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Abstract 

This paper investigates the robust stability of uncertain 
linear neutral systems with time-varying discrete delay.  
A delay-dependent stability criterion is obtained and 
formulated in the form of a linear matrix inequality 
(LMI).  Two numerical examples are given to indicate 
significant improvements over some existing results. 

1 Introduction 

The problem of stability of neutral systems has received 
considerable attention in the last two decades, see for 
example, [3].  The direct Lyapunov method is a 
powerful tool for studying stability of the systems.  
Some early results are based on a rather simple form of 
Lyapunov-Krasovskii functional, with stability criteria 
independent of time-delay [11].  A model trans-
formation technique is often used to transform the 
pointwise delay system to a distributed delay system, 
and delay-dependent stability criteria are obtained [4, 8, 
9].  These results are usually less conservative than the 
delay-independent stability ones.  Some of these results 
can be improved by applying tighter bounding of the 
cross term introduced in Park [10].  Furthermore, time-
varying discrete delays are not considered in the 
references mentioned above. 

In this paper, the result in [10] will be extended to 
uncertain linear neutral systems with time-varying 
discrete delay.  The uncertainty under consideration 
will be norm-bounded one.  A delay-dependent stability 
criterion will be given to reduce the conservatism of the 
existing ones. 

 

2. Problem statement 
 

Consider the following linear neutral system with norm-
bounded uncertainty 

      � �( ) ( ) ( ) ( )ax t Cx t A LF t E x t�� � � �� �  

� �( ) ( ( ))bB LF t E x t h t� � �           (1) 

where  is the state,  and ( ) nx t ��
n nA �

��
n nB �

��  are 

constant matrices, and  is an unknown real 
and possibly time-varying matrix with Lebesgue 
measurable elements satisfying 

( )F t p q�
��

( ) ( )TF t F t I�                              (2) 

and L , Ea , Eb , and dE  are known real constant 
matrices which characterize how the uncertainty enters 
the nominal matrices A and B.  The delay �  is a 
constant neutral delay and the discrete delay  is a 
time-varying function that satisfies 

0�

( )h t

0 ( ) Mh t h� � ,                       (3) ( ) dh t h�
�

where , and  are constants, and . Mh dh 0 1dh� �



The initial condition of system (1) is given by 

0( ) (x t � � �� � ) [ max{ , }, 0]Mh� �� � �,        (4) 

where  is a continuous vector-valued initial 
function. 

( )� �

 

The purpose of this paper is to formulate a practically 
computable criterion to check the stability of system 
described by (1)~(4). 

 

3.  Main result 
 

System (1) can be written as 

( ) ( ) ( ) ( ( ))x t Cx t Ax t Bx t h t Lu�� � � � � �� �        (5a) 

( ) ( ( ))a by E x t E x t h t� � �                 (5b) 

with the constraint 

( )u F t y�                            (6) 

We further rewrite (5)~(6) as 

� �
( )

( ) ( ) ( ) ( )
t

t h t
x t Cx t A B x t B x d Lu�

�

� � � � � ��� � � � �   (7) 

� � � �( ) ( ( )) ( ) ( ( ))TT
a b a bu u E x t E x t h t E x t E x t h t� � � � �  (8) 

Define the operator �: � �[ max{ , }], n n
Mh�� �� ��  as 

( ) ( )tx x t Cx t �� � ��  

Throughout this paper, we assume that 
 

A1.  All the eigenvalues of matrix C are inside the unit 
circle. 
 

We now state and establish the following result. 
 

Proposition 1.  Under A1, the system described by (1) 
to (4) is asymptotically stable if there exist real matrix 
X, symmetric positive definite matrices P, R, S, W, Y 
and a scalar  such that the LMI (9), as shown at 
the bottom of the last page of the paper, holds, where 

0� �

 

� � � �(1,1)  T T TA B P P A B R S X B B X
�

� � � � � � � �  

� �(1,3)  T TA B PC B XC
�

� � � �  

 

Proof. Choose the Lyapunov-Krasovskii functional 
candidate for system (7) as V V  , 
where 

1 2 3V V V� � � � 4 5V�

1 ( ) ( )T
t tV x P x� � �  

� �2 ( )

1 ( ) ( ) ( )
1

t T T
t h t

d
V h t t x B QB

h
� � �

�

� � �

�
� � �x d�

d�

d�

d�

)

5

 

3 ( )
( ) ( )

t T
t h t

V x Rx� �
�

� �  

4 ( ) ( )
t T
t

V x Sx
�

� �
�

� �  

5 ( ) ( )
t T
t

V x Wx
�

� �
�

� � � �  

where symmetric positive definite matrices P, R, W, 
 are solutions of (9). ( MY h Q�

The derivative of V  along the trajectory of system (7) 
is given by V . 1 2 3 4V V V V� � �

� � � � �V� �
�

     � �1 2( ) ( )T
t P A B x� �

� �V x  t

( )
2( ) ( ) 2( )

tT T
t tt h t

x PB x d x PLu� �
�

� �� �� �  

Define , ( ) ( )a Bx� �� � � �( ) tb P x� � �  and use Lemma 1 
in Park [10] to obtain 

   
( )

2( ) ( )
tT

t t h t
x PB x d� �

�

� � ��  

   � �  � � �1( ) ( )T T
M th x P M Q I Q QM I P x�

�� � �t

)

�

            � �
( )

2 (
tT T

t t h t
x PM QB x d� �

�

� � ��

            
( )

( ) ( )
t T T
t h t

x B QBx d� �
�

�� � �

Let X QMP�  and Y h , then M Q�

  �1 ( ) ( ) ( )T Tt P A B A B� � � ��V x  P

� � � � �2 1 ( )T T
Mh X P Y X P X B BX x t�

� � � � �  

 



2 ( ) ( ( )T T )x t X Bx t h t� �  

� ��2 ( ) TT Tx t A B PC B XC� � �  

� � � � �2 1 ( )T
Mh X P Y X P C x t �

�

� � � �  

2 ( )Tx t PLu� 2 ( ( )) ( )T Tx t h t B XCx t �� � �  

� � � �2 1( ) (T T T
Mh x t C X P Y X P Cx t� �

�

� � � � � )  

2 ( )T Tx t C PL�� � u
( )

( ) ( )
t T T
t h t

x B QBx d� �
�

�� � � �  

Noting that (3), one can easily compute V , ,  and 

 as 
2
�

3V� 4V�

5V�

2 ( )

1 ( ) ( ) ( ) ( )
1

tT T T T
t h t

d
V x t B YBx t x B QBx

h
� �

�

� �

�
�� � � � � d�

�

�

�

 

3 ( ) ( ) (1 ) ( ( )) ( ( ))T T
dV x t Rx t h x t h t Rx t h t� � � � ��  

4 ( ) ( ) ( ) ( )T TV x t Sx t x t Sx t� �� � �
�  

5 ( ) ( ) ( ) ( )T TV x t Wx t x t Wx t� �� � �
� � � � �  

Then we have 

�( ) ( ) ( )T TV x t P A B A B P R S� � � � ��  

  � � � � �2 1 ( )T T
Mh X P Y X P X B BX x t�

� � �� �  

  2 ( ) ( ( )T T )x t X Bx t h t� �  

  � ��2 ( ) TT Tx t A B PC B X�� �  

  � � � � �2 1 ( )T
Mh X P Y X P C x t �

�

�� �  �

  2 ( )Tx t PLu�  (1 ) ( ( )) ( ( ))T
dh x t h t Rx t h t� � � �

  � �  2 ( ( )) ( )T Tx t h t B XCx t ��

� � � �� �2 1( ) ( )T T T
Mx t S h C X P Y X P C x t� �

�

� � � � � �  

  2 ( )T Tx t C PL� u ( ) ( )Tx t Wx t� �� � �� �� �  

   1( ) ( )
1

T T

d
x t W B YB x t

h
� �

� �� �
�� �

� �  

Noting that ( ) ( ) ( ( )) ( )x t Ax t Bx t h t Cx t Lu�� � � � � �� � , 
we further have 

( ) ( )TV q t q t� ��  

where 

� �( ) ( ) ( ( )) ( ) ( )
TT T T T Tq t x t x t h t x t x t u� �� � � ��  

and  

11 12 13 14 15

12 22 23 24 25

13 23 33 34 35

4414 24 34 45

554515 25 35

T

T T

T T T

TT T T

� � � � �� �
� �
� � � � �� �

� �� � � � � � �
� �

�� � � �� �
� �� ���� � �� �

 

with 

11 ( ) ( )TP A B A B P R S� � � � � � �  

� � � �2 1T T
Mh X P Y X P X B�

� � � �  

1
1

T T

d
BX A W B YB A

h
� �

� � �� �
�� �

 

12
1

1
T T T

d
X B A W B YB B

h
� �

	 
 � � �� �
�� �

 

� � � � � �2 1
13

T T T
MA B PC B X h X P Y X P C�

� � � � � � � �  

14
1

1
T T

d
A W B YB C

h
� �

	 
 �� �
�� �

 

15
1

1
T T

d
PL A W B YB L

h
� �

� � � �� �
�	 


 

22
1(1 )

1
T T

d
d

h R B W B YB B
h

� �
� � � � � �� �

�	 

 

23
TB XC� �  

24
1

1
T T

d
B W B YB

h
� �

� � �� �
�	 


C  

25
1

1
T T

d
B W B YB

h
� �

	 
 �� �
�� �

L  

� � � �2 1
33

T T
MS h C X P Y X P C�

� � � � � �  

 
 
 



34 0� �  

35
TC PL� � �  

44
1

1
T T

d
W C W B YB C

h
� �

	 
 � � �� �
�� �

 

45
1

1
T T

d
C W B YB L

h
� �

� � �� �
�	 


 

55
1

1
T T

d
L W B YB

h
� �

	 
 �� �
�� �

L

�

 

A sufficient condition for asymptotic stability of system 
(1) is that the operator � is stable and there exist real 
matrix X, symmetric positive definite matrices P, R, S, 
W and Y such that 

( ) ( ) ( ) 0TV t q t q t� � ��                  (10) 

for all q t  satisfying (8).  Using the S-procedure 
[1] we see that this condition is implied by the existence 
of a nonnegative scalar �  such that 

( ) 0�

0�

    �( ) ( ) ( ) ( ( ) TT
a bq t q t E x t E x t h t�� � � �

� �( ) ( ( ) 0T
a bE x t E x t h t u u�� � � � �  (11) 

for all q t .  Thus, if there exist real matrix X, 
symmetric positive definite matrices P, R, S, W and Y 
and a scalar  such that LMI (9) is satisfied, then 
(11) holds.  Note that assumption A1 guarantees that the 
operator � is stable.  Therefore, system (1)~(4) is 
asymptotically stable according to Theorem 8.1 (pp. 
292-293, in [3]).                                                Q. E. D. 

( ) 0�

� � 0

 

Remark 1.  For the case that  and 
, system (1) becomes 

( )h t h const� �

h� �

       � �( ) ( ) ( ) ( )ax t Cx t h A LF t E x t� � � �� �  

 � �( ) ( )bB LF t E x t h� � �          (12) 

By Proposition 1, we conclude that system (12), (2), (4) 
is asymptotically stable if there exist real matrix X, 
symmetric positive definite matrices P, R, W, Y and a 
scalar  such that the LMI (13), as shown at the 
bottom of the last page of the paper, holds, where  

0� �

(1,1) ( ) ( )TA B P P A B R X B B X� � � � � ��
T T

T

T

 

(1,2) ( )T TA B PC B XC X B� � � ��  

(2,2) T TR B XC C X B� � � �  

Furthermore, if  and , the result in [10] is 
recovered.  

0C � 0L �

 

Remark 2.  The experience by author using MATLAB 
LMI Toolbox shows that direct coding (9) or (13) is not 
computationally efficient because the high dimensional 
linear matrix inequality (9) or (13) is computationally 
costly with current algorithm. To improve the 
efficiency, (9) or (13) can be broken into two lower 
dimensional linear matrix inequalities.  The idea 
regarding how to decompose these LMIs can be found 
in [5]. 

 

4.  Examples 
 

Example 1. Consider the following uncertain neutral 
system with time-varying discrete delay 

1

2

2 cos( ) 00( ) ( ) ( )0 0 1 s
tc

in( )x t x tc t
�

�
�

� �� �� �� � �� � � �� �� 	 � 	
� �

1

2

1 cos( ) 0 ( ( ))1 1 sin( )
t

x t

x t h tt
�

�

� �� �
� �� �� � �� �

  (14) 

where 0 1c� �  and � , ,  and  are unknown 
parameters satisfying 

1 2� 1� 2�

1 1.6� � , 2 0.05� � , 1 0.1� � , 2 0.3� �  

For , system (14) reduces to the system studied in 
[6].  Applying the criteria in [6] and this paper, the 
following table gives the maximum value of h  for 
stability of system (14) for different .  It is clear to 
see that the results in this paper are much less 
conservative than those in [6]. 

0c �

M

dh

dh  0.0 0.1 0.2 0.3 0.4 

[6] 0.24 0.23 0.22 0.21 0.20 

This paper 1.03 0.92 0.82 0.71 0.61 

dh  0.5 0.6 0.7 0.8 0.9 

[6] 0.18 0.16 0.14 0.11 0.06 

This paper 0.50 0.40 0.29 0.18 0.08 



For , the maximum value of  is listed in the 

following table for various parameter c. As 

0.1dh � Mh

c  
increases,  decreases. Mh

c  0.0 0.1 0.2 0.3 

Mh  0.92 0.73 0.55 0.41 

c  0.4 0.5 0.6 0.7 

Mh  0.29 0.19 0.11 0.04 

 

For , we obtain the maximum value of h  in the 
following table.  One can see that as h  increases,  
decreases. 

0.1c � M

d Mh

dh  0.0 0.1 0.2 0.3 0.4 

Mh  0.80 0.73 0.65 0.57 0.49 

dh  0.5 0.6 0.7 0.8 0.9 

Mh  0.41 0.33 0.24 0.16 0.07 

 

Example 2.  Consider system (1) with 
0.9 0.2
0.1 0.9

A
�� �

� � �
�� �

, , 
1.1 0.2
0.1 1.1

B
� �� �

� � �
� �� �

0.2 0
0.2 0.1

C
�� �

� � �
�� �

,  
1 0
0 1a bE E � �

� � � 	

 �

0
0

L
�

�

� �
� � �
� �

, �  0�

For , (const) and � , the system under 
consideration reduces to the system discussed in [7]. 
Using the criterion in this paper, the maximum value of 

 for the nominal system to be asymptotically stable 
is .  By the criteria in [7], [8] and [2], the 
nominal system is asymptotically stable for any h 
satisfying , , and h , respectively. 
This example shows that the stability criterion in this 
paper gives a much less conservative result than these 
in [7], [8] and [2].  

0� �

1.6M �

( )h t h�

014

0.3h � h

h�

�

Mh
h

0.71� 0.74

 

For , the following table gives different  for 
different . It is clear that as h increases, the 
corresponding  decreases. 

0.2� �

dh
Mh

d

Mh

dh  0.0 0.1 0.2 0.3 0.4 

Mh  1.08 0.94 0.82 0.70 0.58 

dh  0.5 0.6 0.7 0.8 0.9 

Mh  0.47 0.37 0.27 0.17 0.07 

 

For , the effect of the parameter �  on the 
maximum time-delay for stability  is also studied. 
The following table illustrates the numerical results for 
different .  One can see that as � , the stability 
limit for delay approaches the uncertainty-free case.  As 

 increases,  decreases. 

0.1dh �

�

Mh

� 0

� Mh

dh  0.0 0.1 0.2 0.3 0.4 

Mh  1.31 1.11 0.94 0.80 0.67 

dh  0.5 0.6 0.7 0.8 0.9 

Mh  0.55 0.44 0.33 0.22 0.07 

 

5.  Conclusion 
 

A delay-dependent stability criterion for neutral systems 
with time-varying discrete delay has been obtained.  
The criterion has been expressed in the form of a linear 
matrix inequality (LMI).  Numerical examples have 
shown that the results derived by criterion in this paper 
are much less conservative than some existing ones in 
the literature. 
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