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Abstract 
 
In this paper, the problem of Lyapunov Exponents (LEs) 
computation from chaotic time series based on Jacobian 
approach by using polynomial modelling is considered. The 
embedding dimension which is an important reconstruction 
parameter, is interpreted as the most suitable order of model. 
Based on a global polynomial model fitting to the given data, 
a novel criterion for selecting the suitable embedding 
dimension is presented. By considering this dimension as the 
model order, by evaluating the prediction error of different 
models, the best nonlinearity degree of polynomial model is 
estimated. This selected structure is used in each point of the 
reconstructed state space to model the system dynamics 
locally and calculate the Jacobian matrices which are used in 
QR factorization method in the LEs estimation. This 
procedure is also applied to multivariate time series to include 
information from other time series and resolve probable 
shortcoming of the univariate case. Finally, simulation results 
are presented for some well-known chaotic systems to show 
the effectiveness of the proposed methodology.  

 
1 Introduction 
 
The pattern in output measurements reflects different 
behaviours, which can be classified as periodic cycles or 
stable equilibrium, non-linear chaotic, and pure random 
processes. Obviously, different types of models and analysis 

are needed for each case such that improper selection of 
required tool may lead to lose the deterministic structure. 
However, uncovering this deterministic structure is important 
because it leads to more realistic and better modelling [12]. 
 

Deterministic chaos appears in variety of fields of science like 
engineering, biomedical and life sciences, social sciences, and 
physical sciences. Therefore, recognizing the chaotic 
behaviour of dynamical systems when only output data are 
available, is an important field of research. To achieve this, 
there are some quantitative measures included fractal 
dimension, entropy and Lyapunov exponents (LEs).  
 

The LEs are conceptually the most basic and useful 
dynamical diagnostic for deterministic chaotic systems. The 
calculation of LEs for systems whose dynamical equations are 
known is straightforward. However, these methods cannot be 
applied directly to a set of measurement data. A system with 
one or more positive LEs is defined to be chaotic. These 
exponents provide not only a qualitative characterization of 
dynamical behaviour but also the exponent itself determines 
the measure of predictability. Hence, the estimation of the 
LEs as the useful dynamical classifier for deterministic 
chaotic systems is an important issue in nonlinear time series 
analysis. Two general approaches for computing the LEs 
from output time series are geometrical and Jacobian 
approaches. In geometrical approach, LEs are calculated 
based on the long term evolution of an infinitesimal sphere of 
initial conditions [19,9]. On the other hand, in the Jacobian 
approach, local Jacobian matrices are estimated and the long 
term product of matrices is computed. This is presented in 
[16] and [7] and its idea has been extended in several 
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references, e.g. [5], and [15]. The important step in latter 
approach is to estimate the Jacobian matrices. Since the LEs 
are derived from the eigenvalues of  the Jacobians, any small 
error in the computation of Jacobians can cause major error in 
the LE computation. Some general perturbation results and 
error analysis in QR algorithms for computing LEs can be 
found in [6]. 
  

In the Jacobian approach, the Jacobians are usually found by 
locally linear mapping the neighborhoods near the reference 
trajectory to neighborhoods at a subsequent time. In [16] and 
[7], the linearized flow map from the neighbor data set into 

 step ahead of this set is considered as an approximation 
for the tangent map. In [5], it is shown that using the local 
neighborhood-to-neighborhood mappings with higher order 
Taylor series, can lead to superior results. In addition, in [3] it 
is suggested that the estimation of Jacobian matrices is best 
achieved in the case of noisy data by least squares polynomial 
fitting. An adaptive method for the computation of the 
Jacobian matrices has been presented in [11]. Four other 
methods for estimating the Jacobian has been referred to in 
[13], including the local thin-plate splines, radial basis 
functions, projection pursuit and neural nets. In [15], the 
Jacobians are estimated over boxes of the state space to speed 
up the algorithm of LEs computation.  

m

 

In this paper, the problem of LEs computation from chaotic 
time series based on Jacobian approach by using polynomial 
models is considered. Different polynomial models lead to 
different Jacobians which result in various LEs. Moreover, 
large value of orders obtains the sporious LEs which confuses 
the selection of true LEs. Therefore, in proposed method two 
problems including the embedding dimension estimation  and 
also a transparent decision criterion for choosing the proper 
structure of model are considered. In the first part of this 
paper, it is discussed that, the order of model plays the role of 
embedding dimension in the state space reconstruction. 
Therefore, by using global polynomial modeling of 
underlying dynamical system and considering the first step 
ahead prediction error, a criterion for estimating the suitable 
model order is presented. Then, the best degree of 
nonlinearity of polynomial model is estimated by evaluating 
the prediction errors of different models. The selected  
structure is used for local estimating of Jacobians which are 
used in QR factorization to calculate the LEs. This procedure 
is also applied to multivariate time series and it is shown that 
it can resolve probable shortcoming of the univariate case. 
 

The background materials are given in Section 2. In Section 
3.1, by considering the global polynomial models, a model 
based method for estimating the minimum embedding 
dimension and determining the suitable structure of the model 
are presented. The estimation of LEs based on local 
polynomial models is presented in Sectiobn 3.2. Finally, 
simulation results are provided to show the effectiveness of 
the proposed methodology for the well-known chaotic 
dynamical systems in section 4. The superiority of using 
multiple time series in this procedure is shown by applying 
the procedure to the given data from Rössler system. 
 

2 Some preliminaries 
 
In order to use the Jacobian approach to calculate the LEs, 
related mathematical background is explained in this section. 
Moreover, the general form of polynomial models which used 
in the next section is presented. 
 
2.1. Computation of LEs by Jacobian approach 
 
Consider the discrete dynamical system described in the 
following form: 
                            ( ) L,1,01 ==+ kxFx kk                 (1) 

 
where kx  is the state vector in the mR  space and ( )⋅F  is a 
continuously differentiable nonlinear function. The linearized 
system for a small range around the operational trajectory in 
the phase space can be written as: 
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where  is the Jacobian matrix in point . The LE is 
defined as follows [6]: 
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Definition 1- Let Y , then the following 
symmetric positive definite matrix exists: 
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and the logarithms of its eigenvalues are called the Lyapunov 
Exponents. 
 

However, the computation of the LEs by using definition 1 
has some problems. The first problem is that for large value 
of , the fundamental solution k kY  may go to very large 
values and actually, the calculation of  is not possible. 
Further, the computation of 

Λ
kY  should be such that the linear 

independency of the columns is maintained. Otherwise, this 
computation leads only to the largest LEs. To deal with these 
problems, the QR factorisation algorithm is used for 
approximation of LEs [7, 5, 15, 6]. The steps involved in this 
method can be summarized as follows: 
1) Given orthogonal Q  such that Q  . 0 IQT =⋅ 00

2) Solve L,1,0,1 =⋅=+ kQJZ kkk

111 +++ ⋅
  and obtain the 

decomposition:  = kkk RQZ

1+kR
 where  is an 

orthogonal matrix and  is upper triangular matrix with 
positive diagonal elements. 

1+kQ

3) The LEs can be calculated as follows: 
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2.2. Polynomial Model 
 
The dynamical behavior of system is considered with the 
following nonlinear difference equation: 
                               ( ) ( )kxfky =+1                                 (5) 
 
where  is a continuously differentiable function and ( )⋅f kx  
is state vector. It is supposed that the output data of the 
dynamical system is available as the following univariate time 
series: 
                                (6) ( ) ( ) ( sss Nttyttytty +++ ....,,2, )

)

 
where  is the sampling time and N is total number of 
measurements. 

st

 

In many practical situations the structure of the underlying 
dynamical system which generates the data is unknown. 
Depending on the objectives, there are different theories, such 
as the functional theory, which are suitable for special 
analysis of nonlinear systems. In this paper, an arbitrary 
degree polynomial as follows is selected to fit the output data: 
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                                                                                      (7) 
where d is the order of model and n is degree of nonlinearity. 
For the model order d and degree of nonlinearity n the 
number of  parameters in vector Θ  that should be estimated 
to identify the underlying model is: 

                                  
( )

!!.
!

nd
ndn +

=θ                                    (8) 

 
This identification can be done by using Least Squares 
method. 

  
3 Model based estimation of the LEs 
 
In order to estimate the LEs based on polynomial modelling, 
at first the idea for selecting the most suitable structure of 
polynomial model is presented. Then by using this structure, 
the LE estimation procedure is explained. 
 
3.1. Determining the model structure and embedding        
       dimension  
 
In practical situations the dynamical equations (5) and state 
variables of chaotic system are not available. However, the 
original phase space geometery can be reconstructed by 
applying the method of delays by Takens’ theorem [18] and 
the invariant measures of chaotic system, like LEs, can be 
calculated from this reconstrucred space. In method of delays, 
the delay coordinates as follows are used to form a d 
dimensional vector space: 

             ( ) ( )( ) ( ) ( )[ ]tytydtytx ,,...,1 ττ −−−=          (9) 
 
where τ  is the lag time and the dimension of this 
reconstructed space, d, is called the embedding dimension 
which its minimum value is looked for. There are many 
methods that concern this dimension including False 
Neighbour method [10] and Singular Value Decomposition 
method [4] and related papers for their modifications and 
using the extension for multivariate time series case [1,2,14]. 
 

In this paper, in order to model the reconstructed state space, 
the vector (9) is considered as the state vector. The lag time 
can be selcted by using well known methods based on 
autocorrelation function or mutual information [8]. Here, the 
lag time is fixed and the vector (9) with normalized step is 
considered. Then for deriving the state equations, the function 
( )⋅f  is estimated by polynomial model such that: 

                               ( ) ( )( txfty )=+1                             (10) 
  
By this, the number of required state variables which, is the 
order of autorgressive polynomial model, will also be equal d. 
Therefore, the minimum embedding dimension is chosen as 
the most suitable order of the polynomial model. The under-
estimation of order causes the loss of dynamics of data 
generator, and the Lyapunov spectrum can not be obtained 
neither complete nor accurate from this model. On the other 
hand, the over-estimation of model order leads to sporious 
LEs which perturbs the decision on true LEs.  
 

In order to select the suitable model order or embedding 
dimension, a criterion based on global polynmial model is 
presented. To show the main idea, consider a two dimensional 
chaotic system with the state trajectory as shown in Figure 1. 
The objective is to find the model as (5) by using the structure 
of (7). If the order of model is under-estimated to d=1, the 
obtained model will project the points ( ) 7,,11, L=ii  to the 

same one step ahead value, say . 1ˆ +kx
 
 

 
Figure 1: Attractor of a two dimensional chaotic system, if     

order is under-estimated to d=1  all the points 1, …, 7 on 
X(k-1) axis are projected on point 1 in X(k)  axis. 

 



Therefore, the first step ahead prediction error for each 
transition of this point is: 
 
                             (11) ( ) ( ) 7,,11,ˆ1, 11 L=−= ++ iixxie kk

where  denotes to the true first step ahead value. 
These errors will be large since only one fixed projection has 
been considered for all points. If the order of model is 
selected to d=2, then for each points of 

( 1,1 ixk+ )

( ) 7,,11,1 L=+ iixk  
different one step ahead value is estimated. The prediction 
error in this case is: 
 
              ( ) ( ) ( ) 7,,11,1,ˆ1, 11 L=−= ++ iixixie kk         (12) 
The errors in this case are much smaller than the previous 
case since the error is only due to the capability of selected 
model to predict the next value. The Least Mean Squares 
(LMS) of these errors for all the points of attractor as follows 
is also different value in these two case: 
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 and the Df  are computed in terms 

of the parameters of the model. Since the accuracy of 
Jacobians depend on estimated model parameters, it is tried to 
improve the model fitting by using suitable structure of 
autoregressive polynomials. For this, a general polynomial 
with order  and degree of nonlinearity  which have 
been selected in the last part is considered. To estimate the 
parameters of the local model, for each point of the 
reconstructed state space with dimension d  like (14), some 
nearer neighbours are selected. The number of neighbours 
should be more than number of parameters which should be 
estimated. Then the LMS method is used to estimate the 
model parameters in each point. The obtained local model is 
used to calculate the Jacobian matrix as (16). This is 
accomplished for all the points on the reconstructed attractor 
and the calculated Jacobians are used in the QR algorithm for 
calculating the LEs.  

dii ,...,1=

pn

opt

where N is the total number of points. Therefore, for selecting 
the optimum model order, the value of σ  is considered for 
different model order. The dimension that σ  is decreased to 
a lower level and after that takes approximately the same 
value is the suitable model order and is denoted by .  optd
  

After finding the , for this fixed order, values of optd σ  for 
different degree of nonlinearity is calculated and the degree 
which σ  takes approximately the same values is selected as 
the nonlinearity degree of polynomial and denoted by .  pn
Remark 1- The above mentioned idea for estimating the 
embedding dimension can be used by considering other types 
of models provided that the model function satisfies the 
continuous differentiability property. 
 
3.2. LEs estimation 
 
In this section, LEs estimation based on polynomial models 
by using time series (6) is presented. For this, the polynomial 
model (7) is considered which d  and  are estimated by 
the procedure of Section 3.1. The state vector is defined as 
following delay vector which delay is normalized: 

opt pn
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The system can be represented in a canonical form as: 

                            ( )

( )
( )

( )( )

















=+

kxf

kx
kx

kx
M

3

2

1                             (15) 

Then, the Jacobian matrix  in each point  of  the typical 
trajectory for this canonical representation is as: 

kJ k

                       (16) 
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4 Simulation results 
 
To show the effectiveness of the proposed procedure in 
Section 3, the algorithms are applied to some well-known 
chaotic systems whose characteristics are defined in Table 1 
[3,17,19]. 
 
4.1. Univariate case 
 
 In this section a univariate time series of above mentioned 
systems is considered. At first, the proposed method for 
estimating the suitable order of model based on global 
polynomial modeling is implemented. For this, the developed 
general program of polynomial modelling is applied for 
various d  and n, and σ  is computed for all the cases which 
the results are shown in Table 2.  Based on the theoretic 
discussions on Section 3.1, then the optimum order of model 
is selected in each case. According to these results, the 
optimum model order and nonlinearity degree of each system 
are estimated as the Table 3. By using the values in Table 3, 
an structure of polynomial model is selected for each chaotic 
system.  
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Table 1. The characteristics of systems for simulations 

 
 

Logistic map, N=500 
   d 
n 

1 2 3 4 5 

1 0.9992 1.0016 1.0032 1.0027 1.0065 
2 5.43e-6 5.69e-6 5.95e-6 5.99e-6 6.0e-6 
3 2.30e-5 2.50e-5 2.72e-5 2.86e-5 3.09e-5 
4 6.83e-5 7.92e-5 9.04e-5 9.72e-5 1.07e-4 

Triangular map, N=500 
   d 
n 

1 2 3 4 5 

1 0.9018 0.8570 0.8627 0.8607 0.8550 
2 0.2587 0.2597 0.2599 0.2596 0.2618 
3 0.2233 0.2043 0.2045 0.2049 0.2069 
4 0.1337 0.1228 0.1224 0.1231 0.1245 

Henon map, N=500, time series of x variable 
   d 
n 

1 2 3 4 5 

1 0.9394 0.9283 0.8763 0.8649 0.8553 
2 0.2787 1.75e-7 1.52e-7 1.96e-7 3.07e-7 
3 0.2748 4.13e-7 2.76e-7 4.80e-7 1.76e-6 
4 0.2742 3.05e-6 9.71e-6 2.69e-6 2.62e-5 
Lorenz system, N=1000, time series of x variable, lag 

time= 0.05 
   d 
n 

1 2 3 4 5 

1 0.4115 0.2784 0.2284 0.2062 0.1988 
2 0.4115 0.2786 0.2292 0.2074 0.2004 
3 0.3830 0.0781 0.0167 0.0096 0.0092 
4 0.3830 0.0802 0.0105 0.0100 0.0096 

 
Table 2: Mean squared of first step ahead prediction error of 
defined chaotic systems for different values of model order 

(d) and degree of nonlinearity (n) 
 

 

The LEs, then can be estimated by the method explained in 
Section 3.2 which are shown in Table 3. The results for the 
Logistic and Henon maps that polynomial models exactly fit 
the dynamics, are almost the same as results obtained by 
computation from dynamical equations. For triangular map 
and Lorenz flow that the equations are not in polynomial form 
the results are also well acceptable. This accuracy is due to 
optimum selection of model structure in Section 3. To show 
the disadvantage of improper choice of model structure, the 
estimated LEs of Lorenz system for non-optimum structure 
are shown in Table 4. The improper model structure leads not 
only to inaccurate LEs but also obtains the sporious LEs.      

 
4.2. Multivariate case  
 
In some applications, e.g. meteorology, the measurements 
data are in the vector form. Moreover, the full dynamics of  a 
system from a single time series may not be observable. In 
this case, using multivariate time series may lead to better 
results. To  show this, time series of x and y variables of 
Rössler system are considered. In order to estimate the 
suitable model oder or embedding dimension, two cases are 
accmplished. In the first case, the univariate time series of x 
and y variables are used separately. The mean squared of first 
step ahead prediction error are provided in Table 5. It is seen 
that, the embedding dimension is estimated to d=2 which is  
not acceptable. However in the second case, if multivariate 
time series of joint variables x and y are used, as it is seen 
from the rsults in Table 5, the embedding dimension is 
estimated equal 3 which is exactly the system dimension. 

 
5     Summary 
 
In this paper, an improved method for the estimation of LEs 
based on polynomial models is proposed. At first, based on 
global polynomial model fitting to the given data, the 
minimum embedding dimension is estimated which has the 
same role as model order. The suitable nonlinearity degree of 
polynomials then, is calculated by evaluating the first step 
prediction errors. This step results in a suitable structure for 
local models which is used in the second step to calculate the 
Jacobians needed in QR algorithm for estimating the LEs. To 
show the effectiveness of proposed metodology, the 
simulation results are provided. The potential superiority of 
using multiple time series versus scalar case is shown by 
applying the proposed method to data from Rössler system. 
 
 

 
optd pn  Estimated LEs 

Logistic map 1 2 0.6926 
Triangular map 1 4 0.5871 
Henon map 2 2 0.4134, -1.6172 
Lorenz system 3 3 1.5254, 0.0128, -18.4338 

 
Table 3. The estimated optimum order of model, nonlinearity 

degree of polynomial model, and LEs 



d  pn  Lyapunov Exponents 

4 3 2.3044, 0.7538, -1.6386, -21.5328 
3 2 1.5551, 1.1270, -12.8595 

 
Table 4. The estimated LEs of Lorenz system with improper 

choice of model structure 
 
 

Univariate time series of x variable 
   d 
n 

1 2 3 4 5 

1 0.5206 0.2121 0.2065 0.1939 0.1887 
2 0.5173 0.1406 0.1087 0.0807 0.0790 
3 0.5125 0.0890 0.0617 0.0385 0.0342 

Univariate time series of y variable 
   d 
n 

1 2 3 4 5 

1 0.4916 0.0870 0.0779 0.0744 0.0737 
2 0.4915 0.0735 0.0380 0.0282 0.0239 
3 0.4915 0.0641 0.0210 0.0143 0.0133 

Multivariate time series of x and y variables 
   d 
n 

2 3 4 5 6 

1 0.1745 
0.0506 

0.1643 
0.0459 

0.1389 
0.0346 

0.1379 
0.0340 

0.1344 
0.0325 

2 0.1448 
0.0443 

0.0846 
0.0173 

0.0558 
0.0095 

0.0503 
0.0085 

0.0413 
0.0067 

3 0.1191 
0.0395 

0.0419 
0.0064 

0.0289 
0.0043 

0.0239 
0.0037 

0.0206 
0.0034 

 
Table 5: Mean squared of first step ahead prediction error of 
Rössler system for N=1000, and ts=0.5. In the third part, the 
first and second rows are related σ  for x and y respectively. 
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