq and the disturbance input. The solution of these differ-

_ (@) ential equations yields a reference trajectory for the flat output,
yi =®(xu,0,..., u) (2)  which takes the disturbances into account, such that the distur-
bance does not affect the output to be controlled (disturbance

with dim(ys) = dim(u), such that the system variabbesndu l is at least rejected toticall tofi
can be expressed by the output (2) and a finite number of g%iﬁ:]bpal:gg roerj j:t?on)e ast rejected asymptotically (asymptotic

time derivatives according to

_ . (B)
X = wx(yfﬂyfa'“:yf) (3) . .
(B+1) The next section presents a state space and a polynomial ap-

u = Wulys,Y,---, Y ) (4) proach for computing a flat output for disturbed linear systems.
The disturbance decoupling and the asymptotic disturbance re-
If these conditions at least hold locally, then the outputis jection problem are solved using the proposed flatness based
called aflat output and the system isfat system. An inherent parameterization. In Section 3 the results for linear systems
advantage of flat systems is, that the design of tracking caare extended to nonlinear systems. A simple examples demon-
trollers is simplified due to the parametrization of the systestrates the proposed asymptotic disturbance rejection for a non-
variables by the flat outpyt;. Since flat systems are feedbacknear system.



2 Disturbanceregection for linear systems with the (2,2) polynomial matri¥(D) and the constant (2,2)

21 Fi ¢ di bed li matrix B. Since deB # 0 always holds for the controller form
' atness of distur Inear systems (8)-(11), one can solve (17) fdu z]T yielding

Consider a time invariant linear systemrah order with one
inputu and one disturbance inpgtdescribed by the state equa- H =B 1P(D)ys = N(D)y; (18)
tion z

K= A+ B [u] (5) With the (2,2) polynomial matrifl(D). Thus the system inputs
z|’ uandzcan be represented py and its time derivatives accord-
Assume that rank = 2 < n and that the system is completely9 t© (4). Also the system statef (5) can be expressed by

controllable with respect to andz, that is yt and its time derivatives by using (7)
n-1p] _ - - T
rank[B AB ... A"1B] =n (6) x =T =Tt ... ¢, & ... ]

holds. Then there exists a linear state transformation 11 (k1) (ko-DTT 19
[Yfl R A O Yfz] (19)

Z:[Z% %1 Z% ZEZ]T:TX, Ki+Ko=n (7)

which transforms system (5) intmntroller form (see e.qg. [7])

which results in

G = Ty k=1DK1-1 @ =0 (20)
: a K2 with the (,2) polynomial matrix
L= -y ahli- S ah+but bz ©) 0.2) poly
K=1 K=1 L T T
: Z«(D) =T tdiag[1 ... DX 1] | [1 ... D*21]") (21
&= @ k=11 1oy AO)=T el I 1 en
: K1 K2 when written in matrix form. In view of (7) and (12) the flat
2 2 71 2 72 2 2
K2 = _I(Zlalka_l(Zlaszk+blu+bZZ (11) outputy; is a function ofx only, such that (2) is satisfied. This
B B shows, that the controllability of the system (5) with respect to
In (8)_(11)@1,”‘,(1(” i = 1(1)2, denote the states of tiith its inputsu andz is sufficient for flatness. This the more one

subsystem of order;, where the quantities; are thecontrol- can show that this condition is also necessary (see [4]).

lability indices of the system (5). Next it is shown, that

yr= [y yee]' =2t @] (12) | o
The problem ofdisturbance decoupling with disturbance
is a flat output for the system (5) according to the definitiomeasurement for the system (5) amounts to finding a control
given in the introduction (see also [1]). To this end insert (13hputu, such that the output to be controlled
in (9) and (11) and use (8) and (10) giving

2.2 Disturbance decoupling for linear systems

y=c'x (22)
e (IR ( S NI 1
— > @k Yy — ) & Yr2 +hiu+bz  (13) s completely unaffected by the measurable disturbantais
» szll ey szzl ey problem can readily be solved on the basis of the flatness prop-
ko) 2 (k=1) 2 (k=) o 2 erty of system (5) by using a feedforward controller. This con-
iz = kZ e k;aZk Yio +bpu+baz - (14) troller decouples the disturbanedrom the outputy and as-
sures exact tracking of a given trajectory for appropriate initial
Using the differential operatdd = % and the operator polyno- conditionsx(0) of system (5). In order to compute this feed-

=<
~
Il

mials forward controller the outpuytis expressed by the flat ouppi
K using (20)
. [
a(D)=Y a,D"1  j=1(1)2, i=1(1)2 (15)
(P1= 2, B y=c'Z(D)yr = Z(D)ys (23)
equations (13) and (14) can be rewritten as with the (1,2) polynomial matrixZ(D). Introduce the (1,2)

olynomial matrice®N,(D) andN,(D) by
D +ai(D)  a(D) _ B e P u(D) andNy(D)
20D) Det+adD)|’" T (B2 b |z

which can be represented more compactly by

up _ _ [Nu(D)
in view of (18) then the feedforward controller

P(D)ys = B [l;] (17) ud = Nu(D)ys d (25)



which achieves exact tracking of a desired trajectory for which achieves
the flat outpuiys, directly follows from (24). In order to solve (k1) —
the disturbance decoupling problem one has to compute the tra- Yf1=U (34)

jectoryys 4 from the desired trajectoryy for y and taking into  for the closed loop system. A desired dynamics
account the relation= N,(D)y; (see (24)). In view of (23) the

flat output has to satisfy gfll) +8¢,—1 (Kéfll) +...+8e1=0 (35)
1 for the tracking erroes; = yi1 — Y14 IS assigned to the closed
Z(D = 26 g
(D)yra =Y (26) loop system by the error feedback
which gives with (24) the differential equation (k) 3 (kg—1) 3
U=Yf1d — (aKll €1 +...+aoef1> (36)
N,(D) f.d 7 Since one is interested to tragl, the trajectoryys14 for the

first elementy;; of the flat outputys has to be computed from

for the trajectoryyt g with the given trajectoryy and the mea- the traje_ctoryyd Of the outputy to be controlled by solving the
sured disturbanceas inputs. A prerequisite for exact trackinglifferential equation

gsing the feedforward con_troller (25) is, that the initial condi- Z1(D)ys1.d = Yd — Z2(D)ys2 (37)
tionsx(0) of system (5) fulfilix = Zx(D)ys 4 (see (20)) at = 0.

Note that the differential equation (27) is stable if all poles be-is differential equation follows from (23) by writing the (1,2)
ing solutions of polynomial matrixZ(D) in the form

Z(D) = [Z1(D) Z2(D)] (38)
det| 2 | — o 28) o
Nz(s) The second elemegg; of the flat output, which is an input to

7), has to be computed by solving the differential equation

_ ) (3
are located in the open left half plane (see [7]). If dlﬁerentlégl) forys, with feedback (33) and the disturbarkas inputs.
equation (27) is unstable, one must perform a suitable trajec-

tory planning foryq, such that all systems states and inputshe feedback (33) decouples the-subsystem (31) from the
remain within given bounds. controlled y¢1-subsystem (30). Hence internal stability of

the closed loop system depends on the stability ofythe

23 Asymptotic disturbance rejection for linear systems subsystem. To see this, introduce new state variables

If the initial conditionsx(0) of the system do not satisfy= &= [& ... EKl]T = [ym (?;11)]T (39)
Zy(D)ys 4 (see (20)) at time instamt= 0, then onlyasymptotic -

disturbance rejection with disturbance measurement is possi- n=[n.. r]KZ]T = [yfz (K)%f_zl)] (40)
ble. Here one seeks a control inputor system (5), such that

the tracking erroe =y — yq satisfies and consider (30) and (31) with feedback (33). Then the new

state equations for (39) and (40) read
lim e(t) =0 (29) | (39 and (49
E = ‘JKJ_E_'_a(lLT (41)

in the presence of a measurable disturbande the followin . _
b g N = (Jo+8ed )N+e, (p'E+ 01U+ g22) (42)

this control problem is solved by using a flathess based track-

ing controller, which achieves asymptotic tracking of a given ~ Yf1 = &1 (43)
trajectory fory. In order to derive this tracking controller sub- . . . . .
; : whereeg; is theith unit vector,Jy, is a (mm) matrix with zero
stitute (15) in (13) and (14) i X
elements except for ones on the first upper secondary diagonal.
(k1) L L L L In (42) the quantities|”, p" are vectors of appropriate dimen-
yr1 = —aj(D)ys1—az(D)yr2 + bju+ b3z (30) sions andy; andg, are scalars. The resulting state equations
(k2) 5 2 2 2 (41)-(43) are in Byrnes Isidori normal form (see [6]), whére
yiz = —ai(D)yr —a3(D)yrz +biu+ b3z (31)  are the states of the output dynamicy ef andn are the states
1 : _ ) of the zero dynamics for the system with error feedback (36).
Letb; # 0, then by inspection of (30) one can introduce a e, g internal stability of the closed loop system only depends

inputu by on the stability of the zero dynamics (42) driven by the distur-

U= —a%(D)yfl _ a%(D)yfg + b%u+ b%z (32) bancez and tr;e reference inputs. If the zero (_jynamics 42) is
B unstable ants # 0, then one can try to get an internally stable
yielding a regular feedback. Note that in view of @£ 0, itis closed loop system by introducing the new input

. . . . — . l _ _
always possible to introduce a new inpugi.e. if by = 0 then 0= —a2(D)ys1 — a3(D)ys2 + b2u+ bz (44)

b% # 0). By solving (32) foru one obtains the control law
P L N related to (31). A stable zero dynamics then possibly results
u= g (U+a3(D)yr +a3(D)yr2 — b37) (33) from (30).



2.4 Polynomial approach to disturbancerejection By comparing (49) with (52) it follows that the new inpﬁfﬁ:

The flatness based parameterizations (18) and (20) of the syan be introduced if2> # 0, i.e. gffzz) has to appear in the
tem variables can directly be obtained from the state equatifstness based parameterizationz (§ee (49)). The same holds
(5) by coprime matrix fraction conversion. To this end consider

; L (ko) (k1) ,
the coprime matrix fraction conversion related to the transferc for introducingyr2= u, whereyr; has to appear in the
behaviour expression for.

X(s) = (s —A) B [‘;gzﬂ = Z(9IN"X(s) {‘;((;)] (45) 3 Disturbancerejection for nonlinear systems

of system (5), wher&y(s) andN(s) are right coprime matri-
ces withN(s) column reduced (see e.g. [7]). Since the transfeh this section the flatness based disturbance decoupling ap-
matrix in (45) has no direct feedthrough these polynomial mgroach for linear systems is extended to the nonlinear case. The

trices satisfydci[Zx(s)] < 8a[N(s)], i = 1(1)2, wheredi[-] iS nth order nonlinear system under consideration is given by the
theith column degree of a polynomial matrix (i.e. the highesitate equation

degree of the polynomials in the corresponding column). Then

3.1 Flatnessof disturbed nonlinear systems

the parameterization afandz can be obtained by setting x=f(x,u,2) (53)
_ Nl u(s) 46 with one inputu and one disturbance inpat In the following
yi(s) = (s Z(s) (46) it is assumed that rarﬂw = 2 < nand that the nonlinear
ieldin system (53) is flat with respect toandz. Thus in light of
y 9 the definition of fIatnTess in the introduction there exists a flat
outputys = [yr1 Yi2]
u Wu(ys, Yt (%1))
H = N()ys = |0 T (47) L. @@
qJZ(yf,yf,..., yf ) yf:qJ(X,U,Z,U,Z,...,u, Z) (54)
. (B)
X = Zx(D)yr = Wx(Yt,Yt,---,Yf) (4g) Suchthat
: (B)
in the time domain. The relations (47) and (48) are valid flat- X = Wx(Yt,Ys,---,Yf) (55)
ness based parameterizationyifin (46) satisfies (2). This . ) (B+1)
property directly follows from the Bezoutidentity by controlla- Y = Bu(ye.¥t,-0 V) (56)

bility of system (5) (see [7]). Note that (47) and (48) are linear )
versions of (3) and (4). By settind[N(D)] = ki, i = 1(1)2,

(47) can be written as

H

. (B+1
Z = qJZ(yf,yfa"', Vi ) (57)
In contrast to linear systems there is no necessary and suffi-
S IN(D)] cient condition to be known for flathess of nonlinear systems,
Fe[N(D)] [D c 5 8\1(0)}] yt+Nr(D)ys  suchthatthere exists no systematic method for constructing flat
0 D% outputs. However, in many cases it is possible to use physical

y g}q) v §;<z) insight into the design problem to determine a flat output.
= | L v+ NR(D)ys (49)
Y21 Y1 Y2212 3.2 Disturbance decoupling for nonlinear systems
with T'¢[-] = [vij] the highest column degree coefficient matri¥he problem of disturbance decoupling with disturbance
andNg(D) is a polynomial matrix with polynomials of lower measurement for the system (53) amounts to finding a control
degrees. By comparing (49) with (16) one obtains inputu, such that the output to be controlled
B = IZ'IN(D)] s0)  Y=h® (58)
al(D) aj(D) 1 is completely uneffected by the measurable disturbanck
a2(D) a3(D) = Tc7IN(D)INR(D) (51)  flatness based representation of the ouypnt(58) is obtained

by inserting (55) in (58) giving
providedr ¢[-] is nonsingular. This property follows from the ®)
column reducedness bK(s). In order to introduce a new input Y= Wy(Y£,Yt,---,Yf) (59)
U (see (32)) on the basis of representation (49) solve (49) fR

the highest time derivatives gt , which leads to rs in the linear case the disturbance decoupling problem can be

solved by computing a flatness based feedforward controller.
This controller is obtained from (56)

(Kl)-l

el . [v2 11 (1 -now)

= G ND)] | _ R(D)yt | (52) . Bl

B;(fzz)J R e A Ud = Wu(Yrd,Yt,ds-- f,d)) (60)



and assures exact tracking of the trajectory for appropriate yf1 4 one uses the error feedback (36) to assign the error dy-
initial conditionsx(0) of system (53). In order to solve thenamics (35). The resulting tracking controller reads

disturbance decoupling problem the trajectggy for the flat (k2)

outputys has to satisfy U= Gulyr 1., Vi GY7) (66)
>§ (61) in view of (56). By observing (61) and (65) the trajectgry 4
WYt Yra, - Ya) solving the asymptotic disturbance rejection problem is com-
such that with (57) the trajectosy 4 follows from solving the Puted from the trajectoryq by the implicit differential equa-
implicit differential equations tions
. (k1—1) (kp—1)
qJY(deand,--'a)/(E)(j) = Yd (62) Wy(Yi1.d,Yi1ds-- - Yivd Y2, Yz, Yiz') = Ya (67)
’ ’ : (ky=1) (k2)
Wa(Ytd, Y0, ..,()[;?é)) =z (63) Wa(Yi1 i1, Vi1 50 Yi2,Yi2,...,Vf2) = 2 (68)

where the trajectoryy for y and the measured disturbarzage The control law (66) decouples the2-subsystem from the

inputs. Exact tracking and thus disturbance decoupling is ordgntrolledy; - SUbSyStenglfl— u resulting in a zero dynamics

feasible if for the closed loop system. This is better seen by introduc-
_ (®) ing new states according to (39) and (40) to obtain the Byrnes
X(0) = Wx(yt,d(0),¥t,d(0),---,¥t.d (0) (64) Isidori normal form
holds. For an unbounded solutign 4 of (62) and (63) one : _
must perform a suitable trajectory planning oy in order to E = Jal+ ?(1u (69)
ensure boundednessx@ndug. The flatness based solution of n = dn,&u2) (70)
the multivariable version of the disturbance decoupling prob- yf1 = &1 (71)

lem considered in this section can be found in [8].
where the nonlinearkf,1) vector functionq(-) results from

3.3 Asymptotic disturbance rejection for nonlinear solving (56) and (57) for the highest time derivativey ef

systems It should be noted that K1 + K2 > n holds, the tracking con-
troller (66) is a dynamic state feedback controller. However,
Rtroducmg dynamic elements in the controller can be circum-
ented by usingjuasi-static state feedback (see [9] for details).

If condition (64) does not hold one can achieve at least asym
totic disturbance rejection as defined in the beginning of Se
tion 2.3. For computing a flatness based tracking controllér
which solves the asymptotic disturbance rejection problem, one
has to introduce a new input(See Section 2.3). To this end4 Example

i 7)inthe f . . .
consider (57) in the form Consider the following nonlinear system of order 3

. (B1) (B2)

Z= YY1, Y1,- .., Y11, Y12) (65) % = —2X1+ Xa+ XoXa 72)
Now letk;, i = 1(1)2, be the orders of the highest time deriva- %, = —3xx+ X2 +z (73)
tives ofys; appearing in (56) and in (65). Then by the discus- 4, _ —Xo—Xa+U (74)
sion in Section 2.4 it is reasonable that one can introduce the

Yy = X1+X3 (75)

new input§7f11): if B2 = K2 holds or the new ian&;(fzz): aif
B1 =K1 respectively. If botrgfll) and%) appear in (65) one can With one inpuf[u and one disturbance inpat The output to
choose the new input arbitrarily provided the correspondingbe controlled is denoted by A flat outputy for the system
highest time derivative appears in (56). In order to justify thi€’2)-(74) is given by

rocedure assume th¢ = K2 andf31 < K1, then according to
p }’ﬁi 2 Bl 1 g Yf — [Xl XZ]T (76)
(65) yf2 is completely determined by system variables and can-

sincexs, zandu can be expressed as

not be chosen as a new input. SIF}QQ does not appear in (65)
it has to appear in (56) and can be introduced as new input. The Vi1 + 2Yf1

= = (77)
condition for mtroducmgg/fg) can be justified in the same way. 1+yr2
If both highest time derivatives of the flat output appear in (65) z = ys2+ 3yt2—y3;
it is assumed that at least one of them appears in (56), which _ WaYi1,Vi2,Vi2) (78)
can be chosen as a new input. o o

1 " : yi2(Yt1+ 2ys1)

. (K1) — u= Vir+ 3y + 2y — | +V¥i2

In the following assume thati1= U has been chosen as new 1+ys2 1+yi2
input. Then in order to stabilize the tracking of the trajectory = Wy(Yt1,V51,V51,Y52,Y52) (79)



In order to solve the asymptotic disturbance decoupling prob- Conclusions

lem (Section 3.3) one has to introduce a new inpuln view
of (78) the only possible choice is

In this contribution the disturbance decoupling and the asymp-

totic disturbance rejection for linear and nonlinear flat systems

Yf1=u (80)

with measurable disturbances was considered. By introducing

the disturbance input as an additional fictitious input a larger
Sincey'fz in (78) cannot be chosen independenﬂy from the Sygl.aSS of linear and nonlinear systems can be treated within

tem variables. With the error feedback

the flatness based approach. In some cases the controller also

needs time derivatives of the measured disturbances. Then es-

U=Vt1d—a(yf1—Yi1d) — 8o(yr1 — Yi1d) (81)
one assigns the dynamics
&1+ 81611+ 8oer1 =0 (82)

to the tracking erroes; = yf1 —Yr14. The tracking controller
following from (79) reads

u=Pu(ys1,yr1,0,Ys2,Yr2) (83)

(1]

(2]

This controller decouples a subsystem from the output be-

haviour related ty;;. By introducing

E1=VYr1, & =VYf1, N=VYi2 (84)

(3]

this can be verified by looking at the corresponding Byrnes

Isidori normal form

g =& (85)
&2 =1u (86)
N = —3n+&+z (87)
yi1 = &1 (88)

resulting from (78) and (80). Thus one has a linear and stabl
(undriven) zero dynamics (87) driven by the disturbance inpu

z. The trajectoryy¢1 4 solving the asymptotic disturbance de-
coupling problem is obtained from the trajectgry= 0 by

_ 3yf1+YeYr2 + Y1

1
=0
1+yr2

y (89)

where the flatness based parametrizatiory gbllows from
(75), (76) and (77). Relation (89) simplifies to

3yr1+YyrYr2+Yr1=0 (90)

(4]

(5]

fel

(7]

(8]

9]

for ys2 # —1. Since the tracking controller needs the second

time derivative ofyt1 4 (see (81)) one differentiates (90) with
respect to time giving with (87) the differential equations

0
0

(91)
(92)

Yivd+ (3+N)Yrra+ (3 +2—3n)yr1d
nN+3n—8&-z

to be solved foly¢y 4. A valid choice for the initial values of
(91) and (92) satisfying (90) ¥¢1,4(0) = yt1,4(0) = 0.

timates for the time derivatives can be obtained by employing
standard filtering techniques (see e.g. [3]).
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