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Abstract

In this paper, we present a controller design and its implemen-
tation on a mini-rotorcraft having 4 rotors. The dynamic model
is obtained via a Lagrange approach. Experiment results show
good performance of the proposed non-linear controller based
on nested saturation.

1 Introduction

The automatic control of flying objects has attracted the atten-
tion of many researches in the past few years. Generally, the
control strategies are based on simplified models which have
both a minimum number of states and a minimum number of
inputs. These reduced models should retain the main features
that must be considered when designing control laws for real
aerial vehicles. In this paper we are interested in the design
of a relatively simple control algorithm to perform hover and
tracking of desired trajectories.

Helicopters are of the most complex flying machines. Its com-
plexity is due to the versatility and manoeuvrability to perform
many types of tasks. The classical helicopter is conventionally
equipped of a main rotor and a tail rotor. However other type
of helicopters exist including the twin rotor (or tandem heli-
copter) and the co-axial rotor helicopter. In this paper we are
particularly interested in controlling a mini-rotorcraft having
four rotors.

Four-rotor rotorcraft, like the one shown in figure 1, have some
advantages over conventional helicopters. Given that the front
and rear motors rotate counter clockwise while the other two
rotate clockwise, gyroscopic effects and aerodynamic torques
tend to cancel in trimmed flight.

This four rotor rotorcraft does not have a swashplate. In fact
it does not need any blade pitch control. The collective input
(or throttle input) is the sum of the thrusts of each motor. Pitch
movement is obtained by increasing (reducing) the speed of the
rear motor while reducing (increasing) the speed of the front
motor.

Figure 1: The 4 rotors rotorcraft.

The roll movement is obtained similarly using the lateral mo-
tors. The yaw movement is obtained by increasing (decreasing)
the speed of the front and rear motors while decreasing (in-
creasing) the speed of the lateral motors. This should be done
while keeping the total thrust constant.

In view of its configurations, the four-rotor rotorcraft in fig-
ure 1 has some similarities with PVTOL (Planar Vertical Take
Off and Landing) aircraft problem. Indeed, if the roll and yaw
angles are set to zero, the four-rotor rotorcraft reduces to a PV-
TOL. In a way the 4-rotor rotorcraft can be seen as two PVTOL
aircraft connected such that their axes are orthogonal.

In this paper we present the model of a four-rotor rotorcraft
whose dynamical model is obtained via a Lagrange approach.
A control strategy is proposed having in mind that the four ro-
tor rotorcraft can be seen as the interconnection of two PVTOL
aircraft. Indeed, we first design a control to stabilize the yaw
angular displacement. We then control the Pitch movement us-
ing a controller based on the dynamic model of a PVTOL (see
[6]). Finally, the roll movement is controlled using again a
strategy based on the PVTOL.

The control algorithm is based on the nested saturation control
strategy proposed by [9]. We prove global stability of the pro-
posed controller. The controller has been implemented on a PC
and real time experiments have shown that the proposed control
strategy performs well in practice. Robustness with respect to
parameter uncertainty and unmodeled dynamics has been ob-



served in a real time application performed by the aerial control
team at the University of Technology of Compiègne, France.

The paper is organized as follows: The problem statement is
presented in Section 2. Section 3 describes the control law
design. In Section 4 we present the experimental results and
finally, some conclusions are given in Section 5.

2 Problem statement

In this section we present the model of the four-rotor rotorcraft
using a Lagrangian approach. The generalized coordinates de-
scribing the rotorcraft position and orientation
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where �����
	����� denote the position of the center of mass of the
four-rotor rotorcraft relative to the frame � . �����
������� are the
three Euler angles (yaw, pitch and roll angles) and represent
the orientation of the rotorcraft.

Therefore, the model partitions naturally into translational and
rotational coordinates� �������
	���������� !� "#�$�����
�������%���� 
The translational kinetic energy of the rotorcraft is

&
trans ' ( )+*�!, *� (1)

where ( denotes the mass of the rotorcraft. The rotational ki-
netic energy is: &

rot ' -) *" ,/. *" (2)

The matrix
.

acts as the inertia matrix for the full rotational
kinetic energy of the rotorcraft expressed directly in terms of
the generalized coordinates " . The only potential energy which
needs to be considered is the standard gravitational potential
given by 0 �1(324� (3)

The Lagrangian representing5 �6��� *�!�7� &
trans 8 & rot 9 0� ( )+*�!, *� 8 -) *" , . *" 9 (324� (4)

The model of the full rotorcraft dynamics is obtained from the
Euler-Lagrange Equations with external generalized force :;;=< >@?> *� 9 >@?> � � :
where : �A� :�B �
C�� and C is the generalized moments. :DB is
the translational force applied to the rotorcraft due to the con-
trol inputs. We ignore the small body forces because they are

generally of a much smaller magnitude than the principal con-
trol inputs E and C . We then write:

F: �
GHJII
E
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where (see figure 2)

E �+M=N 8 MPO 8 M  8 MRQ
and MPSD�UT=S6V OS � WX� - �ZY Y Y [
where T=SX\ I is a constant and V]S is the angular speed of motorWX�_^`S
�
Wa� - �ZY Y Y [�� , then

:�B �cb F: (6)

where b is the transformation matrix representing the orienta-
tion of the rotorcraft. We use dfe for gihkj � and lRe for j
m n � .
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The generalized forces on the " variables are

C '
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(7)

Figure 2: Coordinate system and free-body diagram of the
four-rotor rotorcraft.



where

C r � Q� S �DN C����C e � �_MPO 9 MRQR���C p � �_M  9 M=Ni���
and where � is the distance from the motors to the center of
gravity and C���� is the couple produced by motor ^ S .
Having obtained the Lagrangian, we observe that it does con-
tain any cross terms in the kinetic energy combining

*�
and

*"
(see (4)), the Euler Lagrange equation can be partitioned into
the dynamics for the

�
coordinates and the " dynamics. One

obtains

(
	� 8
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KL � :�B (8)

. 	" 8 *. *" 9 -) >> "�� *" , . *"� �cC (9)

Defining the Coriolis /Centripetal vector

�� ��"�� *"�� � *. *" 9 -) >> " � *" ,q. *"  (10)

we may write . 	" 8 �� ��"�� *"�� � C (11)

and we can rewrite
�� ��"�� *"�� as

�� ��"�� *"�� ��� ��"�� *"�� *" (12)

where � ��"�� *"�� are referred to as the Coriolis terms. They con-
tain the gyroscopic and centrifugal terms associated with the "
dependence of

.
.

Finally we obtain
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3 Control law design

In this section we will develop a control strategy for stabilizing
the four-rotor rotorcraft at hover. We will prove global stabil-
ity of the closed loop system. Furthermore, the proposed con-
troller design is such that the resulting controller is relatively
simple and each one of the control inputs can operate in either
manual or automatic mode independently. For flight safety rea-
sons this feature is particularly important when implementing
the control strategy as will be explained in the section 4. The
collective input E in (13) is essentially used to make the altitude
reach a desired value. The control input C p is used to set the
yaw displacement to zero. C e is used to control the pitch and

the horizontal movement in the � -axis. Similarly, C r is used to
control the roll and horizontal displacement in the 	 -axis.

In order to simplify let us propose a change of the input vari-
ables. C3��� ��"�� *"�� *" 8 .��C (15)

where

�C3� GH �C p�C e�C r
KL

(16)

are the new inputs. Then

	" � �C (17)

Rewriting equations (13)-(14):( 	� � 9 E j
m n � (18)( 		 � E gihkj � j
m n � (19)( 	�s� E gihkj � gihkj � 9 (32 (20)	� � �C p (21)	�s� �C e (22)	� � �C r (23)

where � and 	 are the coordinates in the horizontal plane, and �
is the vertical position (see figure 2). � is the yaw angle around
the � -axis, � is the pitch angle around the (new) 	 -axis, and �
is the roll angle around the (new) � -axis. The control inputs E ,�C p ,

�C e and
�C r are the total thrust or collective input (directed

out the bottom of the aircraft) and the new angular moments
(yawing moment, pitching moment and rolling moment).

3.1 Altitude and yaw control

The control of the vertical position can be obtained by using
the following control input.

E �����PN 8 (32�� -
dZeidZr (24)

where �PN%� 9������ *� 9������ �6� 9 �! f� (25)

����� , ����� are positive constants and �� is the desired altitude.
The yaw angular position can be controlled by applying

�C p � 9�� p � *� 9�� p � ��� 9 �� R� (26)

Indeed, introducing (24)-(26) into (18)-(21) and provided thatdZeidZr#"� I , we obtain

( 	� � 9 ���PN 8 (32���$�% n �gihkj � (27)( 		 � ���PN 8 (32�� $�% n � (28)

	�s� -( � 9������ *� 9������ �6� 9 �! f�
� (29)

	� � 9�� p � *� 9&� p � ��� 9 �� f� (30)



The control parameters � p � , � p � , ����� , ����� should be carefully
chosen to ensure a stable well-damped response in the vertical
and yaw axes.

From equation (29) and (30) it follows that ��� �  and ����! .
3.2 Roll control ( � , 	 )

Note that from (25) and (29) �!N�� I
. For a time

&
large

enough, �!N and � are arbitrarily small therefore (27) and (28)
reduce to

	� � 9 2 $�% n �gihkj � (31)

		 � 2 $�% n � (32)

We will first consider the subsystem given by (23) and (32). We
will implement a non-linear controller design based on nested
saturations. This type of control allows in the limit a guarantee
of arbitrary bounds for ��� *�D�
	 and

*	 . To further simplify the
analysis we will impose a very small upper bound on

� � � in
such a way that the difference $�% n �_��� 9 � is arbitrarily small.
Therefore, the subsystem (23)-(32) reduces to

		 � 2�� (33)	� � �C r (34)

which represents four integrators in cascade. Then, we propose

�C r � 9�� r � � *� 8�� r � �	� r � �
� (35)

where � S� l � is a saturation function such that
� � S� l � � 
 ^`S

for W�� I � - �ZY Y Y (see the figure 3) and � r � will be defined later
to ensure global stability.

We propose the following Lyapunov function

� � -) *� O Y (36)

Differentiating
�

with respect to time, we obtain*� � *� 	� (37)

and from the equation (34) and (35) we have

*� � 9 *� � r � � *� 8�� r � �	� r � �
� (38)

Note that if
� *� � \+^ r � then

*��� I
, that means  & N such that� *� � 
 ^ r � for

< \ & N .
We define � N��U� 8 *� (39)

Differentiating (39)*� N � *� 8 	� (40)� *� 9�� r � � *� 8�� r � �	� r � �
� (41)
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Figure 3: Saturation function

Let us choose ^ r ���
) ^ r � (42)

From the definition of � � l � we can see that
� � S� l � � 
 ^`S .

This implies that in a finite time,  & N such that
� *� � 
 ^ r � for

t � & N . Therefore, for t � & N , � *� 8�� r � �	� r � � � 

) ^ r � . It then

follows that � < � & N
� r � � *� 8�� r � �	� r � �
� � *� 8�� r � �	� r � � (43)

Using (41) and (43), we get*� N%� 9�� r � �	� r � � (44)

Let us define � r � � � N 8�� r�� �	� r � � (45)

Introducing the above in (44) it follows*� N%� 9�� r � � � N 8�� r�� �	� r � �
� (46)

The upper bounds are assumed to satisfy^ r ���
) ^ r�� (47)

This implies that  & O such that
� � N � 
 ^ r�� for t � & O . From

equation (39) we can see that � < � & O , � � � 
 ^ r�� . ^ r��
should be chosen small enough such that $�% n ���+� .

From (46) and (47), we have that for t � & O , � � N 8�� r�� �	� r � � � 
) ^ r�� . It then follows that, � < � & O
� r � � � N 8�� r�� �	� r � �
� � � N 8�� r�� �	� r � � (48)

Introducing the following function
� O�� � N 8 � 8 *	 2 (49)

then *� O�� *� N 8 *� 8 		 2 (50)



Using (33), (39), (46) and (48 ) into (50), we obtain*� O�� 9�� r�� �	� r � � (51)

Now, define � r � as

� r � � � O 8�� r�� �	� r�� � (52)

Let us rewrite (51) as*� O�� 9�� r�� � � O 8�� r�� �	� r�� �
� (53)

We chose ^ r�� �
) ^ r�� (54)

We then have that in a finite time,  &  such that
� � O � 
 ^ r��

for t � &  , this implies from (49) that
*	 is bounded.

For t � &  , � � O 8 � r�� �	� r�� � � 

) ^ r�� . It then follows that,

� < � &  
� r�� � � O 8�� r�� �	� r�� �
� � � O 8�� r�� �	� r�� � (55)

Defining �  � � O 8
) *	2 8 � 8 	2 (56)

then *�  � *� O 8
) 		2 8 *� 8 *	2 (57)

Finally using (33), (48), (53) and (55) into (57), we obtain*�  � 9�� r�� �	� r�� � (58)

We propose � r�� of the following form

� r�� � �  (59)

then *�  � 9�� r�� � �  � (60)

this implies that
�  � I

. From (53) it follows that
� O�� I

and
from equation (52) � r � � I

. From (46)
� N�� I

then from (45)� r � � I
.

We can see from equation (38) that
*� � I

. From equation (39)
we get � � I

. From (49)
*	 � I

and finally from (56) 	 � I
.

Using (39), (45), (49), (52), (56) and (59), we can rewrite equa-
tion (35 ) as

�C r � 9�� r � � *� 8�� r � �_� 8 *� 8
� r�� �

) � 8 *� 8 *	 2 8
� r�� � *� 8 � � 8 �
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3.3 Pitch control ( � , � )

From equations (33) and (61) we obtain ��� I
. (31) gives

	� � 9 2 $�% n � (62)

We take the sub-system

	� � 9 2 $�% n � (63)	�s� �C e (64)

As before, we assume that the control strategy will insure a
very small bound on

� � � in such a way that $�% n � � � . There-
fore (63) reduces to 	� � 9 2�� (65)

Using a procedure similar to the one proposed for the roll con-
trol, we obtain

�C e � 9�� e � � *� 8�� e � ��� 8 *� 8
� e � �

) � 8 *� 9 *� 2 8
� e�� � *� 8 � � 9 �

*� 2 9 � 2 �
�
�
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4 Experimental results

In this section we present the experimental results, we describe
the hardware used and explain the experiment.

4.1 Hardware

The flying machine we have used is a mini-rotorcraft hav-
ing four rotors manufactured by Draganfly Innovations Inc.,
(http://www.rctoys.com). The radio is a Futaba Skys-
port 4. The radio and the PC (INTEL Pentium 3) are connected
using data acquisition cards (ADVANTECH PCL-818HG and
PCL-726). In order to simplify the tuning of the controller and
for flight security reasons, we have introduced several switches
in the PC-radio interface so that each control input can operate
either in manual mode or in automatic control mode.

The connection in the radio is directly made to the joystick
potentiometers for the gas, yaw, pitch and roll controls. The
rotorcraft evolves freely in a 3D space without any flying stand.

We use the 3D tracker system (POLHEMUS) [5] for measuring
the position (x,y,z) and orientation ( ���
����� ) of the rotorcraft.
The Polhemus is connected via RS232 to the PC.

4.2 Experiment

With respect to the time derivatives, we have simplified the
mathematical computation by setting

*���X� ��� 9 ����� ,& (67)



where � is a given variable and
&

is the sampling period. In the
experiment

& � NN Q l .
The gain values used for the control law are � p � �

) Y ��� [ ,
� p � � I Y I�� , ����� � I Y I=I - , ����� � I Y I=I

)
, ^ e � �

)
, ^ e � � -

,^ e � � I Y
)
, ^ e�� � I Y - , ^ r � �

)
, ^ r � � - , ^ r�� � I Y

)
and^ r�� � I Y - .

The control objective is to make the mini-rotorcraft hover at an
altitude of

� I�� d (�� i.e. we wish to reach the position �����
	����� �� I � I � � I [cm] � while �����
������� �A� I � I � I � . We also make the
rotorcraft follow a simple horizontal trajectory.

Figure 4 and 5 show the performance of the controller when ap-
plied to the rotorcraft. Videos of the experiments can be seen
in the following address: http://www.hds.utc.fr/ �

castillo/4r fr.html
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Figure 4: Position �����
	����� and orientation �����
������� of the four
rotor rotorcraft. The dotted lines represent the derived trajecto-
ries.
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Figure 5: Controls inputs (throttle input, yaw, pitch and roll)

5 Conclusion

We have proposed a stabilization control algorithm for a mini-
rotorcraft having four rotors. The dynamic model of the rotor-
craft was obtained via a Lagrange approach and the proposed
control algorithm is based on nested saturations.

The proposed strategy has been successfully applied to the ro-
torcraft, and the experimental results have shown that the con-
troller performs satisfactorily.

To the best of our knowledge, this is the first successful real-
time control applied to a four-rotor rotorcraft.
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