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Abstract
Dynamic control of parallel wheeled differential drive mobile 
robot is considered. The dynamic model is composed of two 
consecutive parts; kinematic model and equations of linear 
and angular torques. By transforming dynamic error equations 
of kinematic model to mobile coordinates, the tracking 
problem changes to stabilization. controller is designed in two 
consecutive parts: in the first part kinematic stabilization is 
done using nonlinear control laws, in the second one 
,acceleration rate control has been used for Exponential 
stabilization of linear and angular velocities. Uncertainties in 
the parameters of dynamic model (mass and inertia) have 
been compensated using model reference adaptive control. By 
introducing appropriate Lyapunov functions asymptotic 
stability of state variables and stability of system is 
guaranteed. The distinctive property of the proposed 
controller is its robustness of performance in the presence of 
uncertainties. Simulations illustrate quality and efficiency of 
this method.

Keywords-Mobile Robot, Tracking, Nonlinear Control, 
Adaptive Control, Nonholonomic.

1. Introduction
The robot studied in this research is a kind of a simple 
nonholonomic mechanical system. Many studies in 
nonholonomic control systems have been carried on in past 
decade [1,2,3,4,5,6]. However, few of them have resulted in 
reportable data, even for such a simple, but important issue as 
wheeled mobile robot. Nonholonomic property is seen in 
many mechanical and robotic systems, particularly those 
using velocity inputs. Smaller control space compared with 
configuration space (lesser control signals than independent 
controlling variables) causes conditional controllability of 
these systems. So the feasible trajectory is limited. This 
means that a mobile robot with parallel wheels can’t move 
laterally. Nonholonomic constraint is a differential equation 
on the base of state variables, it’s not integrable. Rolling but 
not sliding is a source of this constraint.

Kinematic model of parallel wheeled mobile robot fails to 
meet Brockett’s necessary condition for feedback stabilization 
(Brockett 1983). This implies that no smooth or even 

continuous time invariant static state feedback law exists 
which makes the closed loop system locally asymptotically 
stable. This has attracted interest of researchers to the 
complicate and fascinating problem of mobile robot control.
Tracking control using direct Lyapunov method [7], time 
variant state feedback [8] and many other primitive methods 
are designed on the basis of kinematic model [12].
Stabilization and control of nonholonomic systems with 
dynamic equations have been considered in [1], backstepping
based methods are presented in several papers [9,10,11].
Recently adaptive methods are used to compensate the effect 
of uncertainties in dynamic model [3,4]. These are designed 
for chained forms and have complicated equations. In 
addition, the efficiency of method in the presence of 
uncertainties is not compared with simple non-adaptive 
controllers. Stability is studied in many articles, but there is 
no straightforward solution for tracking problem and measure 
of tracking error, so simple controllers are more suitable for 
regular use [7,12].

In this study the effect of uncertain parameters of dynamic 
model on system performance is considered. It’s shown that 
the suggested method based on adaptive control can save the 
closed loop performance vis-à-vis changing parameters of 
mass and inertia of robot. In addition the distinctive simplicity 
of the proposed controller leads to the possibility of adjusting 
the parameters to achieve the desired performance including 
tracking error and control signals. These properties are 
especially obtained by this dynamic controller. Dynamic 
model is divided into two consecutive parts. By using simple 
control structures for each part, the effect of uncertain
parameters is studied. With model reference adaptive control 
for uncertain parts of equations, stability and robustness of 
performance is guaranteed. The article is composed of seven 
sections; after this introduction, in the second section, the 
dynamic model and its transformation to desired structure is 
presented. Section three describes a Lyapunov based 
nonlinear control method for asymptotic stability of kinematic
equations. In the forth section, the overall structure of 
dynamic controller is considered. Section five deals with the 
effect of uncertain parameters and presents the model 
reference adaptive control law. The simulation results are 
presented in section six and the last section contains the 
concluding remarks.



2. Mobile Robot Dynamic Model
A large class of mechanical nonholonomic systems is
described by the following form of dynamic equations based 
on Euler Lagrange formulation [1]:

          qJqBqGqqqCqqM T  , (1)

While the nonholonomic constraint is
  0qqJ  (2)

where q is the n dimensional vector of configuration 
variables,  qM  is a symmetric positive definite nn
matrix,  qqC ,  presents the n vector of centripetal and 

coriolis torques,  qG  is the n vector of gravitational torques, 

 qB  is the rn  input transformation matrix (r<n),   is the 

r dimensional vector of inputs and   the Lagrange
multipliers of constrained forces.

A simple structure of differential drive mobile robot is shown 
in figure 1. Two independent analogous DC motors are the 
actuators of left and right wheels, while one or two free wheel 
casters are used to keep the platform stable.

Figure 1: Coordination of Mobile Robot

Pose vector of robot in the surface is defined as  Tyxq ,,
x and y are the coordinates of point C; center of axis of 
wheels, and   is the orientation angle of robot in the inertial
frame. One can write the dynamic equations of mobile robot 
according to Equation (1), using the fact that  qG  and 

 qqC ,  are zero.
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Where 1  and 2  are the torques of left and right motors, m
and I present the mass and inertia of robot respectively. R is
the radius of wheels and L is the distance of rear wheels.

The nonholonomic constraint, the no slip condition, is written 
in the form of Equation (2):

0cossin   yx  (4)

This equation is not integrable, so the feasible trajectory of 
robot is limited.
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where l  and a  are linear and angular torques respectively.
In order to reach the normal form the following 
transformation is used:
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Differentiating Equation (6):
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Comparing left hand side of this equation  q with Equation
(5) one can write
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Multiplying the first part of Equation (9) by cos and the
second part by sin , and adding the results the following is 
obtained

I
w

m
v al 

  , (10)

Where v and w are the linear and angular velocities of mobile 
robot. The other part of normal form is written according to 
Equation (6):

w

vy
vx















sin
cos

(11)

These are the equations of kinematic model. At this point, the 
dynamic equations of mobile Robot are transformed to the 
consecutive parts of Equations (11) and (10).

Extracting the kinematic model from dynamic equations, one 
can use the nonlinear kinematic controllers to stabilize the 
configuration variables. Tracking control of mobile robot is 
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simply reduced to regularization problem of error variables in 
kinematic model. A path planner defines the reference 
Trajectory as a time variant pose vector: 

 Trrrr yxq  . This Trajectory should satisfy not only 
the kinematic equations but also the nonholonomic constraint:
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The error dynamics is written independent of the inertial 
coordinate frame by Kanayama transformation [7]:
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( eee yx ,, ) are the error variables in mobile coordinate 

system which is attached to the robot. Differentiating left 
hand side of Equation (13) and using Equations (11), (12) and 
(4) the error dynamics is written in the new coordinate 
system:
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 Twv  is the control vector of the Kinematic model.

In assigning the control laws in next section, these variables v
and w are presented by dd wandv , in order to distinguish 
them from the actual linear and angular velocities. Note that 

dd wandv  are the desired velocities to make the 
Kinematics stable. The dynamic controller is proposed based 
on Equations (10) and (14) in which eee andyx ,  are the 

state variables and l , a  are the control signals.

3. Nonlinear Kinematic Controller
The Lyapunov based nonlinear controllers are the simplest 
but also successful methods in kinematic stabilization. In this 
section, a constructive method is considered based on [7].The 
constructive Lyapunov function is:

   eee yxV cos1
2
1 22  (15)

Time derivative of Equation (15) becomes:
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dd wandv  are chosen as follow to make V  negative 
definite:
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(17)

Substituting Equation (17) in Equation (16):

erex kvxkV 
22 sin (18)

It’s clear that V is only negative semi definite.

Using LaSalle’s principle, convergence of ey to zero is 
guaranteed, so the closed loop system is globally 
asymptotically stable. Changing dw  in Equation (17) by:

eeyrrd kykvww  sin (19)

Three weighting parameters of error variables will be 
 kkk yx ,, . Global asymptotic stability of the closed loop 

system can be proved by the following Lyapunov function:

    0;cos1
2
1 22  yyeee kkyxV  (20)

A similar controller and a discussion on the effect of control 
parameters is presented in [12].

4. Control Structure for Dynamic Model
Output of the nonlinear controller of last section is the desired 
linear and angular velocities ( dd wandv ) for Kinematic
stabilization. These values are as the reference inputs for the 
next part of dynamic controller. The block diagram of this 
structure is shown in figure 2.

Figure 2.Block diagram of Mobile Robot Dynamic Controller

In this section, the following control laws are used to prepare 
tracking of dd wandv :
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where al kandk  are two positive control parameters. The 

error of linear velocity is defined as
vvv de  (22)

Differentiating this equation and using Equation (10) the 
closed loop dynamics of linear velocity is obtained:
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Similar work is done for angular velocity: 
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Consequently exponential convergence of v and w to the 
desired values is guaranteed.

5. Model reference adaptive control
In the control structure of last section the values of m and I
are assumed to be known. In fact, not only the measurements 
of these parameters have uncertainties, but also they change 
in a large area in most applications. So the control laws 
should be written in this form:

 
 wwkwI

vvkvm

dada

dldl









ˆ

ˆ




(25)

The errors between IandImandm ˆ,ˆ  affect the rate of 
convergence, and may cause undesired oscillations especially
in a digital implementation of controller. In order to attenuate 
this effect, appropriate adaptation rules are provided in this 
section. Formulation is described for linear velocity. Similar 
work can be done for angular velocity.

Substituting Equation (10) in Equation (25) the following 
closed loop equations of velocities are obtained:
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In adaptive system, the parameters of the linear velocity 

controller are defined by 
12
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,  

m
m

m
kl  , so Equation

(26) can be written in this form:
 vvvv dd  21   (27)

The reference model for velocity error is
0;0  TTvv ee (28)

where T is the time constant of error damping, which should 
be manually tuned depending on several parameters; such as 
Actuator limitations, convergence rate of nonlinear kinematic
controller [12] and in a discrete system, at least four times
larger than the sample time ( sT ). Equation (28) is written in 

the form of Equation (27) using  mde vvv  :

mddm TvTvvv   (29)

The adaptation error is the difference between v and the 
velocity of the reference model ( mv ): mvve  .Time 
derivative of e gives the error dynamics:
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The following constructive Lyapunov function is introduced 
by the theory of Model Reference Adaptive System (MRAS):
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Its derivative is obtained by substituting e  from Equation
(29):
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Adaptation rules are defined by setting the second and third 
parts of Equation (32) to zero to make V  negative definite:

dtveve
dt

d
d

t
d  1011

1 


 (33)

   dtvvevve
dt

d
d

t
d  2022

2 
 (34)

Similarly for the angular velocity:
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The parameters 4321 ,,,   will be tuned to reach the 
desired performance.

6. Simulation results
This section illustrates the performance of the proposed 
controller, in the presence of uncertainties. The parameters 
are adjusted to compare the results with the controllers of [4] 
and [10]. The nominal values of mass and inertia are 1 and 
0.5 respectively, the parameters of controller in Equations
(17) and (19) are simply set to 5 kkk yx

, and the 

adaptation gains 1.031    and 1042    are used.

Figure 3 shows the convergence of the tracking error 
variables.

Figure 3. (a) Convergence of error variables (b) linear and angular 
velocities of mobile robot.

Efficiency of this controller in the presence of uncertainties is 
shown in figures 4 to 6. The initial conditions are
      0010,10  andyx . In figure 4, the parameters 

are set to the nominal values. All error variables have 
converged to zero in 3 seconds. In figure 5 the nominal 
parameters are changed to m = 4 and I = 2. It can be caused 
when the robot wants to carry an object. It’s shown that the 
oscillations of non-adaptive control system continue for more 
than 10 seconds. In this situation the adaptive controller 
works perfectly (figure 6). The error variables come to zero in 
about four seconds. Figure 7 presents the convergence of 
adaptive control gains.



Figure 4. Convergence of error variables in a simple control system 
with the nominal values of m and I.

Figure 5. Non-adaptive control system performance when the 
parameters m and I differ from nominal values.

Figure 6. Performance of Adaptive control system when the 
parameters of m and I differ from nominal values.

Figure 7. Convergence of the gains of model reference adaptive 
controller.

7. Conclusion

In order to clarify the effect of model uncertainty on the 
performance of mobile robot control systems the complete 
dynamic model has been used. The main characteristic of the 
proposed controller is its robustness of performance against 
the changes in mass and inertia parameters of robot. The 

controller has been designed in two consecutive parts; one is a 
nonlinear kinematic controller and the other is the model 
reference adaptive controller to provide tracking of desired 
linear and angular velocities. The simple and clear control 
laws lead to simplicity of adjusting the parameters to achieve 
the desired performance including the tracking error and 
control signals. Stability of system has been guaranteed by 
appropriate choice of Lyapunov functions. Simulations have 
shown robustness and efficiency of this method.
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