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Abstract

A unified theory of continuous time impulsive behaviors (con-
sisting of linear combinations of the Dirac distribution and its
derivatives, generated by “inconsistent initial conditions”) and
of discrete time impulsive behaviors (consisting of backward
solutions with finite support, generated by “inconsistent final
consitions”) is developed first in an analytic setting, then in an
algebraic one; the latter is valid for possibly time varying sys-
tems. The effectiveness of the theory is illustrated through
several examples.

1 Introduction

Impulsive behaviors of continuous time-invariant (CTI) linear
systems are due to “inconsistent initial conditions” following
an abrupt change in the system. Such a change is called a
“temporal interconnection” [2]; typical temporal interconnec-
tions are: switches in electrical circuits, mechanical linkages
made active or inactive, valves switched in hydraulic systems,
etc. [8]. A system resulting from a temporal interconnection
is a temporal system [2]. Impulsive behaviors of CTI temporal
systems have been extensively studied for more than 20 years:
in [25] and [26], which are among the first relevant contribu-
tions, systems are considered in descriptor form or as defined
by a “’polynomial matrix description” (a more detailed theory
can be found in [24]); systems described by a "behavioral rep-
resentation” (in Willems’ spirit [27]), are considered in [15],
[14]. According to Fliess [6], a linear system can also be de-
fined as a finitely generated module over a differential polyno-
mial ring, and this setting is ”dual” (in the categorical point of
view widely used by Oberst [22]) of the behavioral one. Such
a duality has also been used in [2] to extend the theory of im-
pulsive behaviors to continuous time-varying (CTV) temporal
systems. Assuming that the system is defined by an equation
of the form

B(®)w=0 (1)

where B () is a polynomial matrix and 9 is the distributional
derivative (referred to as the “continuous-time derivative” in
the sequel), the impulsive behavior is determined by the struc-
ture of the zero at infinity of B (8) [24], [15], or equivalently
by the structure of the module of uncontrollable poles at infin-
ity (also called input-decoupling zeros at infinity when the input

variables are specified) of the temporal system defined by the
matrix B (9) [2], [4].

Discrete time-invariant (DTI) linear systems in descriptor form
have been studied in [19], [20], [17], [18], and it has been
shown that they may have forward and backward solutions,
determined by boundary conditions consisting in a combina-
tion of initial and final conditions. The existence of back-
ward solutions is linked to the Kronecker canonical form of the
matrix pencil associated with the descriptor system, and more
specifically to its infinite elementary divisors. This connec-
tion is also made in [1], [12], [13] in the case of discrete-time
auto-regressive representations, not necessarily in descriptor
form. Such a representation can be put in the form (1) with
0 := q — 1, where ¢ is the usual shift forward operator (this
0 is referred to as the “discrete-time derivative” in the sequel).
For a discrete-time system, a “temporal interconnection” is an
interconnection made up fo a final time (as opposed to the case
of continuous-time systems, where it is made from an initial
time).

Without loss of generality, this initial or final time is assumed
to be zero in the sequel. System (1) can be viewed as resulting
from the interconnection of the subsystem

B(O)b =e )

with the trivial subsystem e = 0 (where @ denotes the variable
w when leaving aside the interconnection); assuming that this
interconnection is temporal, i.e. e(t) = 0 fort € T, where
T = [0, +o0[ in the continuous-time case and T' = |—c0, 0]NZ
(Z denoting the set of integers) in the discrete-time one, system
(2) is said to be a temporal system.

The aim of this paper, which elaborates upon some remarks
already made in [2], is to develop a unified theory of continu-
ous time and discrete time behaviors. An analytic approach is
first developed in Section 2 for time-invariant systems. A more
general algebraic approach is then developed in Section 3 for
possibly time-varying systems (detailed proofs are omitted, due
to the lack of place, and can be found in [3]).

2 Impulsive behaviors of time-invariant sys-
tems: a unified analytic approach

Impulsive behaviors of CTI systems can be studied using the
"causal Laplace transform” (proposed in [2] to clarify the clas-
sic ”L_ Laplace transform” and briefly recalled in Section 2.1).
Impulsive behaviors of DTT systems can be studied using the
“anticausal Z-transform”, developed in Section 2.2. As shown



below, these transforms have similar properties, giving rise to
a "unified analytic approach” for impulsive behaviors of CTI
and DTT systems.

2.1 A brief review of the causal Laplace transform

In the continuous-time case, interconnecting two systems from
time O consists in multiplying a function (such as the function e
in Section 1) by 1 — T, where T is the Heaviside function. Let
W be the subspace of R® consisting of all functions f such
that: f has a left bounded support, is infinitely differentiable
and is dominated by the function ¢ — e®¢ for some real « in a
neighborhood of ¢ = +00. Set

A = @,5oR0M™ 3)

where § is the Dirac distribution. The R [J]-module gener-
ated by YW is (as R-vector space): @ = YW & A. Set
S = (1-")W & Q. For any signal w belonging to S,
let w, be its causal component (i.e. its component in Q).
The causal Laplace transform L. (w) of w is defined as [2]:
L. (w) = L(wy), where L(w,) is the two-sided Laplace
transform of w, . The causal Laplace transform is not injective
on S, since ker L, = (1 — T) W. Foranyw € S,

L. (0"w) = s"L. (w) — (Z s”i881> w 4)
=1

for every n > 0, where 3 is the operator defined on S as:
Iw := 0"w (07).

2.2 Anticausal Z-transform

We now consider the discrete-time case. Let Y be the sequence
defined by Y (¢) = 1 for ¢ > 0 and 0 otherwise (sequences are
considered and noted as functions definedon Z). Let S = Q =
W be the subspace of % consisting of sequences with left
bounded support, and let A := (1 — YT) W.! The identity (3)
still holds with § := 97T § is the sequence such that § (¢) = 1
for t = 0 and 0 otherwise.

Definition 1: Letw € S, and let w_ be its anticausal com-
ponent, i.e. w_ = (1 —T)w. The anticausal Z-transform of
w, noted Z, (w), is: Z, (w) = Z (w_), where Z(w_) is the
two-sided Z-transform of w_.

The Z,-transform inherits all classic properties (not detailed
here) of the usual Z-transform; it is not injective, since
kerZ, = TW.

Let 8f,n > 0, be the operator defined on .S as follows: for any
w € S, fw = —w (1) and Offw = 8y (8"w),n > 0. The
following theorem is easily proved by induction:

In the CTI case as in the DTV one (and a fortiori for time varying systems
studied in Section 3.5), S may be too small for System (1) to have all its
solutions in that space; however, as far as the impulsive behavior is concerned,
S is large enough.

Theorem 2: Sets:= z — 1; foreveryn > 0,
Zo (O"w) = s"Z, (w) — (Z s”i831> w. (35
=1

2.3 Impulsive behaviors of CTI and DTI temporal sys-
tems

Setting £ = L. in the CTI case and £ = Z, in the DTI one,
(4) and (5) reduce to one formula. In both cases, the following
result is clear:

Lemma 3: For every n > 0, 9f6 = 0.
Therefore using (4) and (5) one obtains (with §(*) := 97§):
Proposition 4: Foreveryn > 0, £ (s7) = 6™ + ker £.

Note that:

Q _
o T = AL 6
R oy (6)
From the above, and according to the characterizations given in
[24], [15] for the impulsive behavior 5, in the CTI case, one
and deduce the following result?, as stated in [2]:

Proposition 5: The structure of the impulsive behavior B is
determined (in the CTI case and in the DTI one as well) by the
structure of the zero at infinity of B ().

This result is specified below (see Proposition 7 and Theorem
14). According to [1], in the DTI case, B is the "backward
subspace” corresponding to a maximal forward/backward de-
composition of the whole space of solutions [17].

3 TImpulsive behaviors of time-varying systems:
a unified algebraic approach

3.1 Rings, modules and cogenerators

Let K be a commutative field; equipped with an a-derivation
v (a notion which is clarified below in the two cases we are
concerned with), it becomes a “differential field”; « and ~y are
endomorphisms of K. Then, R := K [0; a, 7] denotes the ring
of “differential polynomials” of the form » ., a; 9%, where
a; € K and I is a finite set of non-negative integers, equipped
with the “commutation rule”: da = a®d + a” [5]. The field
of constants of K (consisting of all elements ¢ € K such that
a” = 0and a® = a) is denoted by k. Two cases are considered
in what follows:

e In the continuous-time case, O is the continuous-time
derivative, v = 0 and « is the identity. The above com-
mutation rule is the usual Leibniz rule.

e In the discrete-time case, J is the discrete-time deriva-
tive, v = d and « is the shift forward operator ¢ [9].

2 An equivalent result has been recently established for the DTI case in [12],
[13].



The commutation rule, in this case, is explained by the
following identity: a(t+Dw(t+1) —a(t)w(t) =
a+ D (wit+D)—w@))+at+1) —alt)w(t).

In both cases (assuming, in the latter, that « is an automorphism
of K), R is a principal ideal domain [5]. When no confusion
is possible, Jw and a” are respectively noted w and a. Strictly
speaking, there is a difference between 0 and ~y: the former is
an operator on signals, the latter on coefficients belonging to
K.

Setog = 7%, B =a!andlet S := K|[[o;3,7]] be the ring
of formal power series in o, equipped with the commutation
rule oa = aPo — 0aP7o [5] deduced from the commutation
rule of R; this ring is a principal ideal domain and is local
with maximal ideal (o). The skew field of Laurent series in &
(equipped with the same commutation rule as S) is denoted by
L :=K ((0;8,7)); it is obtained by localizing and completing
at infinity the ring R.

Let sMod (resp. sModf) be the category of left S-
modules (resp. of finitely generated left S-modules), and let
MT €gModf. The module Mt can be decomposed as a di-
rect sum: M+ = Tt@ &F, where T+ = T (M) is the
torsion submodule of M T and where &+ =g M /T is free.
The ascending chain of invariant factors of 7, if any, is of the
form (o#r) C ... C (o#1), where 1 < py < ... < p, and

N~ S
T+ ES@W' (N

Set ), = (Ui#, and, for u > 1, let 5(+=1) be the canonical
image of 1 € S in C,,. Consider the following S-module
morphism from Cy, t0 Cyq1: s + (0#) = o s + (o#F1) . Ttis
a monomorphism through which €, is embedded in C, ., and

5= is identified with o6(#), hence
Gy = ol (5071 ®)

where <5(i)> =K 60, Set

A = ditect lim Gy = @30 (). ©)

The S-module A is called the canonical cogenerator of sMod.
It is the injective hull of C (thus it is an injective cogenerator
of gMod). This construction of A is classic and due to Matlis
in the commutative case (see [16]). As S is complete (for the
(o)-adic topology), the endomorphism ring E of A is isomor-
phicto S.

Let M €sModf; this module is presented by a matrix B (o)
over S (which may be assumed to be right regular without loss
of generality, with k& columns). This means that there exist
generators wy', ..., w, of M1 (written M+ = [w']g, where
wh = [wfr,,w,ﬂT) such that B (o) w* = 0. Here, M+ =
coker e BT (o), where e BT (o) is the S-morphism S? 3 e —

eB* (o) € S* (the elements of the free modules S¢ and S*
are represented by row matrices in the canonical bases, and

e BT () operates on the left).

For any M+ ¢cgModf, set (M*)" = Homg (M+, A);
(M *+)* in an E-module, isomorphic to the set of elements 1 €
A* such that B (0)w = 0, i.e. to ker B (o) e, where B () e
right-operates on the elements of A (represented by column
matrices).  Similarly, set (M1)™" = Homg ((M+)* ,A).
The module A defines a "Morita duality” from S to E, thus

the S-morphism M — M** is an automorphism of gModf
(161, § 19E).

3.2 A key isomorphism

Tt is assumed in this § and in the next one that K =%R.

Consider first the continuous-time case. The operator J is an
automorphism of the R-vector space S, and ¢ = ' is the
operator defined on S by: (ow) () = ffoo w (1) dr (this op-
erator is called the “continuous-time integrator” in the sequel).
The space S is an S-module, () is an S-submodule of S and
YW is an S-submodule of (). The R-module A is not an
S-module, but A, defined by (6), is an S-module. Note that

5
- WeaerTw —

N 2 A. (10)

Let 7 be the R-isomorphism (6), or equivalently (10) :

T:A—A (an

One has 0§ = T; setting § = 7 (§), 06 = 0, thus 5 and & can
be identified, as well as the S-modules A and A.

In the discrete-time case, the operator @ is still an automor-
phism of the R-vector space S, and ¢ = 971! is the operator
defined on S by: (ow) (t) := Z;;l_oo w () (this operator
is called the “discrete-time integrator” in the sequel). The iso-
morphism (6) , (11) still holds and the S-modules A and A can
still be identified. Obviously, the discrete-time case is com-

pletely analogous to the continuous-time one.

3.3 Impulsive behavior in the time-invariant case

Consider the temporal system (2) where g € S% and & € S,
The matrix B (8) is right regular. Let ¢ be the canonical epi-
morphism S — A. We are interested in the impulsive so-
Iutions, i.e. in those solutions whose components are linear
combinations of elements of A and which are generated by a
temporal interconnection. Due to isomorphism (11), these so-
lutions can be found by localizing and completing at infinity
the ring R (i.e. by embedding R in L), and by replacing the
elements ; (1 <4 < k) and g; (1 < j < q) by their canonical
images ; = ¢u; and g; = égj in A. Let us detail this.

As is well known, there exist unimodular matrices U (o) €



§9%4 and V (o) € 8#** such that

U(@)B@)V~' (o) =[ diag{c”} 0]. (12

(1 < ... <yy,), which is the Smith-MacMillan form at infin-
ity of B (9) [11]. Define the finite sequences (7;), <;<, and
(i)1<icqy a0 7 = max(0,—v;) and g; = max(0,v;).
Among the elements 7; (resp. [i;), those which are nonzero
(if any) are called the structural indexes of the pole at infin-
ity (resp. of the zero at infinity) of the matrix B (9) [4]; they
are put in decreasing (resp. increasing) order and denoted by
m (1 <4< p)(resp. p; (1 <i<r)). Setd =V (o)W and
h=U""(0)§; from (2),

i =0

Cfﬂif}i:

=48

g:} 1<i<q.

Asforeveryi € {1,...,q},§; = 0, one has h; = 0 therefore,

[ Z(o)
where ¥ (o) =diag {o"}, ., . Obviously:

Ok ] =0 (13)

Proposition 6: The set of solutions of (13} is the E-module
Aco XA*~9 where Ay, = ker X (o) o

The E-submodule A, of A., xA¥~¢ consists of those so-
lutions which are generated by the temporal interconnection.
Therefore, one obtains the following result, which is a refor-
mulation of Proposition 5 (but is obtained by a rationale where
tedious calculations are avoided):

Proposition 7: 1) The algebraic impulsive behavior of the
temporal system (2) is A.,; ii) the analytic impulsive be-
havior of the temporal system (2) is the R-vector space By,
C AY consisting of the elements v = [y, ...,vq]T such that

Vi = 7'_1 (172) and [7_71, ...,7.7q]T S AOO

3.4 TImpulsive behavior of systems with time-varying coef-
ficients in a field

The Smith-MacMillan form at infinity has been defined in [4]
for a matrix over R when the coefficient field K is not neces-
sarily a field of constants (see also [21]); this situation is con-
sidered here. Let B (9) € R9** be a right regular matrix, let
X(0) = [ £(6)  Oyx(k_q) | be the matrix defined from
its Smith-MacMillan form at infinity as in § 3.3, and set M+ =
coker o3 (0); thus M+ = T+@ &+, where ®+ =g S#~¢ and
where 7+ = T (M) has the structure (7).

Proposition 8: Let A™1 (o) BT () be any left coprime fac-
torization of B (8) over S; then, M =g coker e B+ (7).
Definition 9: The S-module M+ = coker e BT () (uniquely
defined from B (9), up to isomorphism) is called the impulsive
system defined by B (d). The E-module Ao, = (71)" is
called the algebraic impulsive behavior defined by B (9).
Proposition 10: 1) For any p > 0, (C,,)" =k C,, given by

(8). ii) Assuming that 7" has the decomposition (7), A
~ r *
—K Hi:l (Cui) .

Let us take the following general definition:

Definition 11: 1) Generally speaking, an algebraic impulsive
behavior 1s an E-submodule of Ak, for some natural integer k.
1) A subbehavior of an algebraic impulsive behavior a.. is an
E-submodule of a...

Algebraic impulsive behaviors enjoy the following properties:

Proposition 12: 1) Every algebraic impulsive behavior is of the
formker C* (o) e, where CT (o) is a right regular matrix over
S. ii) Let asc C AF be an algebraic impulsive behavior, and
let L (o) be a matrix over S with k columns; then, L (o) as, is
a subbehavior of a.,.

Let us define an order relation on algebraic behaviors:

Definition 13: Let al_ and a2, be two algebraic behaviors;
aZ. < al_ means that there exists a right regular matrix L (o)
over S such that a2, = L (¢) al. (where L (o) has the suitable
number of columns for this expression to make sense).

Note that by Proposition 12, ii), a2, < al  implies that a2 is
a subbehavior of al_, but there are subbehaviors of al, which
are not of this form (for example, if al = A¥ every set of the
form L (o) al, is equal to Al for some integer I, 0 < I < k).

The algebraic impulsive behavior A, = (71)" is directly
characterized from (M1)" (where M+ = coker e Bt (0)) by
the following property, which also characterizes 7+ (and there-
fore gives all the desirable information).

Theorem 14: 1) Let L be the set of all algebraic impulsive
behaviors as, such that as, < (M1)* and for which there ex-
ists a natural integer p such that o#a,, = 0. An element of
L is maximal if, and only if it is E-isomorphic to A,,. ii)

Tt = (Aoo)*

Let us briefly indicate on which properties are based the above
results: Proposition 8 is proved by an elementary calculation.
Proposition 10, 1) is easily proved by induction, and ii) results
from a basic property of the functor Hom. Proposition 12, i)
is a consequence of Matlis’ theory, and ii) is true because Ais
an injective S-module [22]. Theorem 14, i) is a consequence
of Proposition 10, ii) and of the fact that the S-module A is
faithful; ii) is true because A is a cogenerator [22], [16].

3.5 Analytic impulsive behavior in the time-varying case

In § 3.4, where K is a field containing nonconstant elements, an
algebraic impulsive behavior has been defined and studied, but
not an analytic one. The difficulty is that the spaces W, Q, A,
etc., defined in Sect. 2 no longer have a natural structure of
R-module. The isomorphism (11) does no longer make sense.

Therefore, it is now assumed that K is a differential domain,
e.g. K = R [t] equipped with the a-derivation . The opera-
tors @ and o are those defined in Sect. 1 and § 3.2. The rings
R = K[d;a,7] and S = K |[[o; 3,7]] (where 8 = o~ 1) are
Noetherian domains; they can still be embedded in the domain
L =K ((o;8,7)) (which is no longer a field). Theideal (¢)is
two-sided. The units of S are the power series whose constant



term is a unit of K, i.e. a real number. The spaces W, (), A, as
introduced in Sect. 2, are again R-modules, (7,.5 and TW are
again S-modules, and the isomorphism (11} holds. The dif-
ficulty is that R and S are no longer principal ideal domains.
Therefore, to obtain relevant results, a regularity assumption
must be made.

Definition 15: The temporal system (2) is said to be impul-
sively regular, if its matrix of definition B (0) has a Smith-
MacMillan form at infinity, i.e. if there exist unimodular ma-
trices U (o) and V (o) over S such that (12) holds.

Assuming that the temporal system (2) is impulsively regular,
Propositions 6 and 7 are still valid. As in § 3.4, set MT =
coker o3 (0), so that Mt = T+@ &+, where &+ =g Sk—¢
and where 7+ = T (M™) has the structure (7). To recover
Proposition 8, the following notion must be introduced:

Definition 16:  Let A(c) and B™ (o) be two matrices
over S, having the same number of rows, and assume that
V(o) = [ A(o) B* (o) | is right regular. The pair
(A(o),B* (0)) is said to be completely left coprime if V (o)
is completable, which means that there exists a matrix W (o)
suchthat [ VT (o) W7 (o) | is unimodular [5].

Proposition 8 can now be extended as follows:

Proposition 17: 1) Assuming that the temporal system (2) is
impulsively regular, B (9) has a completely left coprime fac-
torization (CLCF) over S. ii) Let A=! (¢) BT (¢) be any
CLCF of B (8) over S; then, M T =g coker e BT (o).

Let sModstruc be the be the category of all finitely generated
S-modules of the form & @ 7+, where ® is free and 71 is
torsion with the structure (7). One can show that A is an
injective cogenerator for the category sModstruc. Therefore,
the following results are still valid: Proposition 10, Proposition
12, ii), and Theorem 14. The analytic impulsive behavior B,
can be calculated using Proposition 7, ii).

Consider the following example (CTV or DTV):

-1 0%+t 0 0
B@=| o 0 2 -1 (14)
0 1 -1 0
and write w = [ uy Ui U Y2 ]T. The corre-

sponding temporal system can be viewed as the series tempo-
ral interconnection of System 1, with input w4, output y; and
equation 41 + ty1 — uq = 0, with System 2 with input us, out-
put y» and equation iy — y2 = 0; the interconnection equation
is us = y;. In the interconnected temporal system with input
u1 and output ¥, the two derivatives are hidden”. It is easy
to show that this temporal system is impulsively regular; in ad-
dition, one has the following CLCF: B (8) = A~! (¢) B* (o)
with 4 (¢) = diag (0%,0%,1) and

{—02 1402t 0
BT (o) = 0 0 1

1o i

The matrix B¥ (o) is equivalentover Sto [ & 0 | with ¥ =
diag (1, 1, 02), thus M+t =g S % The impulsive system
M is defined by the following equations:

(1+0%) g —o®uf =0; uf —0yy =0; yf =ug
and 7t = [vt]g where

o (vT) =0, vt =tyl +yf —ui. (15)
The space B, can also be analytically calculated. One obtains:

for ¢ > 0 in the CTV case?, and for ¢ < 0 in the DTV one,
tyr (8) +y2 (8) — w1 () = 18 (£) + aod (t) == v (1) (16)

where ag = 8§ (y1 — u2) and a; := 83 (y1 — u2), which is
consistent with Proposition 7, ii): B is the subspace of A
spanned by v as (ag, 1) spans £ x . This example illus-
trates the fact that, for impulsively regular time-varying tempo-
ral systems as for time-invariant ones, impulsive motions occur
due to "inconsistent initial conditions” in the continuous-time
case and to “inconsistent final conditions” in the discrete-time
one (with respect to the interconnection equation).

An impulsive singularity arises if a system coefficient annihi-
lates a part of an impulsive motion when vanishing (e.g., in
the continuous-time case, an impulsive motion proportional to
§ is annihilated by a coefficient a such that a (0) = 0). A
“regularization procedure” can then be used. In the CTV case,
one has t*6(W = (—1)" 5(n=k) thus when operating on A
(resp. A), the operators t*9™ and (—l)k Ok (resp. tho™ and
(=1)" g +k) are equivalent, written

oA~ (1) ok e A (1) ot (17)

Consider the following example, which is impulsively singular:

o= 0]

The variable w, is discontinuous at ¢ = 0 due to the second
row, and its 4st order derivative in the first row generates el-
ements of A. One can use (17). For the "regularized tem-
poral system”, MT =g S & 7+ and T+ = [vt]g where
o2 (vt) =0, vt = wi — otw]. The space Bo, can be
analytically calculated (with the help of Theorem 14); one ob-
tains the following explicit expression: for ¢ > 0,w; (t) = 0

and wy (1) — [o_ 7wz (1) dr = f; (1) + f, (1) with f; =
—3w; (07) 8 — 24y (07)d and f, = (ws (07) — iy (07)) .
The space B, C A is spanned by f;. This is consistent with

the expression of 7+ and Proposition 7.

(18)

Remark 18: In accordance with Theorem 14 and Proposition
7, “impulsive motions™ such as the above f; are generated by
S-linear (not, in general, R-linear) combinations of w; to the
best of our knowledge, this point was not clear in the literature
(even in the time-invariant case).

}With the slight abuse of notation since the signals involved here are distri-
butions; but as they belong to the signal space .S, this notation can be justified.



4 Concluding remarks

The impulsive behavior of an “impulsively regular” (or of a
“regularized”) temporal system can be explicitly calculated us-
ing the theory developed in this paper. The algebraic approach

developed in Section 3 is the main contribution.

It has sev-

eral advantages: on one hand, it points out the structure of the
impulsive behavior; on the other hand, it can be easily comput-
erized, making it possible to calculate the impulsive behavior
of a possibly time-varying large-scale system.
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