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Abstract 
 
Real time control of material handling devices is essential to 
guarantee efficiency and flexibility of automated manufacturing 
systems. This paper presents a performance based comparison of 
two control policies previously presented by one of the authors to 
avoid deadlock and collisions in zone controlled Automated 
Guided Vehicle Systems (AGVSs). Coloured Timed Petri Nets are 
used to model the dynamics of AGVSs and implement the control 
strategies stemming from the knowledge of the system state. 
Several simulations of an AGVS with varying fleet size show the 
effectiveness of one of the considered control strategies compared 
to the alternative policy. 

 
1 Introduction 
 
Efficient and effective real time control has basic importance to 
manage Automated Guided Vehicle Systems (AGVSs). AGVSs 
are flexible material handling devices suitable to improve the 
performance of Automated Manufacturing Systems (AMSs) [9]: 
the controller assigns route and velocity to vehicles and avoids 
collisions and deadlocks during the AGVs missions. 

This paper makes use of a standard technique for vehicle 
management of AGVSs, i.e., zone control. More precisely, the 
guide-paths are separated into disjoint zones and deadlocks can 
occur when a set of AGVs competes for a set of zones detained by 
vehicles of the same set. In particular, to cope with deadlock in 
zone-controlled AGVSs, Fanti [1, 2, 3] proposed some deadlock 
avoidance policies based on digraph analysis. Such algorithms 
avoid not only deadlock states but also some peculiar conditions, 
known as “restricted deadlock” [4]. When a restricted deadlock 
occurs, the system is not in deadlock condition but some vehicles 
permanently remain in circular wait, partly because some of them 
are blocked and partly since the controller prevents them from 
moving. Following the approach in [1], the AGVS controller 
structure is composed of two levels: the path scheduler and the real 
time controller. The path scheduler is a higher control level 
selecting the paths to assign to the vehicles.  On the other hand, the 
real-time controller has two functions: i) it validates the path 
proposed to a vehicle (path validation) so that each mission is 
completed without deadlock and restricted deadlock; ii) it validates 

the next zone in the path to prevent deadlocks and collisions, by 
enabling or inhibiting the AGV zone acquisition (zone validation). 

This paper focuses on the specification of the real time controller. 
The AGVS structure and dynamics are described by a resource 
oriented Coloured Timed Petri Net (CTPN): tokens are vehicles 
and the path that each AGV has to complete provides the token 
colour. Moreover, associating a time concept to the Coloured Petri 
Net allows the investigation of the system performance. Indeed, 
we propose a performance based comparison of two control 
policies managing traffic in AGVSs previously presented by one 
of the authors. In particular, the paper considers the most flexible 
procedure to avoid deadlock and restricted deadlocks in AGVS 
based on digraphs presented in [1]. An alternative approach 
presented in [3] bases decisions on the results of a simulation run 
of the CTPN model, forecasting the AGVS behaviour. In order to 
compare the two approaches, an AGVS is adopted as a case study. 
Simulation evidences in the MATLAB-Stateflow environment [8] 
show that the policy introduced in [3] exhibits better performance 
indices than the control strategy presented in [1]. 

The paper is organised as follows. Section 2 describes the AGVS 
layout and the CTPN model. Section 3 recalls previous results on 
deadlock avoidance in AGVSs. In addition, Section 4 recalls the 
considered control policies and Section 5 describes the controller 
synthesis. Finally, Section 6 presents several simulation results for 
the case study and Section 7 draws the conclusions. 

 
2 The AGVS model 
 
2.1 The AGVS description 
 
The case study adopted in this paper is an AGVS with a layout 
involving unidirectional and bi-directional guide-paths. The 
AGVS is divided into several disjoint zones and each zone can 
represent a workstation, an intersection of paths or a straight lane 
(see figure 1). Moreover, the AGVS includes a docking station 
where idle vehicles are parked. The set of zones of the AGVS is 
denoted by Z={zi i=1,…,NZ}, where zi for i=2,…, NZ represents a 
zone and z1 denotes the docking station. In addition, V={vj: j=1,…, 
NV} is the set of vehicles available in the system. Since each zone 
can accommodate only one vehicle at a time, zones zi for i=2,…, 
NZ have unit capacity. On the contrary, the docking station can 
accommodate all the vehicles and is modelled by zone z1 with 
capacity equal to NV. The AGVS shown by figure 1 connects six 
workstations (denoted in the figure by z2, z3, z4, z5 and z6) and the 



docking station z1. Four additional zones denote the intersections 
of the paths with parts of lanes (z7, z8, z9 and z10). The paths z1-z7, 
z1-z10, z10-z9, z7-z8 and z8-z9 are bi-directional and the others are 
unidirectional. We describe the route r(v) assigned to the vehicle 
v∈V by the zones sequence r(v)=(zi…zj…z1) that ends to the 
docking station. In the sequel, rr(v) denotes the residual route that 
v∈V has to visit to complete its travel starting from a certain 
system configuration: obviously, it is a subsequence of r(v). 

Figure 1. A zone-control AGVS. 

2.2 The coloured timed Petri net model 
 
This section recalls a modular method to build the coloured Petri 
net modelling the system layout and dynamics [2, 3]. We assume 
that the reader is familiar with Coloured Timed Petri Nets (CTPN) 
(see [6] for details). 

A CTPN is an 8-tuple CTPN=(P, T, Co, Inh, C+, C-, Ω, M0) where 
P is a set of places, T is a set of transitions, Co is a colour function 
defined from P∪T to a set of finite and not empty sets of colours 
[6]. Co maps each place p∈P to a set of possible token colours 
Co(p) and each transition t∈T to a set of occurrence colours Co(t). 

In our model, a place zi∈P denotes the zone zi∈Z and a token in zi 
represents a vehicle that is in zone zi. The transition set T models 
the guide-paths between consecutive zones. Moreover, the set of 
arcs (P×T)∪(T×P) is defined as follows: if zi and zm are two 
consecutive zones in the AGVS, then transition tim belongs to T 
and it is such that tim∈•zm and tim∈zi•. To admit just one vehicle in 
each zone other than the docking station, there is an inhibitor arc 
between each place zi∈P with i≠1 and transition tim∈T, i.e., 
Inh(zi,tim)=1. More precisely, the inhibitor arc between a place 
zi∈P and a transition tim∈T, implies that transition tim can be 
enabled if zi does not contain any token. Since z1 can 
accommodate NV tokens, there are no inhibitor arcs between z1 
and each ti1∈T. 

Having described the skeleton of the CTPN, it is necessary to 
model the AGVS behaviour and the travels of vehicles. Hence, 
each AGV v∈V is modelled by a coloured token and its token 
colour is <rr(v)>, where rr(v) is the residual path that the vehicle 
has to follow to reach the docking station. A marking M is a 
mapping defined over P so that M(zi) is a set of elements of Co(zi), 
also with repeated elements, i.e., a multi-set [6] corresponding to 

token colours in the place zi. The state of the AGVS is represented 
by the marking of the CTPN, i.e., if M(zi)=<rr(v)>, then vehicle v 
is in zone zi and its colour <rr(v)> represents the sequence of 
zones that v has to visit starting from the current marking. 
Consequently, the colour domain of place zi∈P is: Co(zi)={<rr> 
where rr is a possible sequence of zones and zi is the first zone of 
rr}. 

Moreover, Co associates with each transition tim a set of possible 
occurrence colours: Co(tim)={<rr> such that rr is a possible 
sequence of zones and zi and zm are respectively the first and the 
second element of rr}. Here, the CTPN is represented by the 
|P|×|T| pre- and post-incidence matrices C- and C+, respectively 
defined as follows: 
1. if there exists an arc from zi to tim then C-(zi,tim)=“ID”, where ID 

stands for “the function makes no transformation in the 
elements”, otherwise C-(zi,tim)=0. 

2. if there exists an arc from tim to zm then C+(zm,tim)=“UP”, where 
UP is a function that updates the colour <rr> with the colour 
<rr’>, otherwise C+(zm,tim)=0. More precisely, rr’ is the 
residual sequence of zones obtained from rr disregarding the 
first element zi. 

The set Ω is defined by Ω={Co(x): x∈P∪T}. Moreover, 
considering that at the initial marking M0 a route r(v) is assigned to 
each v∈V, M0 is defined as follows: if zi∈P is the first zone of a 
route r(v) for some v∈V, then M0(zi)=<r(v)> else M0(zi)=<0>. 

 
2.3 The AGVS dynamics 
 
Now, to investigate the performance of the system it is convenient 
to extend the CPN with the time concept [6]. To do this we 
introduce a global clock, i.e., the clock values τ∈ℜ+ represent the 
model continuous time, where ℜ+ is the set of non negative real 
numbers. Moreover, the temporisation of the Petri net is achieved 
by attaching a delay to the output arc of each transition, i.e., there is 
a delay after which the token becomes available. Here, the time 
delay δ(zi,tqi) ∈ℜ+ is the time necessary for each AGV to move 
from zone zq to zone zi. Moreover, we allow each token to have a 
time stamp s(rr(v)) attached to it, in addition to the token colour 
rr(v). As soon as a token with colour rr(v)=<(zi, zm,…, z1)> is in 
zone zi, its stamp is reset to zero and the token will be available 
after δ(zi,tqi) time units. Hence, transition tqi is said to be ready for 
execution when the stamp s(rr(v)) satisfies condition 
s(rr(v))≥δ(zi,tqi). 

Moreover, transition tim is enabled at marking M with respect to 
the colour <rr(v)>∈Co(tim), if two conditions are simultaneously 
verified: 
C1) M(zm)=<0> if m≠1. 
C2) M(zi)≥C-(zi,tim)(<rr(v)>), with M(zi)=<rr(v)> and rr(v)=(zi 
zm, …z1). 

In general, the firing of a transition t with respect to colour c∈Co(t) 
leads to a new marking M’, denoted by M[t(c)>M’. A sequence 
M[t1(c1)>M1[t2(c2)>M3…Mn-1[tn(cn)>M’ is denoted by M[ω>M’, 
where ω=t1(c1)t2(c2)…tn(cn) is a firing sequence: in this case we 
say that M’ is reachable from M. Symbol R(M) denotes the set of 
reachable markings from M. 
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Example 1. Now, let us consider the AGVS described in sub-
section 2.1, with NV=5 and the following routes assigned to the 
AGVs: r(v1)= (z7, z2, z3, z8, z7, z1), r(v2)=(z2, z3, z8, z7, z1), 
r(v3)=(z9, z8, z10, z1), r(v4)= (z3, z8, z7, z1), r(v5)= (z1). We remark 
that v5 is a vehicle waiting for destination in the docking station. 
Each time delay is δ(zm,tim)=2 for each zm∈P and tim∈T. Figure 2 
depicts the corresponding CTPN model at the initial marking M0 
and at time τ. The initial marking and the time stamps are defined 
as follows: M0(z7)=<r(v1)>=<(z7, z2, z3, z8, z7, z1)>, 
M0(z2)=<r(v2)>=<(z2, z3, z8, z7, z1)>, M0(z9)=<r(v3)>=<(z9, z8, z7, 
z1)>, M0(z3)=<r(v4)>=<(z3, z8, z7, z1)>, M0(z1)=<rr(v5)>=<(z1)>, 
s(rr(v1))=0, s(rr(v2))=1, s(rr(v3))=3, s(rr(v4))=2, s(rr(v5))=5. 
Figure 2 shows the colour and the associated with each token.  

 
Figure 2. The CTPN at marking M0 for the case study (NV=5). 
 
Two types of events can change the marking of the CTPN: 
i) a new path r is assigned to a vehicle v∈V (1-type event). This 

event is identified by the pair σ1=(v, r); 
ii) a vehicle moves from a zone to another one (2-type event). This 

event is identified by the symbol σ2=v. 
The occurrence of a 1-type event σ1=(v, r) assigns the new colour 
r to v. On the other hand, if a 2-type event σ2=v happens with 
rr(v)=(zi, zm, …z1), transition tim fires in the CTPN and the 
marking M is updated. Let Σ1 and Σ2 respectively indicate the sets 
of 1- and 2- type events.  

Now, in the AGVS behaviour some scheduling alternatives can be 
considered. For example, when several transitions are 
simultaneously colour enabled and ready at time τ, it is necessary 
to choose the AGV that has to move to the next zone first. To this 
aim, a priority rule is defined by a function associating with each 
marking M and each instant τ a vehicle from V, i.e., π: 
MA× N →V where MA is the set of admissible markings and N  is 
the set of non-negative integers. 

 
3 Previous results about deadlock conditions 
 
Here, we recall the main definitions and results necessary to 
explain the deadlock avoidance strategies [4, 1]. The proposed 
techniques use digraphs to characterize deadlock: all the current 
interactions between vehicles and zones are described by means of 
a digraph DT(M)=(N,ET(M)) named Transition digraph and 
depending on the current CTPN marking. Each vertex in N 

corresponds to a zone zi, so that the same symbol is used for 
vertices and zones, i.e., N=Z. The vertex set is fixed, but the edge 
set changes at each event occurrence and is defined as follows: 
eim∈ET(M) iff there exists at marking M a vehicle v∈V occupying 
zi and requiring zm as the next zone. The following is proven in [1]: 

Proposition 1. The AGVS is in deadlock condition in the current 
marking M iff there exists a cycle in the transition digraph that 
does not contain zone z1. 

Now, a deadlock avoidance policy must prevent not only 
deadlock, but also unsafe states that are not deadlock but can incur 
a deadly embrace in the next future. To define an efficient 
deadlock avoidance strategy, a state named second level deadlock 
is characterized by the definition of a second digraph 
DR(M)=(N,ER(M)) called residual path digraph [1]. A digraph 
DR(M) is built taking into account the residual path that each 
vehicle in the system has to complete at the current marking M. 
Hence, eim∈ER(M) iff zm  immediately follows zi in rr(v), for some 
v∈V. Now, a second level deadlock can occur only if the cycles of 
DR(M) enjoy a particular property that can be exhibited using a 
further digraph, D2

R(M)=(N2(M),E2
R(M)), named second level 

digraph and obtained from DR(M) as follows. Denoting by {γ1, γ2, 
…, γM} the complete set of the cycles of DR(M) not including z1, 
we associate a vertex γk∈N2(M) to each cycle γk of DR(M). 
Moreover, an edge e2

kh is in E2
R iff the following two conditions 

hold: a)γh and γk have only one vertex in common (say rm); b) there 
exists a residual path rr(v) for some v∈V requiring zones zi, zm 
and zp in strict order of succession and eim is an edge of cycle γh, 
while emp is an edge of cycle γk. 

Now, let γ2 be a cycle from D2
R(M) (second level cycle) and let 

Γ2(M) be the subset of second level cycles enjoying the following 
property: γ2∈Γ2(M) iff the cycles associated with the vertices of γ2 
are all disjoined but for one vertex, common to all of them. 
Moreover, let the capacity of a cycle γ (denoted by C(γ)) be 
defined as the number of resources involved in such a cycle. 
Analogously, let us define the capacity of a second level cycle 
C(γ2) as the number of distinct resources involved in all the cycles 
corresponding to the vertices of γ2. Finally, let C2

0(M) be the 
minimum capacity of the second level cycles from Γ2(M) 
(C2

0(M)=∞ if Γ2(M) is empty). Considering that nV(M) indicates 
the number of vehicles performing transport operations in the 
current marking (not including the vehicles waiting in the docking 
station) the following proposition is proven in [1]: 

Proposition 2: A marking M can be a second level deadlock state 
for the AGVS only if Γ2(M) is not empty and nV(M)≥(C2

0(M)-1). 

We remind that a digraph containing N nodes is completely 
characterized by its (N×N) adjacency matrix [5]. Modelling the 
AGVS by the CTPN, it is possible to obtain the (|P|×|P|) adjacency 
matrices AT(M) and AR(M) of digraphs DT(M) and DR(M) 
respectively, by means of the incidence matrix of the CTPN at 
marking M [2, 3]. 

 
4 The control policies 
 
This section recalls two control policies (CPs) to avoid deadlocks 
and collisions in zone-controlled AGVSs [1, 3]. The two policies 
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share the same algorithm checking for zone validation and differ 
for the path validation algorithm. 
 
4.1 Control policy 1 
 
In terms of Petri nets modelling, a transition tim∈T is said to be 
controlled if its firing is determined by a CP when tim is enabled 
according to conditions C1 and C2. Therefore, a CP is a mapping 
associating with each event σ∈Σ1∪Σ2 and with each marking M a 
control action that enables and inhibits event σ, i.e., distinguishing 
between 1-type and 2-type events: 
fi : Σi×MA→{0,1} with i=1,2, 
where fi(σi,M)=0 (fi(σi,M)=1) means that for the CTPN at marking 
M event σi is control inhibited (enabled) for i=1,2. 

From the CTPN point of view, a deadlock means that once some 
marking has been reached, some colour enabled transitions cannot 
be fired any longer. The consequence in our model is that the 
travel of an AGV is interrupted and the vehicle can not reach the 
docking station. Accordingly, we define task marking M* the 
system state in which all the AGVs are in the docking station and 
have completed their assigned routes: M*(z1)=NV<z1> (i.e., NV 
tokens are in z1 with colour <z1>) and for each zi such that zi≠z1 it 
holds M*(zi)=<0>. Hence, a CTPN is deadlock-free at marking M 
under a CP iff there exists a controlled firing sequence ω so that 
M’[ω>M*. 

Starting from Propositions 1 and 2 a policy that is deadlock and 
restricted deadlock-free can be defined as follows [1]. 

CP1 
Let the CTPN be at time τ and at marking M and denote with M' 
the marking obtained from M after the occurrence either of σ1∈Σ1 
or of σ2∈Σ2. 
f1(σ1,M)=0 if digraph DT(M') described by AT(M') exhibits a 
cycle that does not include z1 or if Γ2(M’) is not empty and 
nV(M’)≥(C2

0(M’)-1). 
f1(σ1,M)=1 elsewhere. 
f2(σ2,M)=0 if digraph DT(M') described by AT(M') exhibits a 
cycle that does not include z1. 
f2(σ2,M)=1 elsewhere. 

The recalled control policy is the less restrictive policy proposed in 
[1], but its complexity can be high for AGVSs with a layout 
including a large number of bi-directional guide paths [1]. 
 
4.2 Control policy 2 
 
To overcome the drawbacks of CP1, a second CP has been 
introduced based on the task marking reachability [3]. 

Definition 3: Let the CTPN be at marking M’∈R(M0) and at time 
τ, and let us suppose that  f1(σ1,M)=0 for each σ1∈Σ1 and M∈MA. 
The task marking M* is said to be reachable from M’ under f2 and 
the priority rule π, if there exists a controlled firing sequence ω so 
that M’[ω>M*. 

Let the CTPN be at time τ and at marking M and let M' denote the 
marking obtained from M after the occurrence either of σ1∈Σ1 or 
of σ2∈Σ2. The CP is defined as follows. 

 

CP2 
f1(σ1,M)=1 if M*is reachable from M under f2 and priority rule π. 
f1(σ1,M)=0 elsewhere. 
f2(σ2,M)=0 if the digraph DT(M') and described by AT(M') exhibits 
a cycle that does not include z1. 
f2(σ2,M)=1 elsewhere. 

It is proven in [3] that an AGVS under CP2 is deadlock and 
restricted deadlock free. Moreover, the check performed by f2 
works in polynomial time. 

 
5 Synthesis of the controller 
 
This section describes the activities of the real time controller: the 
Zone Validation and the Path Validation Algorithms (ZVA, PVA) 
that implement CP1 and CP2. While the ZVA is the same for CP1 
and CP2, these differ for the PVA. 
 
5.1 Zone validation 
 
Let us suppose that the CTPN is at marking M and that transition 
tim is colour enabled, i.e., M(zi)=<rr(v)>=<(zi, zm, …z1)>. If 
s(v)≥ δ(zi) holds, event σ2=v can occur. In such a case, the 
controller executes the following Zone Validation Algorithm 
(ZVA). 

ZVA 
A1 If M(zm)≠<0> by C1) the transition can not fire, the zone is not 
validated. Go to step A5. 
A2 If M(zm)=<0> then the controller determines the new marking: 
M’(zi)=<0>; M’(zm)=<zm, …z1>; M’(z)=M(z) for each z∈P with 
z≠zm, and z≠zi. 
A3 Build AT(M'). 
A4 A depth-first search algorithm [7] is applied to AT(M'): if the 
search finds a cycle not including z1 then f2(σ2,M)=0 and go to step 
A5, else f2(σ2,M)=1 and go to step A6. 
A5 The zone is not validated, the behaviour of the AGVS 
continues with the CTPN at marking M. STOP. 
A6 The zone is validated and tim fires, the behaviour of the AGVS 
continues with the CTPN at marking M'. STOP. 
 
5.2 Path validation 
 
Path validation consists in enabling or inhibiting 1-type events to 
avoid deadlocks and restricted deadlocks as a new path is assigned 
to some vehicle. Let r be the path that the scheduler proposes for 
vehicle v and let M be the current marking of the CTPN at time τ. 
Under CP1, the controller executes the following PVA. 

PVA1 
B1  Update the marking of the CTPN as follows: M’(zk)=<r(v)> 
where zk is the first resource of r(v) M’(zi)=M(zi) for each zi∈P 
with zi≠zk. 
B2  A depth-first search algorithm is applied to AT(M'): if the 
search finds a cycle not including z1 then f1(σ1,M)=0 and go to step 
B4. 
B3  Build the path digraph and the second level digraph. If 
Γ2(M’) is not empty and nV(M’)≥(C2

0(M’)-1), then f1(σ1,M)=0 and 
go to step B4, else go to step B5. 
B4  r(v) is not validated and the evolution of the CTPN 



continues starting at marking M. STOP. 
B5  r(v) is validated and the evolution of the CTPN continues 
starting at marking M'. STOP. 

Under CP2, the real time controller has to validate the proposed 
route by using the following PVA2. 

PVA2 
B1  Update the marking of the CTPN as follows: M’(zk)=<r(v)> 
where zk is the first resource of r(v) M’(zi)=M(zi) for each zi∈P 
with zi≠zk. 
B2  Start a simulation run that under ZVA and a priority rule π 
checks that the CTPN reaches marking M* from M'. 
B5  If marking M* is reached then r(v) is validated and the 
evolution of the CTPN continues starting at marking M', else r(v) 
is not validated and the evolution of the CTPN continues starting at 
marking M. STOP. 

 
6. Simulation study 
 
This section presents a simulation analysis of the case study 
employing in turn the control policies CP1 and CP2, in order to 
compare their effectiveness. We investigate, for equivalent 
settings, which CP restricts the system congestion while 
guaranteeing that the system vehicles the system reach their 
destination at an early time. In particular, the purpose is to simulate 
the CTPN while assigning the vehicles the longest and most varied 
paths. In the simulations the AGV fleet size is varied, in order to 
check the control policy effectiveness when traffic changes from 
low to medium and finally becomes intense. 

The CTPN representing the system is implemented in the 
MATLAB-Stateflow environment [8], where it is possible to 
integrate modelling and simulation of Stateflow event-driven 
systems (e.g., the AGVS dynamics) with the execution of 
MATLAB computation routines (e.g., the ZVA and PVA 
algorithms), while keeping track of time by way of a software 
clock. More precisely, here the Petri net places are represented by a 
finite state automaton, with sub-states modelling the zone shift of 
the AGV currently under investigation. As already mentioned, the 
main difference in the implementation of the two CPs is in the 
PVA definition. In particular, in the AGVS controlled by CP1 a 
“PVA1” block tests the presence of a particular cycle in the second 
level digraph originating from the new marking. Instead, in the 
system controlled by CP2 a “PVA2” block performs a simulation 
of the AGVS in order to check the task marking reaching under the 
ZVA control and supposing that no 1-type event occurs. 
 
6.1 Description of the simulation experiments 
 
A set of 300 routes resulting in three replications of a set of 100 
paths, all starting and terminating with the docking station z1, is 
considered for the AGVS to accomplish. The maximum route 
length is equal to ten, i.e., each route proposed by the path 
scheduler consists of ten zones, all ending with z1. The assigned set 
of 300 routes is considered in six experiments for both control 
policies with an AGV fleet size NV varying from 2 to 7. In order to 
keep into account the time necessary for an AGV to travel from a 
zone to an adjacent one, i.e., the time to move along a guide-path 
or accomplish a load (unload) operation from (to) a workstation or 
the corresponding buffer, we set a time for a vehicle to accomplish 

such zone crossing. For sake of simplicity, we assume that any 
AGV can travel between any couple of adjacent zones in 200 time 
units, i.e., in a time interval equal to the 500th part of the total run 
time. Now, we define the priority rule π as follows: 

π(M,τ)=vk=min {s(vh) s(vh)≥δ(zi)  with M(zi)=<rr(vh)>}. 
                      h 

More precisely, the priority rule selects, among the vehicles 
enabling ready transitions, the one with minimum time stamp. In 
order to compare experiments employing a different number of 
vehicles and a different restriction policy, a fixed run period of 
T=100,000 time units is considered. 
 
6.2 Performance measures 
 
The measure of performance of the simulation experiments is the 
number of routes completed by the AGV fleet under the ZVA and 
PVA verifications in the run time T (throughput). Clearly, the 
number of completed missions is an index of the traffic 
management policy effectiveness in having the system accomplish 
paths while minimizing blockings. Note that only completed 
missions are considered in the throughput computation. 

In the simulations vehicles utilization is evaluated. In particular, 
vehicles activity can be classified as follows. 
(i) Loaded and booked travel – the vehicle is accomplishing a 
mission. This state comprises two sub-states: the AGV is either 
booked and travelling empty toward the loading zone, or 
transporting a piece toward the assigned unloading area. 
(ii) Blocked – the AGV,  travelling loaded or booked, is blocked 
in a zone by the control system to avoid deadlock or collision. 
(iii) Empty and available – the vehicle, after unloading a part at 
the destination zone, is either empty and travelling towards the 
docking station or idle in the latter waiting for destination. At both 
stages the AGV can receive the next transportation task by the path 
scheduler. The measure of performance adopted for vehicles 
activity is the average percentage time a vehicle spends in each of 
the above three states. Additionally, we consider vehicles 
utilization, i.e., the average percentage time a vehicle spends 
outside the docking station. 
 
6.3 Simulation results 
 
The AGVS throughput is depicted in figure 3 for CP1 and CP2, 
respectively, when using different AGV fleet sizes. Figure 3 shows 
that the AGVS throughput is maximized under CP1 when five 
vehicles are available, whereas the highest number of 
accomplished transportation tasks is obtained under CP2 with six 
vehicles. Moreover, Figure 3 shows that the transportation system 
under both PVA strategies is not efficient for a modest AGV fleet 
size, since the number of vehicles is small compared with the 
AMS size as well as with the number of tasks to be completed. All 
the same, under both real time control strategies the AGVS is 
inefficient for a large AGV fleet size: traffic becomes congested 
and vehicles are often blocked in order to avoid deadlock and 
collisions. The average percentage time of loaded and booked 
travel under both CPs is reported in figure 4. Under both 
techniques the index decreases with the increase in AGV fleet size: 
this is expected, because of the corresponding traffic congestion. 
Figure 5 depicts the average percentage blocked time of vehicles. 
For both techniques the performance index increases with the fleet 



size. Indeed, the probability that a vehicle is blocked while 
executing a transportation task increases when the system is 
overcrowded. The average empty and available time is reported in 
figure 6. Such an index is only partly dependant on the adopted 
control policy: in fact, it is influenced by the selected dispatch 
policy and by the transport request rate, i.e., by the path scheduler 
design. Finally, the AGVS utilization index is reported in figure 7. 
Here, the average percentage time a vehicle is either booked 
travelling toward a loading station, or loaded and blocked, or else 
carrying a piece towards its destination is reported. This index is 
high for both CPs: most of the time vehicles are busy out of the 
docking station. We observe that CP2 outperforms CP1 in all the 
performance indices reported in figures 3-7. In fact, the path 
validation algorithm based on the task marking reaching tends to 
reject a lower number of tasks with respect to the algorithm based 
on cycles detection in the digraphs associated to the AGVS. 

 
7. Conclusions 
 
This paper presents a performance based comparison of two 
control policies (CPs) previously presented by one of the authors 
for zone controlled Automated Guided Vehicle Systems (AGVSs). 
The two CPs share the same algorithm checking for zone 
validation (ZVA) and differ for the path validation algorithm 
(PVA). A case study is considered. The AGVS structure and 
dynamics are described by a resource oriented Coloured Timed 
Petri Net (CTPN), allowing the investigation of the system 
performance. We compare the two CPs on the basis of appropriate 
performance indices in the MATLAB-Stateflow environment. 
Simulation evidence show the effectiveness of one of the 
considered control strategies compared to the alternative policy. 
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Figure 3. Throughput for various AGV fleet sizes. 

30,0

40,0

50,0

60,0

70,0

80,0

90,0

100,0

110,0

2 3 4 5 6 7

AGV Fleet Size

A
ve

ra
ge

 T
im

e 
A

G
V

s L
oa

de
d 

an
d 

B
oo

ke
d 

T
ra

ve
l [

%
] 

CP1

CP2   

 
Figure 4. Average time vehicle loaded and booked travel. 
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Figure 5. Average time vehicle blocking. 
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Figure 6. Average time vehicle empty and available. 
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Figure 7. Average time vehicle utilization. 
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