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Robotics Laboratory, Mihajlo Pupin Institute

P.O.Box 15, Volgina 15, 11060 Belgrade, Serbia & M.N.
e-mail:roda,dusko,vuk@robot.imp.bg.ac.yu

Keywords: Road vehicle, automatic guidance, neural net-
works

Abstract

In this paper, a new concept of the advanced integrated vehicle
controller with a 4-wheel control system (ADIVEC-4WCS), to
provide an automatic system guidance, is presented. The sup-
plementary neuro-compensator is proposed to ensure a con-
trol system robustness and better controller adaptability upon
the system uncertainties and model innaccuracies. This neu-
ral compensator is a part of integrated active control algorithm
based on the centralized dynamic control strategy and full ve-
hicle model. The validity and effectiveness of the proposed
method based on adaptive capaibility of neural compensator
for a four wheel steering system have been demonstrated by
simulation experiments.

1 Introduction

The highest level of automation with road vehicles is the syn-
thesis of their integrated active control systems. Full auto-
matic control of motion and road vehicle performances is still
in the experimental phase. Some satisfactory results have been
achieved in the control of the vehicles operating with auto-
mated highway systems, i.e. with intelligent transportation sys-
tems [1],[2],[3]. The hybrid neuro-dynamic controller of the
road vehicle described in this paper, takes simultaneously into
account the complete system dynamics in all main directions of
the vehicle body motion: longitudinal, lateral, vertical, as well
as directions of roll, pitch and yaw angles. The centralized
approach to control, by using the entire spatial model of the
vehicle, makes the proposed controller advantageous over sim-
ilar control schemes applied in motion control of autonomous
vehicles with strongly expressed dynamics. Such case appears
during the ride along a path at a rather high velocity, sudden
variations of the vehicle course during motion, or with signifi-
cant variations of the road geometry parameters.

The mathematical model of a road vehicle used in the synthe-
sis of vehicle controller, describes only the most significant dy-
namic effects which exist in the system during motion. As a
consequence, some dynamic effects such as the elastic modes
in the vehicle mechanism, dynamics of vehicle actuators, time
delays in drive units and control subsystems, real friction in
joints of suspension system, fluid stiction in hydro-cylinders

of the viscous absorbers, etc. were not explicitly modelled.
These phenomena influence the whole dynamic behaviour of
the road vehicle during motion. For the mentioned reasons, in
order to control the vehicle while ensuring full controllability
and stability on the road, it was necessary to add to the exist-
ing control structure of the dynamic controller a supplementary
neuro-compensator of the corresponding system uncertainties.

The neural networks have brought considerable interest, re-
cently in areas of identification and control of advance vehicle
systems [4], [5]. The always present structural and paramet-
ric model inaccuracies we shall compensate posteriori by de-
signing a supplementary neural compensator which takes into
account the existing uncertainties in the system.

2 Model of the vehicle dynamics

The complex nonlinear model previously applied by Peng and
Tomizuka in their simulation experiments [6] was used in the
synthesis of the road vehicle dynamic controller. This model
is rearranged and extended, taking into account the dynamics
of the suspensions and tires. A nonlinear vehicle model having
�� DOFs, with the possibility of autonomous 4-wheel driving
(4WD) and 4-wheel steering (4WS), was used for the stability
analysis, control synthesis, parameters estimation, and simula-
tion. The model describes motion of the vehicle mass centre
(MC) in � coordinate directions (x, y, z) and � rotations (�, �,
�) of the vehicle about its main axes of inertia. The model also
describes the dynamics of the 4-wheel suspension system in the
vertical direction, as well as the tire dynamics in the same di-
rection. Each wheel, in addition to the vertical tire deflection,
possesses � extra DOFs: rotation about the horizontal axis at
an angular velocity �i (for i � �� �) and, rotation about the
vertical axis �i w.r.t. the road surface. The second rotation
represents a change of the tire’s ground steering angle.

The vehicle body model is determined by its rigid body dynam-
ics, and it can be expressed via the vector equation:

H�q� d��q � h�q� 	q� d� � � � F �q� 	q� d� (1)

where:

q � 
x y � z � ��T � 	q � 
 	x 	y 	� 	z 	� 	��T (2)

are (�� �) vectors of system state variables describing the po-
sition/orientation and velocity of the vehicle body MC with
respect to the coordinate system fixed to the ground; x� y� z



are the longitudinal, lateral and vertical positions of the vehi-
cle MC along the three coordinate directions, expressed in 
m�;
�� �� � are the corresponding angles of roll, pitch and yaw of the
vehicle body in [rad]; H�q� d� is a (� � �) inertia matrix, ex-
pressed in 
kg� and 
kgm��, respectively; h�q� 	q� d� is a (�� �)
vector of gravitational and centrifugal forces acting at the vehi-
cle MC, expressed in 
N � and 
Nm�, respectively; � is a (���)
vector of driving forces and torques referred to the vehicle MC,
expressed in 
N � and 
Nm�, respectively; F �q� 	q� d� is a (���)
vector of the external forces and torques acting on the vehicle
body during its motion along the road. Elements of this vector
take into account forces and torques of tire rolling resistance,
aerodynamic resistance forces during motion, as well as the
damping torque of the yaw rate during cornering. The vector d
represents an l � � vector of the system parameters.

The ”dynamic environment” of the road vehicle was approx-
imated by a model of the vehicle suspension system in a
broader sense. Thus it is assumed that the dynamics of tire-
pneumatics in ”vertical” direction can be reduced to the equiv-
alent vehicle suspension system dynamics. The dynamic envi-
ronment is usually represented in the linear impedance form:
M �q�t� � B 	q�t� �Kq�t� � �S F , taking into account the in-
ertial (M ), damping (B) and elastic (K) characteristics of the
environment. The environment dynamic model can be adopted
in the nonlinear form, too:

M �q� d��q � L�q� 	q� d� � �S F (3)

where M �q� d� is the (� � �) matrix describing the equivalent
environment inertia in � coordinate directions, while L�q� 	q� d�
is the (� � �) nonlinear vector function which takes into ac-
count the equivalent elastic and damping characteristics of the
environment interacting with the vehicle body. Parameters of
the ”dynamic environment” are in general variable. They are
defined by the vector d of dimension (l � �). The transforma-
tion matrix S is (���) matrix. It takes into account the relative
orientation of the vector of the external forces and moments
F which act upon the environment w.r.t. the fixed coordinate
system attached to the ground surface.

The model of dynamic environment in accordance to the de-
coupling of its dynamics in particular directions, can be de-
scribed by the following relation:�

M�� M��

M�� M��

� �
�q���

�q���

�
�

�
L���

L���

�
� �S

�
F ���

F ���

�
(4)

In order to simplify the modelling process , it is adopted that
the roll and pitch axes of the vehicle body are passing through
the vehicle body MC. In that case the matrix S is identical to a
sixth-order square unit matrix S � I.

3 Control strategy

The purpose of the integrated vehicle control is to ensure global
motion stability of the road vehicle. The control strategy pro-
posed in this paper is the strategy of the so-called distributed hi-
erarchy control [7]. A solution which will be presented here is

based on the knowledge of the entire vehicle dynamics. Thus,
this control strategy can be named as the strategy of centralized
dynamic control. The term ”hierarchy” is used for the reason
that the control of the object is realized at two levels: tactical
and executive. They are separated w.r.t. the existing dynamic
modules: the vehicle body and vehicle active suspension. The
control is ”distributed” because the global control signals that
are generated on the higher level are distributed on the lower,
executive control level, as reference signals.

The vehicle controller on the higher tactical control level,
which is based on the information about errors of global state
variables q and 	q, calculates a vector of the control forces and
torques which has to act at the vehicle MC to realize the desired
motion. The control forces and torques calculated in this way
are realized indirectly by the action of the vehicle end-effectors
operating in the frame of the executive control level. For full
automatic control of the vehicle motion and performances, var-
ious types of actuators can be applied. They operate in the
scope of the particular vehicle active systems such as active
suspension system, active 4WS (four wheel steering), and ac-
tive 4WD(four wheel driven) system.

The vehicle autopilot demands exact and timely information
about positions of the vehicle on the road, its relative velocity,
distance from static and mobile obstacles along trajectory and,
changes of road geometry parameters. Important prerequisites
of the application of the autopilot system structure which will
be described in the text to follow are: (I) Nominal vehicle tra-
jectory has to be known in advance or it has to be generated in
the real-time during the motion; (II) It is possible in every time
instant to measure the current position of the vehicle body MC
sufficiently exactly w.r.t. central line of road as a nominal path.
It is also assumed that there are appropriate sensors on the ve-
hicle that measure the relative attitude deflections and payload
magnitudes in the vehicle MC; (III) It is possible to measure,
or estimate in some way, the time-dependent magnitudes of the
vehicle body velocities in all six coordinate directions of move-
ment; (IV) Dynamic model expressed by the relation (1), by its
structure and complexity, describes sufficiently well the main
dynamic effects in the system; (V) Estimation of the vehicle
dynamic parameters and parameters of interaction between the
tire pneumatics and road surface is realizable in real time.

3.1 Synthesis of the vehicle dynamic controller

The dynamic controller of the road vehicle is synthesized on
the tactical control level. Relating to the nature of the devi-
ation error signal (position/velocity or force/moment) in the
feedback loop of the control scheme, two different types of dy-
namic control algorithms can be synthesized: a pure position
control law and a combined position/force control law. Which
of these two control laws will be implemented in the scope of
the vehicle dynamic controller depends on the concrete control
requirements. Pure position control is relatively simple for the
synthesis because it demands only information about the exact
position and velocity of the vehicle body relative to the road
surface. On the contrary, in the case of the implementation of



the combined control law, it is not necessary to measure attitude
deflections of the vehicle body directly. Instead, measurement
of the corresponding forces and moments acting at the MC of
the vehicle body w.r.t. its equilibrium state at rest is required.

On the basis of experience with road vehicles as large-scale dy-
namic systems it should be pointed out that dynamic intercon-
nections inside the vehicle’s mechanism are not of equal inten-
sity in some particular directions. Thus, the longitudinal, lat-
eral, and yaw motion of the vehicle body are mutually strongly
coupled. Besides, the heave motion of the vehicle body dur-
ing riding is directly dependent on the corresponding displace-
ments in the rolling and pitching directions. That is the reason
why the considered system can be dynamically decoupled in
two dynamic modules: (I) the vehicle dynamics ”in plane of
the road surface” and, (II) the vehicle dynamics ”in the con-
ditionally vertical plane”. Dynamic interconnections between
the DOFs inside the mentioned dynamic modules are strongly
expressed, while interactions between these modules are rela-
tively weak. Having in mind the previous remarks and taking
into account the fact that the system stabilization in longitudi-
nal, lateral and yaw directions (x, y and � direction) is the most
important task of the vehicle control, this naturally imposes the
necessity of applying the position/velocity control in these mo-
tion directions. In the remaining three directions (vertical, roll,
and pitch) it is suitable to apply a force and moment control. In
that case, a uniform tireload distribution upon the wheels is en-
sured, with the indirect positive influence on the entire system
stability.

From the standpoint of previous considerations, partioning of
the nominal position vector q� into two subvectors q���� and q����

is performed. The partition of the external forces vector F� is
carried out in the same way. As mentioned above, the vehi-
cle body possesses n � � motion DOFs in q-directions, so
that the vector F of external forces and moments, acting upon
the vehicle structure is also of order m � �. In n� directions
(n� � n), the vehicle nominal trajectory q���� is prescribed di-
rectly. In these directions, position and velocity are directly
controlled. Simultaneously, in m� directions (m� � m), the
variation function of the programmed force/moment F ���

� is
prescribed. In these directions force/moment is controlled di-
rectly. The mentioned vectors q���� and F ���

� are of dimensions
(n� � �) and (m� � �) respectively, and they are prescribed
in advance as programmed (nominal) values. The remaining
two subvectors q���� and F

���
� are of dimensions (n� � �) and

(m� � �) and they are calculated indirectly by using the model
(4). Having in mind all this, the vectors q� and F� can be de-
fined in the following partioned form:

q� � 
q
���T
� q

���T
� �T � where (5)

q
���
� � 
x� y� ���

T and q
���
� � 
z� �� �� �T

F� � 
F
���T
� F

���T
� �T � where (6)

F
���
� � 
F �

X F �
Y M�

Z �
T and F

���
� � 
F �

Z M�
X M�

Y �T

Elements of the described vectors belong to the set of real

numbers: q
���
� � Rn���, q���� � Rn���, F ���

� � Rm���,
F
���
� � Rm���. For the considered object of control, their

dimensions are: n� � n� � n, m� � m� � m, n � m � �,
n� � n� � � and m� � m� � �.

Dynamic Position Control Law: If in the relation (1) q de-
notes the �� � �� vector of global state coordinates (position
and orientation of vehicle body), q� � 
x� y� �� z� �� ���

T is
the vector which denotes the desired, i.e. programmed, trajec-
tory of the road vehicle. Hence, the position control law can be
now expressed by:

� � �H�q� d� 
�q� � ���q��	q�� � �h�q� 	q� d�� F �q� 	q� d� (7)

���q��	q� � �KV �	q �KP�q

���q��	q� � �KV �	q �KP�q �KI

Z t

�

�q dt

where �H, �h and F are the corresponding estimated or mea-
sured values of matrices and vectors of the model (1); KV , KP

and KI are � � � matrices of velocity, position and integral
control gains respectively, in PD or PID variant of the chosen
controller. The matrix of control gains KP , KV and KI can be
defined as it was done in the paper, for the case when the system
parameters are ideally known. In other case, i.e. when parame-
ters uncertainty exist, the corresponding gains of the controller
can be determined by applying the algorithm for the system
practical stability test.

Dynamic Position/Force Control Law: The dynamic po-
sition/force control law demands the calculation of position
and velocity errors of the vehicle body MC w.r.t. their desired
(nominal) values, as well as deviations of external forces and
moments which act at the MC. In the case of application of
this control law it is not necessary to measure the state vari-
ables q�t�, 	q�t� in all coordinate directions but only in x, y and
� directions . Similarly, it is of importance with the compo-
nents of force/moment vector F �t� which have to be measured
in the z, � and � directions. The basic idea of the combined po-
sition/force control law is the choice of position/velocity con-
trol in some chosen directions, while in the rest of directions
the force/moment control is applied. Practical benefits of im-
plementation of this control algorithm in the designed vehicle
controller are viewed in the fact that in some directions it is eas-
ier to measure the force and moment than their positions and
velocities. Separation of the directions is done under criteria
of the minimal dynamic coupling between dynamic modules.
Thus, the vectors q and F from the model (1) can be formally
partitioned in two subvectors

q � 
q���T q���T �T � F � 
F ���T F ���T �T � (8)

q��� � 
x y ��T � q��� � 
z � ��T �

F ��� � 
FX FY MZ �
T � F ��� � 
FZ MX MY �

T

in the way as it was done with their nominal forms in (6) and
(7). One such partition of vectors q and F is done for the reason



that the influence of forces/moments upon the corresponding
displacements of the vehicle body (F ��� to the q��� and F ��� to
the q���) are weak, and because the dynamic behaviour of the
system in these directions can be mutually decoupled. In fact,
it means that position will be controlled in the directions x, y
and � (longitudinal, lateral and yaw) while in the directions z,
� and � (vertical, roll and pitch) force/moment control will be
applied.

Hence, the dynamic position/force control law can be defined
in the following form:

� � �H�q� d��qc � �h�q� 	q� d� � F (9)

�qc �

�
�q���c

�q
���
c

�

�q���c � �q���� � ���q�����	q����

�q���c � � �M��
�� 
�F ���

� �

Z t

�

Q��F ���� dt� �

� �M����q
���
� ����q�����	q����� � �L����

Q��F ���� � �K
���
F �F ��� � F

���
� � �

� K
���
FI

Z t

�

�F ��� � F
���
� �dt

Q��F ���� � �K
���
F �F ��� � F

���
� �

���q�����	q���� � �K
���
V � 	q��� � 	q

���
� ��K

���
P �q��� � q

���
� �

where: F is the (�� �) vector of external forces and moments
acting at the vehicle body MC; �M��, �M�� and �L��� are the
estimated matrices of the model (4); Q��� is one of the two dis-
posable (�� �) vector functions which determine the character
of the function describing the forces/moments in the transient
process; K���

F and K
���
FI are the (� � �) matrices of the force

control gains of the PI or P-regulator;F ���
� is the (�� �) vector

of the nominal (programmed) values of forces/moments act-
ing in the considered directions (vertical, roll and pitch); K ���

P

and K
���
V are quadratic matrices of the position and velocity

control gains of dimension (� � �). These control gains act in
directions which are complementary to the directions in which
force/moment control is applied. The feedback control gains
included in the dynamic control algorithm are determined us-
ing automatic software procedure established by the practical
stability test.

The control vector � , partitioned in the two complementary
vectors of control signals �I and �II which compensate for the
inaccuracies of motion in the corresponding directions so that:
�I acts in the z, � and � direction and, �II in the x, y and � di-
rection. The matrices S� and S� represent the diagonal (�� �)
selectivity matrices which serve to separate the control direc-
tions. The control signals �I and �II are the reference signals at
the lower control level. Control on the executive level depends
on the choice of system’s actuators and concrete solutions of
the active systems design.

3.2 Synthesis of the supplementary neuro-compensator

A neuro-compensator which was added to the synthesized dy-
namic road vehicle controller. Under the notion of neuro-
compensator we assume a compensator structure which is
based on the artificial neural network (ANN) with four lay-
ers of perceptrons. The proposed model-based controller can
ensure stable system motion and the desired quality of its dy-
namic behaviour if the mathematical model of the system suffi-
ciently exactly describes the system dynamics as well as if the
model parameters deviate relatively little from their real val-
ues. In the synthesis of the dynamic controller, we adopted
the spatial model of the road vehicle (1) which describes rel-
atively well the basic system dynamics in the considered six
coordinate directions of motion. However, the mathematical
model of the vehicle does not describe fully all dynamic effects
involved in the system during motion, as for instance elastic
modes of the vehicle mechanism, influence of the actuator dy-
namics, time delay in driving and control subsystems of road
vehicle, Coulomb’s friction at the joints of suspension system,
some other nonlinearities existing in the system, etc. Measur-
ing errors of the state variables and parameter estimation errors
influence the control accuracy of the motion, too. All these
phenomena influence the system stability. Thus, in order to
meet the requirements of the vehicle controller capable to op-
erate in real exploitation conditions, it is suitable to combine
the model-based controller with the knowledge-based nonlin-
ear compensator.

The structure of the hybrid neuro-dynamic controller consists
of two functional blocks. The task of the first (model-based)
block is to compensate for the main dynamic effects, while
the second (knowledge based) block is based on the applica-
tion of the artificial neural network for compensation of the
system uncertainties. The automatic control system of the au-
tonomous road vehicle is designed by integrating the dynamic
control algorithm and the chosen ANN structure. On the other
hand, a neural network can satisfactorily identify the above-
mentioned phenomena which were not comprised by the math-
ematical model (1). The mentioned identification of the non-
modelled dynamic effects by ANN is possible by training the
procedure of the chosen net structure using some of the well
known learning methods. In this paper we used the standard
back propagation learning method which is frequently used for
training multilayer nets in similar control tasks. The applica-
tion of ANN in automatic control of the vehicle motion is per-
formed in three phases: (I) the rough off-line training, (II) the
fine on-line training and, (III) the implementation of the finally
tuned net in the synthesized hybrid controller.

The structure of the learning process for the off-line identifica-
tion of the unmodelled system dynamics is shown in Fig. 1. At
the beginning, the appropriate input and output signals needed
for the network training are selected. For that purpose, man-
ual commands are set to the vehicle which produce variation
of the input command signals such as tire angular velocities �i
and variation of the ground steering angles �i, i � �� �. Be-
sides, various external disturbances act upon the vehicle dur-
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Figure 1: Structure of the learning process of the chosen ANN

ing motion. These are variation of the road surface profile,
changes of the intensity and direction of the side wind gust,
as well as variation of Coulomb’s friction coefficients between
tire pneumatics and road surface, etc. Using simulation ex-
periments, the global state variables (q�t�, 	q�t�, �q�t�) are de-
termined and saved. These state variables serve as input sig-
nals to the rough off-line training of the chosen ANN. These
variables are used for computation of the vehicle mathemati-
cal model too. On the basis of the values of generalized forces
�� �t� calculated from the model and their real values � �t� ob-
tained by measuring at each time sample on the real system
during the ride, the deviation vector �� �t� � � �t� � �� �t� can
be defined. At the same time, the so-called compensation vec-
tor of forces/moments ��NN is generated at the output layer
of the neural network. Values of the (�� �) vector ��NN cor-
respond to the values of the identified magnitudes of the forces
and torques which are not taken into account by the vehicle dy-
namics modelling. The obtained vectors �� �t� and ��NN �t�
are compared at the discriminator (e�t� � �� �t� ���NN �t�)
(Fig. 1). The existing error e�t� is used for further tuning of the
ANN weighting matrices (Fig. 1). When the amplitude of the
learning error e�t� is below some predetermined, desired value
(e�t� � E), the rough ”off-line” learning process is terminated.
The next step in the synthesis of the neuro-compensator is the
so-called ”fine net tuning”. The weighting factors in the corre-
sponding matrices of the suitably chosen net architecture, de-
fined by the off-line learning process, serve as initial values
for further ”fine tuning” of the neural network. This procedure
should be carried out in the real time on the real system, in the
closed loop. When the desired quality of learning process is
attained, ”fine tuning” is ended.

In this work, a suitable multilayer neural net topology for con-
trol purposes is proposed. For its training, a standard back
propagation algorithm was used. The topology of the proposed
net structure intended for control purposes was defined by the
four-layer neural network with one input layer, two hidden lay-
ers, and one output layer. A sigmoid function, as an activation

function in two hidden layers of neurons, was chosen. Only
in the input and output layers a linear function of identity was
used as a function of activation. The output layer permits the
net to generate signals out of the range [�����]. For this rea-
son, at the output of the net, but formally at its input too, the
so-called matching gains Gi

u and Gi
y should exist. This is nec-

essary because of realization of a better and faster net conver-
gence, i.e. in order to accelerate the net learning rate.

The proposed neural network has an input layer with n � ��
neurons and an output layer with m � � neurons. Since the
relative position of the vehicle MC in the fixed coordinate sys-
tem connected to a point located on the road surface does not
influence the behaviour of the vehicle dynamics, then the co-
ordinates q� � x, q� � y and q� � z are omitted from the
input vector U . The (� � �) output vector Y consists of the
compensation forces and torques which should act at the MC
of the vehicle body.

Based on simulation experiments, the optimal network topol-
ogy was defined: the input layer with n � �� neurons inside,
the first hidden layer with p � �� neurons, the second hidden
layer with q � �� neurons and, the output layer of the con-
nectionist structure with m � � neurons in it. Finally, exper-
imentally identified values of the matching gains Gu and Gy

are defined, too.

4 Simulation experiments

A characteristic example of the vehicle motion along an ar-
bitrary curvilinear trajectory was assumed. The nominal im-
posed trajectory, consisting of two circular (withR� � ��� and
R� � ��� [m] curve radii) and three linear path segments. In
the considered simulation experiment the influence of the fol-
lowing external disturbances on the system stability were im-
posed: (I) variation of the road surface profile, (II) side wind
gust, (III) slippery road, and (IV) time delays in the vehicle ac-
tuators. The vehicle motion was simulated against wind so that
it had a permanent direction of blowing. Force impact intensity
was introduced to be varied as functionFw�t� � ��� exp���t

[N ]. The ”weakness” parameter 	 was defined from the condi-
tion that the wind force magnitude Fw�t� diminished from ���
to ��� [N ] for the time period of �t � � seconds. Side wind
gust tends to destabilize the system motion and to change its
forward velocity. Appearance of slippery (wet, icy) road causes
a variation of the tire rolling resistance coefficients fr on the
road. They change as well as they are equal on the same-side
tires (f�r � f�r and f�r � f�r ). For dry road it was assumed that
the tire rolling resistance has the value of fr � �����. Variation
of the road surface profile was introduced as a ”step” function
of � [mm] magnitude which appears on the right pair of tires
. In the considered simulation experiment the effect of actua-
tor dynamics of the robotized vehicle is taken into account as
its time delay �d � ����� 
s� which acts on the system as an
internal disturbance.

Geometry and dynamic vehicle parameters in the considered
simulation experiment were taken from [6]. The vehicle be-



haviour was tested for the synthesized hybrid neuro-dynamic
controller with the position/force control algorithm imple-
mented on the tactical control level. Control gains were de-
fined so that the system is stable for the parameter variation
in the range of predetermined limits and for moderate exter-
nal disturbances. In this simulation experiment, various con-
trol commands were simulated in the open loop regime (Fig.
1) for the purpose of training the chosen neural net structure.
For the purpose of excitation of the so-called ”vertical” vehicle
dynamics, variation of the road surface profile zr (within the
limits of zmaxr � �� 
mm�) upon all wheels was introduced.
Time-varying values of the system dynamic parameters such
as vehicle integral mass (in the range ����), inertial moments
around the main axis (����) as well as coefficients of friction
between the tire pneumatics and the road surface (variation up
to ���) were simulated, too. For the net training, changes of
the ground steering angles in the form of ”step” functions (���
and ��� 
��) were imposed on the front pair of wheels. On the
same pair of wheels, periodical input signals of the same am-
plitudes and different frequencies of � and ��� 
Hz� were in-
troduced. On the rear wheels, random signals with maximal
amplitudes of ���� 
�� were imposed. It was assumed that the
vehicle moves with V � �� 
km
h� forward velocity and with
periodical variation of its tire angular velocities in the range of
���.

For training the neural network the back propagation method
was applied. The network training parameters were preset: the
target error E � ���, the maximal number of learning epochs
emax � ��� and the initial learning rate of the applied neural
network lr � ����.

It is obvious to see convergence of learning process (Fig. 2) and
improvement of tracking errors by using neuro-compensator in
comparison with the case without neuro-compensator. Also, a
satisfactory dynamic vehicle body behaviour in the directions
considered was achieved.
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Figure 2: Error in learning process
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6 Conclusions

The proposed controller was synthesized in three stages: (I)
First, non-adaptive integrated dynamic controller of road ve-
hicle based on the application of the pure position or of the
combined position/force control algorithm at the tactical con-
trol level was designed. (II) In the second stage, control gains
were calculated on the basis of the practical stability test. (III)
Finally, to the existing controller architecture, a supplementary
neuro-compensator, based on the application of the multilayer
neural network structure, was added. It gave an additional qual-
ity to the automatic control system - a higher robustness to the
system modelling inaccuracies.
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