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Abstract
Recently, a framework for controller design of sampled-
data nonlinear systems via their approximate discrete-
time models has been proposed in the literature. This
framework naturally leads to investigation of families of
parameterized discrete-time systems. In this paper we
present a case-study in cascades-based control. That is,
we show the utility of a theorem for stability of param-
eterized discrete-time cascades in the tracking control
of the unicycle benchmark. This application is fairly
illustrative of the technical differences and obstacles
encountered in the analysis of discrete-time parame-
terized systems and therefore motivates a formal study
of parameterized discrete-time systems.

1 Introduction

The prevalence of digitally controlled systems and the
fact that the nonlinearities in the plant model can often
not be neglected, strongly motivate the area of nonlin-
ear sampled-data systems. An important method for
controller design for sampled-data nonlinear systems
consists of obtaining the exact (respectively, approxi-
mate) discrete-time model of the plant and then de-
signing the controller based on the discrete-time plant
model. We refer to this method as exact (respectively
approximate) discrete-time design (DTD). The main
pitfall of the approximate DTD method is that if one
is not careful with the choice of the approximate model
and the design of the controller, it is possible that a con-
troller asymptotically stabilizes the approximate plant
model but not the exact model. It is noteworthy that
this fact concerns even linear systems [13].

Motivated by this fact, a framework for nonlin-
ear sampled-data controller design via approximate
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discrete-time models has been proposed in [13, 14, 15].
These results are very similar in spirit to results from
the numerical analysis literature (see e.g. [18]) that ap-
ply to continuous-time control systems. In [13] check-
able conditions on the continuous-time plant model, the
controller and the approximate discrete-time model are
presented which guarantee that if the controller stabi-
lizes the approximate model, it would also stabilize the
exact discrete-time model. Furthermore, in [14] it was
shown that stability of the exact discrete-time model
under mild conditions guarantees also stability of the
sampled-data system.

Very recently, in [12, 9] we established new results on
stability of parameterized discrete-time cascaded sys-
tems which complement the above-mentioned frame-
work. These results contribute to what we may call
cascades-based control. Roughly speaking, this ap-
proach aims at designing controllers in cases when the
closed loop system has a cascaded structure. Moreover,
the closed loop dynamics shall verify certain structural
conditions imposed either on the functions that define
the closed loop dynamics or indirectly, in terms of prop-
erties of Lyapunov-like functions. See [1, 7, 8, 17] and
references therein for a large number of results and ap-
plications in this area, in the continuous-time context.
In the context of discrete-time systems cascade based
results are scarce with a notable exception of [4] where
results based on the property of input-to-state stability
(ISS) property are presented.

This paper focuses on a case-study in cascades-based
control. In particular, we revisit the well studied prob-
lem of tracking control of the unicycle benchmark but
in the case when the controller is to be implemented
digitally. Since we design the controller using the
approximate DTD method this naturally leads to in-
vestigation of families of parameterized discrete-time
systems. The approach that we follow here parallels
that of [16] however, the result presented here is not
a simple translation of its counterpart in continuous-
time. Indeed, the proofs we establish here are no-
tably different and the sufficient conditions we impose
are tailored specifically for discrete-time parameterized
discrete-time systems. Moreover, we illustrate how one
can redesign control algorithms originally designed for
continuous-time models, in order to improve the per-



formance of the sampled-data system.

Notation. A function α : R≥0 → R≥0 is said to be of
class K (α ∈ K), if it is continuous, strictly increasing
and zero at zero; α ∈ K∞ if, in addition, it is un-
bounded. A function β : R≥0 × R≥0 → R≥0 is of class
KL if for all t > 0, β(·, t) ∈ K, for all s > 0, β(s, ·) is
decreasing to zero. A function γ : R≥0 → R≥0 is said
to be of class N if γ(·) is continuous and nondecreas-
ing. We denote by |·| the Euclidean norm of vectors.
We denote by R and N the sets of the real and natu-
ral numbers respectively. For an arbitrary r ∈ R we
use the notation brc := max

z∈Z,z≤r
z. Given strictly pos-

itive real numbers L, T we use the following notation
`L,T :=

⌊
L
T

⌋
. For a parameterized discrete-time sys-

tem x(k+1) = FT (k, x(k)) we denote its solution with
initial conditions k◦ ≥ 0 and x◦ ∈ Rn, by φx

T (k, k◦, x◦).

2 Parameterized discrete-time systems

We consider the class of systems

ẋ(t) = f(t, x(t), u(t))
y(t) = h(x(t)) (1)

where x ∈ Rnx and u ∈ Rm are respectively the state
and control input. We assume that for any given x◦
and u(·) the differential equation in (1) has a unique
solution defined on its maximal interval of existence
[0, tmax). The control input is taken to be a piecewise
constant signal u(t) = u(kT ) =: u(k), ∀t ∈ [kT, (k +
1)T ), k ∈ N, where T > 0 is the sampling period.

In the approximate DTD method that we take, the
goal is to design a controller based on an approximate
discrete-time model:

x(k + 1) = F a
T (k, x(k), u(k)) . (2)

For instance, if f is locally Lipschitz in t and x, the
Euler approximate model can be defined as x(k+ 1) =
x(k) + Tf(kT, x(k), u(k)) and it can be shown to be
an O(T 2) approximation of the exact discrete-time
model. On the other hand, if f is measurable in t,
then a modified “Euler” model that is O(T 2) approx-
imation of the exact model is given by x(k + 1) =
x(k) +

∫ (k+1)T

kT
f(τ, x(k), u(k))dτ .

In our work, the sampling period T is assumed to be
a design parameter which can be arbitrarily assigned.
Since we are dealing with a family of approximate
discrete-time models F a

T , parameterized by T , in order
to achieve a certain objective we need in general to ob-
tain a family of controllers, parameterized by T . Thus,
we consider a family of dynamic feedback controllers

z(k + 1) = GT (k, x(k), z(k))
u(k) = uT (k, x(k), z(k)) , (3)

where z ∈ Rnz . We emphasize again that if the con-
troller (3) stabilizes the approximate model (2) for all
small T , this does not guarantee that the same con-
troller would approximately stabilize the exact model

x(k + 1) = F e
T (k, x(k), u(k)) (4)

where F e
T (k, x, u) := x+

∫ (k+1)T

kT
f(τ, x(τ), u)dτ for all

small T . In [13, Theorem 1] sufficient conditions for
this to hold were given for autonomous systems. The
following result generalizes [13, Theorem 1] to time-
varying systems and it gives sufficient conditions to
guarantee that any controller that stabilizes an ap-
proximate model will also stabilize the exact model for
sufficiently fast sampling1. Let F̃ a

T (k, x̃) and F̃ e
T (k, x̃),

where x̃ = (xT zT )T , denote the right hand sides of the
closed-loop systems (2), (3) and (4), (3) respectively.

Theorem 1 Suppose that there exists β ∈ KL such
that for any strictly positive numbers (L, η,∆, δ) there
exist K,T ∗ > 0 and ρ ∈ K∞ such that:
(i) SP-UAS of approximate: For all k◦ ≥ 0,
|x̃(k◦)| ≤ ∆ and T ∈ (0, T ∗) the solutions of (2), (3)
satisfy for all k ≥ k◦ ≥ 0,

|φa
T (k, k◦, x̃(k◦))| ≤ β(|x̃(k◦)| , T (k − k◦)) + δ.

(ii) strong multiple-step consistency between F̃ a
T

and F̃ e
T : For all x̃1, x̃2 with max{|x̃1| , |x̃2|} ≤ ∆, k ≥

0 and T ∈ (0, T ∗) we have∣∣∣F̃ a
T (k, x̃1)− F̃ a

T (k, x̃2)
∣∣∣ ≤ (1 +KT ) |x̃1 − x̃2|∣∣∣F̃ e

T (k, x̃)− F̃ a
T (k, x̃)

∣∣∣ ≤ Tρ(T ) .

Then, for any strictly positive real numbers (∆̃, δ̃) there
exists T̃ > 0 such that for all k◦ ≥ 0, |x̃(k◦)| ≤ ∆̃ and
T ∈ (0, T̃ ) the solutions of (4), (3) satisfy:
(iii) SP-UAS of exact: For all k ≥ k◦ ≥ 0,

|φe
T (k, k◦, x̃(k◦))| ≤ β(|x̃(k◦)| , T (k − k◦)) + δ̃.

We stress that the consistency condition in Theorem
1 is checkable although F e

T is not known in general.
Indeed, it is ensured by choosing an appropriate con-
sistent approximate model F a

T for controller design. A
range of such approximate models can be found in stan-
dard books on numerical analysis [18] (if f is indepen-
dent of t). This result motivates the following defini-
tion.

Definition 1 (SP-UAS) The family of the parame-
terized time-varying systems

y(k + 1) = FT (k, y(k)) (5)
1The proof is omitted since it follows from that of [13, Theo-

rem 1] with straightforward changes.



is semiglobally practically uniformly asymptotically sta-
ble SP-UAS (resp. uniformly globally asymptotically
stable UGAS) if there exists β ∈ KL such that for any
pair of strictly positive real numbers (∆, ν) there exists
T ∗ > 0 (resp. there exists T ∗ > 0) such that for all
k◦ ≥ 0, y(k◦) = y◦ with |y◦| ≤ ∆, T ∈ (0, T ∗) (resp.
y(k◦) = y◦ with y◦ ∈ Rn, T ∈ (0, T ∗)) and for all
k ≥ k◦ the following holds:

|φy
T (k, k◦, y◦)| ≤ max{β(|y◦| , (k − k◦)T ), ν}

(resp. |φy
T (k, k◦, y◦)| ≤ β(|y◦| , (k − k◦)T ) ).

(6)

2.1 Results on UGAS of cascades
Our control approach relies on the ability of designing
a controller so that F̃ a

T (k, x̃) has the following cascaded
structure:

x(k + 1) = fT (k, x(k), z(k)) (7)
z(k + 1) = gT (k, z(k)) , (8)

where x ∈ Rnx , z ∈ Rnz and T is the sampling period.
We present here the technical tools that will allow us
to conclude UGAS for the case-study of the unicycle.
To this end, we introduce the following two technical
definitions.

Definition 2 The system (5) is uniformly globally
bounded (UGB), if there exist κ ∈ K∞, c and T ∗ > 0
such that for all k ≥ k◦ ≥ 0, y(k◦) = y◦, y◦ ∈ Rn and
T ∈ (0, T ∗) it holds that |φy

T (k, k◦, y◦)| ≤ κ(|y◦|) + c.

Definition 3 The family of the parameterized time-
varying systems (5) is Lyapunov UGAS if there exist
α1, α2 ∈ K∞, α3 ∈ K, L ∈ N , T ∗ > 0 and for each
T ∈ (0, T ∗) a continuous function VT : R≥0 × Rn →
R≥0 such that for all y ∈ Rn, all k ≥ k◦ ≥ 0 and all
T ∈ (0, T ∗) we have that

α1(|y|) ≤ VT (k, y) ≤ α2(|y|) (9)
VT (k + 1, FT (k, y))− VT (k, y) ≤ −Tα3(|y|) (10)

and for all x, r, s ∈ Rn,

|VT (k, r)− VT (k, s) | ≤ L (max{|r| , |s|}) |r − s| .
(11)

Remark 1 We note that the properties in Definitions
1 and 3 are very related. In particular, it was shown in
[13] that (9), (10) are equivalent to UGAS in Definition
1 (see (6)). However, the converse Lyapunov theorem
in [13] does not produce a Lyapunov function satisfying
the condition (11) and we believe that constructing such
converse Lyapunov functions is an open problem in the
literature.

Assumption 1 There exist γ2 ∈ N , γ1, γ3 ∈ K∞
and T ∗ > 0 such that for all ξ ∈ Rn, k ≥ 0
and T ∈ (0, T ∗) we have |fT (k, x, z)| ≤ γ1(|ξ|)
and |fT (k, x, z)− fT (k, x, 0)| ≤ Tγ2(|x|)γ3(|z|), where
ξ> = [x> y>].

Theorem 2 Suppose that fT of the system (7) sat-
isfies Assumption 1. Then, the system (7), (8) is
UGAS if the following conditions hold: (i) The system
x(k + 1) = fT (k, x(k), 0) is Lyapunov UGAS; (ii) The
system (8) is UGAS; (iii) The system (7), (8) satisfies
the property UGB.

We stress that UGB is in general difficult to check.
In [9] we present several sufficient conditions for this
property to hold and which are inspired by [1, 17]. For
the sake of completeness, we close this section with a
result for UGB which we will use later on in the case
study. To this end, we introduce the following technical
hypothesis.

Assumption 2 Suppose that there exist α̃1, α̃2, ϕ ∈
K∞, γ̃1, γ̃2 ∈ N , c, T ∗ > 0 and for each T ∈ (0, T ∗)
there exists VT : R≥0 × Rnx → R≥0 such that for all
x ∈ Rnx , z ∈ Rnz , k ≥ 0 and T ∈ (0, T ∗) we have that
:

α̃1(|x|) ≤ VT (k, x) ≤ α̃2(|x|) + c (12)
VT (k + 1, fT (k, x, z))− VT (k + 1, fT (k, x, 0))

≤ T γ̃1(|z|)ϕ(VT (k, x)) + T γ̃2(|z|) (13)
V (k + 1, fT (k, x, 0))− VT (k, x) ≤ 0 (14)∫ ∞

1

ds

ϕ(s)
= ∞ . (15)

Proposition 1 [10] Consider the system (7) with in-
put z and under Assumption 2. If furthermore the so-
lutions of the system (8) satisfy the summability con-
dition

T
∞∑

k=k◦

µ (|φz
T (k, k◦, z◦)|) ≤ ρ(|x◦|) , (16)

with some ρ ∈ K∞ and µ(s) := γ̃1(s) + γ̃2(s)
ϕ(1) then, the

system (7) is UGB.

3 Tracking control of the unicycle

We revisit now the problem of tracking control of a
mobile robot of the unicycle type. This problem has
been thoroughly studied in the continuous-time context
via many different approaches (see [6] for a survey; for
a more recent text with an updated list of references
see [7]). To illustrate the utility of our results we will



revisit the cascades approach used in [16] for a 3 degrees
of freedom cart. The results may be extended to higher
dimension systems, following for instance [7].

While the problem setting is the same as considered in
the continuous-time context, we will see that the proof
techniques employed in the discrete-time case are quite
different. For instance, since we deal with approximate
discrete-time models, some important structural char-
acteristics are lost. Hence, we believe that the proofs
of this section are interesting in their own right.

According to [5] the context of the problem can be set
as follows. We have a mobile robot with two directional
wheels and two “fixed” wheels and whose motion is
described by

ẋ = v cos θ; ẏ = v sin θ; θ̇ = ω , (17)

where x, y are the Cartesian coordinates of the cen-
ter of the axis joining the directional wheels and θ is
the orientation angle of the directional wheels. The
robot is required to follow a trajectory generated by
an exosystem, i.e., a fictitious “reference robot” with
kinematics

ẋr = vr(t) cos θr; ẏr = vr(t) sin θr; θ̇r = ωr(t) (18)

where vr(t) and ωr(t) are given reference velocities.
Then, the tracking errors satisfy the set of equations
(see [5, Lemma 1])

ẋe = ωye − v + vr(t) cos θe (19a)
ẏe = −ωxe + vr(t) sin θe (19b)
θ̇e = ωr(t)− ωv , (19c)

where (·)e := (·)r − (·). The system is velocity-
controlled, i.e., the control problem reduces to finding
control inputs ω and v (which also correspond to the
actual angular and linear velocities of the cart) such
that the origin of (19) is UGAS.

There are numerous solutions to this problem in the
context of continuous-time (e.g. [3, 11] and [7] for
a recent literature review). Here, we will revisit the
cascaded approach proposed in [16] whose main fea-
ture is that the control laws are linear. To illustrate
and motivate our results we will proceed to solve the
same problem with a linear time-varying discrete-time
controller which we will redesign based on the Euler-
discretization of the error dynamics,

xe(k + 1) = xe(k) + T [ωye(k)− v + vr(k) cos θe(k) ]
ye(k + 1) = ye(k) + T [−ωxe(k) + vr(k) sin θe(k) ]
θe(k + 1) = θe(k) + T [ωr(k)− ω ] .

(20)
Thus, our control problem consists of designing v and
ω such that (20) is UGAS.

We will solve this control problem following a similar
approach to that of [16] where it was shown using re-
sults for continuous-time cascaded systems, that the
system (19) in closed loop with v = vr(t) + a2xe and
ω = ωr(t) + a1θe is UGAS for appropriately chosen a1

and a2.

The controller structure that we use

ω = ωr(k) + a1θe(k); v = vr(k) + a2xe(k) + Tϑ (21)

where a1, a2, ωr(k) and vr(k) come from the
continuous-time control law proposed in [16] and ϑ is an
extra control input which depends on k, xe and ye and
that we will design with the aim of improving the sys-
tem’s performance. More specifically, the motivation
for the control laws above is that as in the continuous-
time context, the closed loop system

xe(k + 1) =
ye(k + 1) =

(1− Ta2)xe(k) + Tωr(k)ye(k)− T 2ϑ
ye(k)− Tωr(k)xe(k)︸ ︷︷ ︸

F1T (k, x(k))

+

T [ a1θe(k)ye(k)− vr(k) + vr(k) cos θe(k) ]
T [−a1θe(k)xe(k) + vr(k) sin θe(k) ]︸ ︷︷ ︸

GT (k, x(k), z(k)) (22)
θe(k + 1) = (1− Ta1)θe(k) =: F2T (k, x(k)) , (23)

where z := θ and x := col[xe, ye], has a cascaded
structure.

Hence, the control laws (21) are designed with two
main ideas in mind: 1) to have as simple as possi-
ble controllers; 2) that the closed loop system verifies
the conditions of our main results for cascades. More
specifically, notice that the bottom subsystem (23) is
independent of xe and ye and is UGES2 for values of
a1 sufficiently small (T ∗a1 < 1). Also, the intercon-
nection term GT (k, x, z) is linear in xe and ye. Hence,
our results suggest that we only need to design ϑ as a
function of xe and ye only so that the zero-input (i.e.,
with GT ≡ 0) subsystem in (22) be UGAS (or possibly,
UGES).

Notice that in the particular case that ϑ ≡ 0 we obtain
the emulated (discretized) continuous-time control law.
However, as we will illustrate below, when carefully de-
fined this extra degree of freedom in the control design
allows to improve performance and, on occasions, to
enlarge the domain of attraction with respect to that
of the emulated continuous-time control law. Thus,
our control scheme can be regarded as a redesign of the
cascaded-based continuous-time controller of [16]. Sim-
ulation results at the end of this section will illustrate
this.

2That is, there exist c, λ and T ∗ > 0 such that∣∣∣φθe
T (k, k◦, θe(k◦))

∣∣∣ ≤ c |θe(k◦)| e−λT (k−k◦) for all k ≥ k◦ ≥ 0,

all θe(k◦) ∈ R and all T ∈ (0, T ∗).



Here, we will establish UGES of the zero-input system
based on a property of persistency of excitation. How-
ever, we will need a specific reformulation of this prop-
erty3 within the framework of discrete-time parameter-
ized systems. This is introduced next. To compact the
notation, in the sequel we will use ωrk

:= ωr(k).

Definition 4 (PE) Let ωr : Z≥0 → Z be a function
produced by sampling a function ψ : R≥0 → R at rate
T . The function ωr is said to be persistently excit-
ing (PE) if there exist positive numbers µ, L and T ∗

such that for all T ∈ (0, T ∗) and all j ≥ 0 we have
T

∑j+`L,T

k=j ω2
rk
≥ µ.

Proposition 2 (Main result) Consider the system
(20) in closed loop with (21). Assume that the signal
ωrk

is PE and there exists T̂ , wM > 0 such that for all
k ≥ 0 and T ∈ (0, T̂ )

max

{
|vrk

| , |ωrk
| ,

∣∣ωrk
− ωrk−1

∣∣
T

}
≤ wM . (24)

Then, there exists a2 > 0 such that for all K, a1 > 0
and ϑ(k, x) with |ϑ(k, x)| ≤ K |x|, the system is UGAS.

Proof. It follows by invoking Theorem 2. Firstly,
we see that Assumption 1 holds trivially in view of
item 1 of the proposition. To see more clearly, notice
that (24) implies that fT (·, ·, ·) is continuous and uni-
formly bounded in the first argument. Item 1 of the
proposition also implies that there exists c > 0 inde-
pendent of T , such that for all T ∈ (0, T ∗), we have
that |GT (k, x, z)| ≤ Tc |z| (|x|+ 1). Secondly, it is evi-
dent that the origin of (23) is uniformly globally expo-
nentially stable for any a1 and any T ∈ (0, T ∗) where
T ∗ > 0 is such that 1 > a1T

∗ > 0 and therefore the
trajectories φz

T (·, ·, ·) are uniformly summable, that is,
it satisfies (16) with µ(s) = s and ρ(s) ∝ s.

Proof of UGES of x(k + 1) = F1T (k, x(k)): Consider
the function VT (k, x) := |x|2 − εωrk−1xeye with ε :=
αy + T and αy > 0. Observe that this function is
positive definite and radially unbounded for sufficiently
small αy, T ∗ and wM ; indeed, we have that

c1 |x|2 ≤ VT (k, x) ≤ c2 |x|2 (25)

with c1 := (1−0.5(αy+T ∗)wM ) and c2 := (1+0.5(αy+
T ∗)wM ) which are clearly independent of T .

One can also show that there exists K1 > 0 such that
for all T ∈ (0, T ∗), x ∈ R2 and k ≥ 0,

∆VT

T
≤ −(αxx

2
e + αyω

2
rk
y2

e) + TK1 |x|2 . (26)

3With respect to the original one from [2].

Let us introduce the following auxiliary function:

WT (k, x) := −T
∞∑

i=k

e(k−i)Tωri
y2

e

for which we claim the following (for the proof, see the
Appendix).

Claim 1 Suppose that the signal ωrk
is PE. Suppose

also that there exists wM > 0 such that for all i ≥ 0
we have |ωri

| ≤ wM . Then, there exist strictly positive
numbers T ∗, c3, c4,K2, α̃y such that for all T ∈ (0, T ∗),
k ≥ 0 and ze ∈ R2 we have

−c3y2
e ≤ WT (k, x) ≤ −c4y2

e (27)
∆WT

T
≤ ω2

rk
y2

e − α̃yy
2
e +K2x

2
e . (28)

Let now T ∗ be generated by the claim above and
such that (25) and (26) hold. Then, we can com-
plete the proof by showing that there exists ε >
0 and T̃ > 0 such that UT (k, x) := VT (k, x) +
εWT (k, x) is a Lyapunov function that proves UGES.
Indeed, let ε := min

{
c1
2c3
, αx

2K2
, αy

}
and T̃ :=

min
{
T ∗, 1

2K1
min

{
αx

2 , εα̃y

}}
where α̃y comes from

(28). Then it is easy to show that UT satisfies

c1
2
|x|2 ≤ UT (k, x) ≤ c2 |x|2 (29)

∆UT

T
≤ −c̃3 |x|2 , (30)

where c̃3 = 1
2 min{αx

2 , εα̃y}. This completes the proof
invoking standard Lyapunov arguments.

Proof of UGB: We invoke Proposition 1. It is worth
recalling to avoid confusion in the notation, that the
state x in Proposition 1 corresponds here to with
x = col[xe, ye] and the input z in Proposition 1 cor-
responds here to z := θe, . Hence, we proceed to ver-
ify the conditions of the proposition with fT (k, x, z) :=
F1T (k, x)+GT (k, x, z) as defined in (22) and VT (k, x) =
UT (k, x). The bounds (12) and (14) hold from (29) and
(30). The conditions (13) and (15) hold with ϕ(s) = s,
γ̃2 = d2s, and γ̃1(s) := d3s, d2, d3 > 0. This is because
UT (k, ·) is quadratic and GT (k, x, z) contains terms of
linear growth in x for each fixed k and z and trigono-
metric functions, which can be over-bounded by a lin-
ear function of x. Also, GT (k, x, ·) can be over-bounded
by a linear function for each fixed k and x. Finally, (16)
holds with a linear function ρ(s) := ρ s since µ(s) is in
this case a non decreasing function of linear growth and
φθe

T (k) decays uniformly exponentially to zero.

Now we illustrate how we can use Proposition 2 to
improve the performance of the system with the re-
designed controller. Since the correction ϑ can be cho-
sen arbitrarily, we can choose it so that negativity of
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Figure 1: Tracking errors for x and y and the control
input v given by (21), (31).

∆V is enhanced, that is,

ϑ(k, x) :=
(a2

2 + ω2
rk
− εa2)xe − (2a2ωrk

− εω3
rk

)ye

2(1− a2T ) + εω2
rk
T

(31)
with ε = αy + T . The simulations in Figure 1 show
that the performance is considerably improved. We
have simulated the system above in SimulinkTM of
MatlabTM with a2 = 70, a1 = 10, wr(k) = 20 sin(kT ),
T = 0.01 and αy = 2 − T . We show only the re-
sponses for the states xe and ye as well as v since these
are the only variables affected by the additional input
Tϑ. We show simulations for the system’s response
with ϑ = 0 and with ϑ = 0.5[ (a2

2 + ω2
rk
− εa2)xe −

(2a2ωrk
− εω3

rk
)ye ]. The best apparent performance is

for the latter. It is also clear from the plots, that even
though the correction ϑ is linear in the state and actu-
ally (ϑ ≈ O(1) |x|), this correction is not comparable
to “adding gain” to the control input. Notice that in
this case the resulting control effort is actually smaller
than in the case of the continuous-time based controller
(i.e., when ϑ = 0).
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[12] D. Nešić and A. Loŕıa . On uniform asymptotic sta-
bility of time-varying parameterized discrete-time cascades.
Technical report, LSS, 2002. Submitted to IEEE Trans. Au-
tomat. Contr.
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