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Abstract

Forced oscillations is a phenomenon in which a nonlinear
closed loop system is forced to operate at the same frequency as
the external forcing sinusoid. This paper derives the necessary
and sufficient conditions for which forced oscillations can be
achieved when a first order linear system is placed in a closed
loop relay feedback configuration. It is shown that a fundamen-
tal requirement for forced oscillations is the existence of a pair
of switch points which are separated by exactly half the period
of the external forcing signal. The conditions of forced oscil-
lations for this class of plants are derived by ensuring that this
basic requirement is satisfied. The results completely charac-
terise the forced oscillations conditions for all first order plants
with dead times. Simulation studies are given to illustrate these
results.

1 Introduction

Relays have become common tools for the auto-tuning of PI or
PID controllers since the initial work of Astrom in [1]. They
are mainly used to identify points on the process Nyquist curve,
from which essential information for tuning such controllers
can be extracted. While the use of relays in auto-tuning have
been shown to be successful for single loop systems, there are
still many unanswered questions in multi-loop systems.

One of these pertains to the existence of different limit cy-
cling patterns that are possible in a multi-loop system where
the interactions between sub-systems are significant. In cases
where the oscillation patterns are simple, extensions from the
single to multi-loop systems are straightforward. In other com-
plex cases, more investigations have to be carried out in or-
der to arrive at a feasible design. In [2], multi-input multi-
output (MIMO) systems were classified according to the dif-
ferent modes of oscillations that they exhibit when placed on
closed loop relay control where all relay amplitudes are the
same. Some design procedures were also given to handle the
different types of MIMO systems classified according to this
approach.

In many MIMO auto-tuning designs (see [3]), the existence of
different modes is either ignored or some adaptive means is

provided to find a suitable point where tuning can proceed,
[4]. The adaptive tuning approach is novel, interesting but
time consuming. A non-adaptive procedure is given in [5] to
set the relay amplitudes in such a way that all signals in the
loops have the same frequency (also referred to as Mode 1 be-
haviour). This result was based on the observation that Mode
1 behaviours can be viewed as forced osillations occuring in
one or more loops. By understanding the conditions for forced
oscillations, relay amplitudes which lead to Mode 1 behaviours
can be prescribed, without any adaptation.

In this paper, an extension of [5], with more complete results
for the existence of forced oscillations in single loop relay feed-
back systems, is given and analysed. In particular, necessary
and sufficient conditions for such an existence are given when
the linear dynamic model in the relay feedback system is a first
order plus deadtime (FOPDT) model. This class of plants is of
special interest because many industrial processes can be ap-
proximated by the FOPDT model.

This paper is organised as follows. Section 2 gives the gen-
eral switching equations for a FOPDT plant in a relay feedback
system driven by an external sinusoidal forcing signal at the
output. In Section 3, the fundamental requirement to achieve
forced oscillations is proposed. This is followed by Section 4
where the minimum amplitude of the forcing signal required
to enforce forced oscillations is solved. Simulation studies are
given in Section 5. Finally, we conclude the paper in Section 6.

2 General Switching Equations

In the configuration of Figure 1, the nonlinear element is an
ideal relay and g(s) is a FOPDT model. For a given ωf and
R > 0 of the external forcing signal,

f(t) = R sinωf t, (1)
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Figure 1: Forced oscillation configuration for SISO system



the steady state signals of c(t), and hence y(t), are periodic
with frequency not necessarily equal to ωf . If c(t) indeed has
a frequency ωf , then forced oscillation is said to have taken
place.

In any case, u(t) will be a signal, switching between +d and
−d depending on y(t). c(t) is then the response of g(s) to u(t).
The switching conditions satisfy

y(ti) = c(ti) + f(ti) = 0 (2)

at any switching instant, t = ti, assumed unknown. ti is de-
fined to be a switching instant if u(ti) is discontinuous at time
t = ti.

Under the most general conditions of the forcing signal, f(t)
and x(0+) < 0, switching is assumed to take place and, for d =
1, u(t) is a sequence of unit rectangular pulses that changes
when x(t) changes sign. Hence

u(t) = −[us(t) + 2
∞∑

k=1

(−1)kus(t − tk)] (3)

where us(t − tk) denotes the delayed unit step function. As-
suming zero initial conditions, c(t) in response to u(t) in (3)
can be written as :

c(t) = −[h(t) + 2
∞∑

k=1

(−1)kh(t − tk)] (4)

where h(t) is the unit step response of g(s). In expanded form
(4) may be written as

c(t) =




−h(t) t ∈ [0, t1)
−h(t) + 2h(t − t1) t ∈ [t1, t2)
...

...

(5)

(5) determines both the transient and steady state processes in
the configuration of Figure 1 for a general linear system, g(s),
in the relay feedback loop. From here on, g(s) is assumed to
have the following transfer function

g(s) =
Ke−Ls

Ts + 1
(6)

where K is the static gain, T is the time constant and L is the
time delay. These equations will be used in the following sec-
tions to show several results on forced oscillations. We show
that

(a) If ti0+1 = ti0 + Tf/2 for some i0 >> 0 and R > 0,
then steady state switching or limit cycling occurs with a
frequency of ωf = 2π/Tf and periodic oscillations with
frequency ωf are established after t = ti0 .

(b) The necessary and sufficient conditions for forced oscilla-
tions to occur in the class of plants in (6) are presented.

(c) For forced oscillations to occur at a frequency of ωf , we
require R ≥ |c(ti0)| where c(ti0) is the value of c(t) at
the switching instant, ti0 , during steady state. For some
plants, depending on the L/T ratio, this minimum R is
not sufficient to enforce forced oscillations.

3 Existence of Forced Oscillations

Forced oscillation due to an external forcing signal, f(t), is a
well known phenomenon which happens when R is sufficiently
large for a given ωf . However, if R does not exceed a certain
threshold for a given ωf , then forced oscillation cannot take
place but instead, self-oscillations occurs as if f(t) = 0. This
is well documented in [6] and [7]. The following proposition
gives an ideal condition for which forced oscillations will take
place when L < Tf/2. The analysis for L > Tf/2 is simi-
lar except that c(t) is slightly different due to the relationship
between L and switching instants ti.

Proposition 1. In the configuration of Figure 1, for a plant in
(6) with f(t) = R sin ωf t, where R is sufficiently large, forced
oscillations with frequency ωf < π/L exists with steady state
periodic switching of the relay at frequency ωf if there exists
two switch points, ti0+1 and ti0 which satisfies

ti0+1 = ti0 + Tf/2

for some i0 >> 1. Furthermore, c(t) = c(t + Tf ) for all
t > ti0 .

Proof. h(t) of a FOPDT system is given by

h(t) = K(1 − e−
(t−L)

T )

assuming zero initial conditions. For L < Tf/2, c(t) in (5)
becomes

c(t) =




0 t ∈ [0, L)
−Z0

t t ∈ [L, t1 + L)
...

...
−[Z0

t + 2Zi−1
t ] t ∈ [ti−1 + L, ti + L)

(7)

Z0
t

�
= h(t)

Zi−1
t

�
=

i−1∑
k=1

(−1)kh(t − tk) (8)

Suppose two pairs of switches occur such that

ti0+1 = ti0 +
Tf

2
(9)

ti0+2 = ti0+1 +
Tu

2
(10)

where Tu is unknown. Then the switching condition, y(ti0) =
y(ti0+1) = y(ti0+2) = 0 implies that

c(ti0) + R sin(ωf ti0) = 0. (11)

c(ti0+1) − R sin(ωf ti0) = 0 (12)

c(ti0+2) − R sin(ωf (ti0 +
Tu

2
)) = 0 (13)

and c(ti0+1) = −c(ti0) which, for i0 >> 1, leads to

Zi0−1
ti0+1

+ Zi0−1
ti0

− h(Tf/2) + C0 = 0



where Zi0−1
ti0+1

= e−Tf /2T Zi0−1
ti0

and C0 is the steady state value
of h(t). For i0 odd, it follows that

Zi0−1
ti0

= − Ke
L
T

1 + e
Tf
2T

(14)

Zi0−1
ti0+1

= −Ke
L
T e−

Tf
2T

1 + e
Tf
2T

(15)

Zi0−1
ti0+2

= −Ke
L
T e−

Tf +Tu

2T

1 + e
Tf
2T

. (16)

With (14)-(16), c(ti0), c(ti0+1) and c(ti0+2) become

c(ti0) = −K +
2KeL/T

1 + eTf /2T
(17)

c(ti0+1) = K − 2KeL/T

1 + eTf /2T
(18)

c(ti0+2) = −K +
2KeL/T e−Tu/2T eTf /2T

1 + eTf /2T
(19)

since C0 = K for the plant in (6). Hence, c(ti0), c(ti0+1)
c(ti0+2) are dependent on the plant parameters as well as the
switching intervals, Tf and Tu. Substituting (14) and (16) into
(13), we arrive at

K − 2KeTf /2T e−Tu/2T eL/T

1 + eTf /2T
+

cos(ωfTu/2)
(

K − 2K
eL/T

1 + eTf /2T

)
+

R sin(ωfTu/2) cos ωf ti0 = 0. (20)

Since (20) is satisfied for any arbitrarily large R and ti0 , we
now show that Tu = Tf . Suppose (20) is also satisfied for
R′ > R with the corresponding switching instants occuring at
ti′0 instead of ti0 . Substituting these into (20), and subtracting
we arrive at

sin ωfTu/2(R cos ωf ti0 − R′ cos ωf ti′0) = 0. (21)

From (11), we have

sinωf ti0 = −c(ti0)
R

, sin ωf ti′0 = −c(ti′0)
R′ .

Thus, rewriting c(ti0) = C,

ωf ti0 =
{

mπ + sin−1 |C|/R or kπ − sin−1 |C|/R C < 0
mπ − sin−1 C/R or kπ + sin−1 C/R C > 0

where m is even and k is odd. The same applies to the (.’)
quantities. As c(ti0) is only dependent on the plant parameters,
c(ti0) = c(ti′0). It follows that, for any c(ti0),

R cos ωf ti0 = ±
√

R2 − c2(ti0)

R′ cos ωf ti′0 = ±
√

R′2 − c2(ti0)

Substituting into (21), we get

sin ωfTu/2
[
±

√
R2 − c2(ti0) ∓

√
R′2 − c2(ti0)

]
= 0

Since R′ > R, the term is square bracket is non zero, and it fol-
lows that sin ωfTu/2 = 0 which implies that Tu = νTf where
ν is any integer. We next show that only ν = 1 is possible.
Substituting Tu = νTf into (20), we have

K − 2KeTf /2T e−νTf /2T eL/T

1 + eTf /2T
+

cos(ωfνTf/2)
(

K − 2K
eL/T

1 + eTf /2T

)
= 0. (22)

Since (22) only holds for ν = 1, we conclude that Tu = Tf .

This result proves that if R is sufficiently large and two switch-
ing instants satisfying (9) exist, then subsequent switchings
also satisfy (9). This establishes the steady state switching at a
frequency of ωf .

We next show that c(t) is indeed periodic by proving that
c(t) = c(t + Tf ) for all t > ti0 , i0 >> 1. It follows from
(7) that

c(ti0 + �t) =

{
−(Z0

ti0+�t + 2Zi0−1
ti0+�t) �t ∈ [0, L]

−(Z0
ti0+�t + 2Zi0

ti0+�t) �t ∈ [L, Tf/2]

Since Zi0
ti0+�t = Zi0−1

ti0+�t + (−1)i0h(t − ti0 −�t), we have

c(ti0 + �t) = c(ti0+2 + �t)

=




−K + 2K eL/T

1+eTf /2T e−�t/T �t ∈ [0, L]

K − 2K eL/T eTf /2T

1+eTf /2T e−�t/T �t ∈ [L, Tf/2]

since ti0+2 = ti0 + Tf .

Remark 1 : Two assumptions are made in the above proof.
First is the assumption that when a sinusoidal signal of mag-
nitude R causes forced oscillations, another signal of the same
frequency but with a larger amplitude also causes forced oscil-
lations. Secondly, it is assumed that these two external signals
lead to forced oscillations with unique solutions. Hence the
asssumption that c(ti0) = c(ti′0). This assumption is reason-
able since the same zero initial conditions are imposed in both
cases.

Remark 2 : It is well known that subharmonic oscillations with
ν > 1, odd, is also possible in a closed loop relay feedback
system of Figure 1. This can be shown by considering switch-
ing instants that satisfy

ti0+1 = ti0 + νTf/2

and arriving at an equation which is exactly the same as (20)
with Tf replaced by νTf . The analysis will also be the same
and the conclusion after (22) will be that subharmonics oscilla-
tions of frequencies ωf/ν are possible only for ν odd.

Proposition 1 addresses both the necessary and sufficient con-
ditions for forced oscillations to occur. It is sufficient because
it pre-assumes a sufficiently large R which is capable of caus-
ing two switches which are Tf/2 apart. Necessity comes about



because of the assumption on the existence of the two switches
which satisfy ti0+1 = ti0 +Tf/2. Thus the existence of forced
oscillation depends critically on the ability of the system to lock
into two switches which satisfy ti0+1 = ti0 +Tf/2. All subse-
quent switchings will occur at every Tf/2 and all signals will
be periodic. The next section investigates the magnitude re-
quirement on R in order for forced oscillations at any given
frequency ωf to take place.

4 Minimum R for Forced Oscillation

Proposition 1 alludes to the fact that for any ωf and sufficiently
large R, the existence of forced oscillation depends critically on
the existence of two switching points, ti0 and ti0+1, satisfying

ti0+1 = ti0 + Tf/2. (23)

In order to satisfy the “sufficiently large” condition and (23)
in the proposition, some signal conditions must be satisfied.
Firstly, ti0 and ti0+1 are switching instants, hence, we have

y(ti0) = c(ti0) + R sinωf ti0 = 0 (24)

y(ti0+1) = c(ti0+1) + R sin ωf ti0+1 = 0. (25)

At the same time, between ti0 and ti0+1, the signal must also
satisfy

y(t) = c(t) + R sin ωf t < 0 t ∈ (ti0 , ti0 + Tf/2) (26)

so that the output signal, y(t) does not change sign and no ad-
ditional switching can occur in between the two switching in-
stants. (24)-(26) thus impose restrictions on R, for a given ωf

to satisfy the conditions of Proposition 1. These magnitude
conditions for forced oscillations to occur in FOPDT system
are given in the following proposition.

Proposition 2. : In the configuration of Figure 1, for a given
plant in (6) and a general f(t) given by f(t) = R sin ωf t,
the following conditions are necessary and sufficient to achieve
forced oscillations at a frequency of ωf :

−K + 2K
eL/T

1 + eTf /2T
e−t/T

+ R sin(ωf t + φ) < 0 t ∈ (0, L) (27)

K − 2K
eL/T eTf /2T

1 + eTf /2T
e−t/T

+ R sin(ωf t + φ) < 0 t ∈ (L, Tf/2) (28)

where φ
�
= kπ + sign(c(ti0)) sin−1(|c(ti0)|/R), k > 0 odd.

Proof. : We show that (27) and (28) are equivalent to (24)-(26).
From the previous section, (24) implies that

ωf ti0 = kπ + sign(c(ti0)) sin−1(|c(ti0)|/R) = φ. (29)

for k odd. c(t) in (26) can be written as

c(ti0 + t) =

{
−K + 2K eL/T

1+e
Tf /2T

e−t/T t ∈ [0, L]

K − 2K eL/T e
Tf /2T

1+e
Tf /2T

e−t/T t ∈ [L, Tf /2]

Substituting into (26), we get

−K + 2K eL/T

1+e
Tf /2T

e−t/T + R sin(ωf ti0 + ωf t) < 0 t ∈ (0, L)

K − 2K eL/T e
Tf /2T

1+e
Tf /2T

e−t/T + R sin(ωf ti0 + ωf t) < 0 t ∈ (L, Tf /2)

which leads to (27) and (28) respectively after substituting (29).
It can also be verified that (24) and (25) are also automatically
satisfied because of (29). Hence (27) and (28) are equivalent to
(24)-(26) which are also the equivalent conditions of Proposi-
tion 1.

Remark 1 : It can be deduced from (29) that the minimum R
must be given by |c(ti0)| in order to guarantee the existence
of switch points, ti0 . c(ti0) can be calculated from (17) for a
given plant and ωf .

Remark 2 : For forced oscillations to occur at any particular R
and ωf , (27) and (28) must be satisfied. For any ωf , the mini-
mum R, denoted as Rmin, which satisfies these equations will
be the minimum amplitude required for forced oscillations at
ωf . Alternatively, for any given R, a range of ωf can be found
for which forced oscillations can occur. Corollary 1 gives con-
ditions equivalent to (27) and (28) when R = |c(ti0)| and al-
lows one to find the range of ωf which are possible for this
R.

Corollary 1. : For R = |c(ti0)|, the range of ωf at which
forced oscillations will take place satisfies the following equa-
tion:

cos ωf t − 1 + 1+eTs/2T

1+e
Tf /2T

(
e−t/T − cos ωf t

)
< 0 t ∈ (0, L)

cos ωf t + 1 − 1+eTs/2T

1+e
Tf /2T

(
e−t/T eTf /2T + cos ωf t

)
< 0 t ∈ (L, Tf /2)

. . . . . . (30)

where Ts = 2T log(2eL/T − 1) is the self oscillating period
given in [8].

Proof. : From (29), it follows that φ = ±π/2, depending on
the sign of c(ti0). In (27) and (28), substitute for 2eL/T by
using its relationship with Ts. The result then follows.

The inequalities in (30) can be rewritten in terms of L/T , α
�
=

Tf/Ts, and β
�
= (2eL/T − 1) as follows :

cos θ − 1 + β+1
1+βα

[
β

−θα
π − cos θ

]
< 0 θ ∈ (0, ωfL)

cos θ + 1 − β+1
1+βα

[
β

−θα
π +α + cos θ

]
< 0 θ ∈ (ωfL, π).

For a given L/T , the range of α which satisfies the above in-
equalities can be solved. This range of α holds for all plants
with the same L/T ratio. Therefore, this result completely
characterises the forced oscillation conditions for plants in (6).
By solving the inequalities for plants whose 0.1 ≤ L/T ≤ 10,
Figure 2 shows the range of α for which forced oscillation is
possible for this set of plants when R = |c(ti0)|. With this R,
for a given L/T , the range of ωf is determined by

αl ≤ α ≤ αh ⇒ αlTs ≤ Tf ≤ αhTs.
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Figure 2: Range of α for different L/T when R = |c(ti0)|

As an example, for L/T = 0.5, forced oscillations are possible
for a range of frequencies corresponding to αh = αh0 = 2.607
and αl = αl0 = 0.623 with an R = 0.6069.

Figure 3, on the other hand, shows the minimum value of R
required for forced oscillations to occur at different Tf = αTs

for a plant with L/T = 0.5. This plot was obtained by numeri-
cally solving for the minimum R which satisfies (27) and (28).
The plot of c(ti0) is also given on the same figure to show that
above a certain αh0, R = |c(ti0)| cannot achieve any forced
oscillations. This can be deduced from this figure when Rmin

and |c(ti0)| diverges from one another at α = αh0.

5 Simulation Results

In this section, two simulation studies demonstrate the results
in Propositions 1 and 2. In all cases, the plant was placed in the
configuration of Figure 1 and the external forcing signal, f(t)
was applied with different values of R. The switching instants,
ti, were tracked and the switching intervals, Tu/2, between
consecutive switches were recorded.

Example 1 : The plant and f(t) are given by

g(s) =
e−0.5s

s + 1
and f(t) = R sin 0.5πt

where R = |c(ti0)| = 0.6069 and Tf = 4 sec. It can be seen
from Figure 4 that at the 8th and 9th switching instants, the first
switching interval of 2 sec occured. Subsequently, all switches
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Figure 3: Minimum R required for a range of α.

were exactly 2 sec apart. Figure 5 shows the resulting signals
for c(t) (shown as solid line) and u(t) (shown as dash line).
u(t) is indeed switching at every 2 sec.

0 5 10 15 20
1.9

1.95

2

switching, i

0.
5T

u

Figure 4: Switching intervals for plant in ex. 1.
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Figure 5: Forced oscillations for plant in ex. 1.

Example 2 : In this example, g(s) is given by

g(s) =
e−s

s + 1
and f(t) = R sin 0.25πt

where R = |c(ti0)| = 0.9022 and Tf = 8 sec. Figure 6 shows
the switching intervals. It can be observed that in this case, the
switching never attains a steady switching interval of Tf/2 =
4 sec. As expected, forced oscillations did not take place as
confirmed by Figure 7. This is an example where R = |c(ti0)|
is not sufficient to cause forced oscillation to occur.

R is now increased to 1.2|c(ti0)|. Figure 8 shows that forced
oscillation is attained after the 3rd switching instant. This is
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Figure 6: Switching intervals in ex. 2 when R = |c(ti0)|.



0 20 40 60 80

−1

−0.5

0

0.5

1

time (sec)

c(
t)

, u
(t

)

Figure 7: Complex oscillations in ex. 2 when R = |c(ti0)|.

confirmed in Figure 9.

6 Discussions and Conclusions

In conclusion, the main contribution of this paper lies in the
derivation of the necessary and sufficient conditions for first
order systems to admit forced oscillation solutions. By solving
these conditions, the minimum R required for forced oscilla-
tions at any frequency can be derived. Furthermore, the min-
imum R required for forced oscillations in first order systems
are completely characterised.

The results in this paper are only a part of a more complete
set of results which are currently being written up. The more
complete set of results include the following points.

(a) Although the results are shown for FOPDT plants, the
principles of the analysis hold for higher order systems.
For any nth order system, by writing the switching equa-
tions corresponding to (5) for all (n − 1)th derivatives
of the output, a similar, albeit more complicated, analysis
can be carried out to arrive at the forced oscillation condi-
tions. For such higher order systems, all derivatives up to
(n − 1) have to satisfy symmetric switching conditions.

(b) The results in this paper are specifically for external forc-
ing signals whose frequencies satisfy L < Tf/2. Our
analysis shows that for this range of frequencies, subhar-
monic oscillations of frequencies ωf/ν, ν > 1 are not
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Figure 8: Switching intervals in ex. 2 when R = 1.2|c(ti0)|.
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Figure 9: Forced oscillations in ex. 2 when R = 1.2|c(ti0)|.

possible. This is not shown here because of space con-
straints. For higher frequencies satisfying Tf < 2L, sub-
harmonic oscillations are easily obtained.

(c) The relevance of this work is alluded to earlier in the in-
troduction section. The main motivation is to be able to
set the required relay amplitudes in a multi-loop system
in order to effect a Mode 1 system without the need for
further experimentation or adaptation. This leads to the
auto-tuning of controllers for multi-loop systems which
are not easy to tune initially.
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