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Abstract

In this paper, we consider the H∞ controller design
problem for both continuous-time and discrete-time lin-
ear time-invariant (LTI) systems via low order dynamic
output feedback controllers. The existence condition of
desired H∞ controllers is expressed as a feasibility prob-
lem of a bilinear matrix inequality (BMI) with respect
to a coefficient matrix defining the controller and a Lya-
punov matrix. To solve the BMI, we propose two suffi-
cient conditions which result in linear matrix inequalities
(LMIs), by using a block diagonal structure of an equiv-
alent matrix of the Lyapunov matrix in the BMI.

1 Introduction

In the last three decades, the H∞ control problem for lin-
ear time-invariant systems has been studied extensively.
It is well known that when the controller’s order is the
same as that of the system, the control problem has
been solved completely by the algebraic Riccati equa-
tion (ARE) approach [1] and the linear matrix inequality
(LMI) approach [2, 3], and the computation is also quite
easy using the existing softwares (e.g., Robust Control
Toolbox & LMI Control Toolbox in MATLAB). How-
ever, when the desired order of the controller is smaller
than the system’s order, there has not been very effec-
tive method though various computation algorithms have
been proposed up to now [4, 5, 6, 7]. In [4], it has been
pointed out that such a control problem is NP-hard in
general. Refs. [2, 5] have established some improved al-
gorithms in the framework of LMI, but we have difficulty
in dealing with the matrix rank conditions there. In [6], a
homotopy-based algorithm has been proposed to deform
the controller gradually from the H∞ controller of the
same order to the one of low order, but the convergence
of the algorithm depends greatly on the choice of the ini-

tial controller with the same order. Ref. [7] considered
the low order H∞ controller design problem using the
ARE approach. However, the method proposed there is
not practicable because the controller’s order one can de-
sign in that context is related to the rank of the solution
of an algebraic Riccati equation.

Recently, Ref. [8] considered an LMI-based design
method for low order H∞ control problem. Though the
derived LMI in that context is sufficient (but not neces-
sary), we think it is quite effective in many cases. We
found that though the basic design idea is good, there
are some mistakes and inaccurate forms in [8]. For ex-

ample, the equation T−1B2 =
[

Im 0
0 0

]
was used for

a given B2 in [8], but we see easily that this holds only
when the right part of B2 is zero. For this reason, the
authors have applied and corrected the design method
in [8] to the low order H∞ control problem for discrete-
time LTI systems where the matrix B2 describing how
the control input affects the system (or the matrix C2 de-
scribing how the state affects the measurement output)
is assumed to have full column (or row) rank [9]. In that
context, the existence condition of H∞ controllers is also
reduced to solving a bilinear matrix equality (BMI) with
respect to a coefficient matrix defining the controller and
a Lyapunov matrix. To reduce the BMI to an LMI, the
authors have proposed there to set an equivalent matrix of
the Lyapunov matrix appropriately as block diagonal cor-
responding to the controller’s desired order. Because the
structure of the block diagonal matrix can be set freely,
one can also specify the controller’s order arbitrarily.

In this paper, we extend the results in [9] to low or-
der H∞ controller design for both continuous-time and
discrete-time LTI systems where B2 (or C2) is not as-
sumed to have full column rank (full row rank). We also
express the existence condition of desired controllers as
a BMI with respect to a coefficient matrix defining the
controller and a Lyapunov matrix, and propose to set an
equivalent matrix of the Lyapunov matrix appropriately
as block diagonal so that we can reduce the BMI to an



LMI. Since B2 (or C2) is not full rank, we can construct
the H∞ controller more flexibly in the sense that we can
add a random part to the solution of the LMI. We will use
an example to demonstrate the usefulness of our result.

2 Continuous-Time Case

In this section, we consider the continuous-time LTI sys-
tem described by


ẋ = Ax + B1w + B2u

z = C1x + D11w + D12u

y = C2x + D21w ,

(1)

where x ∈ Rn is the state, w ∈ Rr is the disturbance
input, z ∈ Rp is the controlled output, u ∈ Rm is the
control input, y ∈ Rq is the measurement output. The
matrices A, B1, B2, C1, C2, D11, D12, D21 are constant
matrices of appropriate size. Throughout this paper, we
assume that the triple (A,B2, C2) is stabilizable and de-
tectable.

For the system (1), we consider the following dynamic
output feedback controller{

˙̂x = Âx̂ + B̂y

u = Ĉx̂ + D̂y ,
(2)

where x̂ ∈ Rn̂ is the controller’s state, n̂ < n is the desired
order of the controller, and Â, B̂, Ĉ, D̂ are constant
matrices to be determined.

The closed-loop system obtained by applying the con-
troller (2) to the system (1) is{

˙̃x = (Ã + B̃2GC̃2)x̃ + (B̃1 + B̃2GD̃21)w

z = (C̃1 + D̃12GC̃2)x̃ + (D̃11 + D̃12GD̃21)w ,
(3)

where x̃ = [xT x̂T ]T ∈ Rn+n̂,


Ã B̃1 B̃2

C̃1 D̃11 D̃12

C̃2 D̃21




=




A 0n×n̂

0n̂×n 0n̂×n̂

B1

0n̂×r

0n×n̂ B2

In̂ 0n̂×m

C1 0p×n̂ D11 0p×n̂ D12

0n̂×n In̂

C2 0q×n̂

0n̂×r

D21


 (4)

and

G =

[
Â B̂

Ĉ D̂

]
. (5)

Then, our H∞ control problem is : For a specified H∞
disturbance attenuation level γ > 0, design a controller

(2) for the system (1) so that the closed-loop system (3) is
Hurwitz stable and the H∞ norm of the transfer function
from w to z is less than γ. If such a controller exists, we
say the system (1) is stabilizable with the H∞ disturbance
attenuation level γ via a low order controller (2).

Now, we recall the well known Bounded Real Lemma
[2] for continuous-time LTI systems.

Lemma 1. The following statements are equivalent:

(i) A is Hurwitz stable and ‖C(sI −A)−1B +D‖∞ < γ .

(ii) There exists a positive definite solution P to the LMI:


AT P + PA PB CT

BT P −γI DT

C D −γI


 < 0 . (6)

Applying this lemma to the closed-loop system (3), we
see that our desired low order H∞ controller exists if and
only if there is a positive definite matrix P̃ such that


AT

clP̃ + P̃Acl P̃Bcl CT
cl

BT
clP̃ −γI DT

cl

Ccl Dcl −γI


 < 0 , (7)

where

Acl = Ã + B̃2GC̃2 , Bcl = B̃1 + B̃2GD̃21

Ccl = C̃1 + D̃12GC̃2 , Dcl = D̃11 + D̃12GD̃21 .
(8)

Since the unknown coefficient matrix G is included in
Acl, Bcl, Ccl, Dcl and thus in (7), our control problem is
reduced to solving the matrix inequality (7) with respect
to G and P̃ . However, (7) is a BMI with respect to G and
P̃ , and there is no globally effective method for general
BMIs presently [10, 6].

Here, we propose to set an equivalent matrix of the
Lyapunov matrix P̃ to be block diagonal appropriately
so that the BMI (7) is reduced to an LMI. We now state
and prove the first result.

Theorem 1. Assume D12 = 0, rank(B2) = mr ≤ m.
The system (1) is stabilizable with the H∞ disturbance at-
tenuation level γ via a low order controller (2) if there ex-
ist a positive definite matrix P with block diagonal struc-
ture as

P =
[

P1 0
0 P2

]
∈ R(n+n̂)×(n+n̂) , (9)

where P1 ∈ R(n̂+mr)×(n̂+mr), P2 ∈ R(n−mr)×(n−mr), and
a matrix Wy ∈ R(n̂+mr)×(n̂+q), satisfying the LMI


FT

11 + F11 F12 ĈT
1

FT
12 −γI D̃T

11

Ĉ1 D̃11 −γI


 < 0 . (10)



Here,

F11 = PÂ +
[

Wy

0

]
Ĉ2

F12 = PB̂1 +
[

Wy

0

]
D̃21 ,

(11)

and

Â = T−1ÃT , B̂1 = T−1B̃1 , Ĉ1 = C̃1T , Ĉ2 = C̃2T ,

(12)
where T ∈ R(n+n̂)×(n+n̂) and V ∈ R(n̂+m)×(n̂+m) are
nonsingular matrices satisfying

T−1B̃2V
−1 =

[
In̂+mr 0

0 0

]
∈ R(n+n̂)×(n̂+m). (13)

If the LMI (10) is feasible, one of the controller coeffi-
cient matrices is computed as

G = V −1

[
G1

G2

]
∈ R(n̂+m)×(n̂+q) , (14)

where G1 = P−1
1 Wy ∈ R(n̂+mr)×(n̂+q) , and G2 ∈

R(m−mr)×(n̂+q) is an arbitrary matrix.

Proof. First, we define the positive definite ma-
trix P̃ = (T−1)T PT−1. Substituting Â, B̂1, Ĉ1, Ĉ2

into (10), and then pre- and post-multiplying (10) by
diag{(T−1)T , I, I} and diag{T−1, I, I}, respectively, we
obtain 


F̃T

11 + F̃11 F̃12 C̃T
1

F̃T
12 −γI D̃T

11

C̃1 D̃11 −γI


 < 0 , (15)

where

F̃11 = P̃ Ã + (T−1)T

[
Wy

0

]
C̃2

F̃12 = P̃ B̃1 + (T−1)T

[
Wy

0

]
D̃21 .

(16)

It is easy to confirm from (9), (13) and (14) that[
Wy

0

]
= PT−1B̃2G ∈ R(n+n̂)×(n̂+q). Substituting this

equation into (15) and (16) leads to


AT
clP̃ + P̃Acl P̃Bcl C̃T

1

BT
clP̃ −γI D̃T

11

C̃1 D̃11 −γI


 < 0. (17)

According to Lemma 1, the closed-loop system (3) is Hur-
witz stable, and the H∞ norm of the transfer function
from w to z is less than γ.

In Theorem 1, we have reduced the feasibility problem
of the BMI (7) to solving the LMI (10), which can be
easily dealt with by existing softwares; for example, the
LMI Control Toolbox [12] of MATLAB.

The next theorem deals with the case where the as-
sumption D21 = 0 holds instead of D12 = 0.

Theorem 2. Assume D21 = 0 , rank(C2) = qr ≤ q . The
system (1) is stabilizable with the H∞ disturbance atten-
uation level γ via a low order controller (2) if there exist
a positive definite matrix Q with block diagonal structure
as

Q =

[
Q1 0
0 Q2

]
∈ R(n+n̂)×(n+n̂) , (18)

where Q1 ∈ R(n̂+qr)×(n̂+qr) , Q2 ∈ R(n−qr)×(n−qr) , and
a matrix Wy ∈ R(n̂+m)×(n̂+qr), satisfying the LMI


MT

11 + M11 B̄1 MT
13

B̄T
1 −γI D̃T

11

M13 D̃11 −γI


 < 0 . (19)

Here,
M11 = ĀQ + B̄2

[
Wy 0

]
M13 = C̄1Q + D̃12

[
Wy 0

]
,

(20)

and

Ā = U−1ÃU , B̄1 = U−1B̃1 , B̄2 = U−1B̃2 , C̄1 = C̃1U ,

(21)
where U ∈ R(n+n̂)×(n+n̂) and S ∈ R(n̂+q)×(n̂+q) are non-
singular matrices satisfying

SC̃2U =

[
In̂+qr 0

0 0

]
∈ R(n̂+q)×(n+n̂). (22)

If the LMI (19) is feasible, one of the controller coeffi-
cient matrices is computed as

G =
[

G3 G4

]
S ∈ R(n̂+m)×(n̂+q), (23)

where G3 = WyQ−1
1 ∈ R(n̂+m)×(n̂+qr) , and G4 ∈

R(n̂+m)×(q−qr) is an arbitrary matrix.

Proof. We first define the positive definite matrix
Q̃ = UQUT . Then, pre- and post-multiplying the ma-
trix inequality (22) by diag{U, I, I} and diag{UT , I, I},
respectively, we obtain


M̃T

11 + M̃11 B̃1 M̃T
13

B̃T
1 −γI D̃T

11

M̃13 D̃11 −γI


 < 0 , (24)

where

M̃11 = ÃQ̃ + B̃2

[
Wy 0

]
UT

M̃13 = C̃1Q̃ + D̃12

[
Wy 0

]
UT .

(25)

It is easy to confirm
[

Wy 0
]

= GC̃2UQ ∈
R(n̂+m)×(n+n̂) from (18), (22) and (23). Then, substi-
tuting this equation into (24) and (25) results in


Q̃AT

cl + AclQ̃ B̃1 Q̃CT
cl

B̃T
1 −γI D̃T

11

CclQ̃ D̃11 −γI


 < 0 , (26)



which is equivalent to


AT
clQ̃

−1 + Q̃−1Acl Q̃−1B̃1 CT
cl

B̃T
1 Q̃−1 −γI D̃T

11

Ccl D̃11 −γI


 < 0 . (27)

This implies that the controller (23) stabilizes the system
(1) with the H∞ disturbance attenuation level γ.

Remark 1. Although Theorems 1 and 2 come up with
dual forms, they are not equivalent and are supposed to
deal with different cases of D12 = 0 or D21 = 0, respec-
tively. Furthermore, the LMI conditions provided by the
theorems are sufficient ones. Therefore, even in the case
where both D12 = 0 and D21 = 0 hold and thus both the-
orems can be applied, the LMI condition of one theorem
would be satisfied while the other would not.

Remark 2. When it is necessary, we can try to obtain
a tight H∞ disturbance attenuation level by considering
the eigenvalue problem (EVP) [11]: “minimize γ, s.t. (10)
or (19) with P > 0 or Q > 0, respectively”.

Remark 3. The nonsingular matrix T satisfying (13)
is not unique. More precisely, for any T satisfying (13),[

I ∗
0 Γ

]
T also satisfies (13), where Γ is an arbitrary

nonsingular matrix. The same is true for the nonsingular
matrix U satisfying (22). However, we can easily prove
that the feasibility of the LMI (10) and (19) does not
depend on the choice of T and U , respectively.

3 Discrete-Time Case

In this section, we consider the discrete-time LTI system
described by


x(k + 1) = Ax(k) + B1w(k) + B2u(k)

z(k) = C1x(k) + D11w(k) + D12u(k)
y(k) = C2x(k) + D21w(k) .

(28)

Here, we assume that all the vectors and the matrices
have the same meaning and the same dimension as in
(1), except that the vectors are of discrete time.

For this system, we consider the following dynamical
output feedback controller{

x̂(k + 1) = Âx̂(k) + B̂y(k)

u(k) = Ĉx̂(k) + D̂y(k) .
(29)

As in (2), we assume that x̂(k) ∈ Rn̂ is the state of the
controller, and n̂ < n is the desired order of the controller.

Using the notations defined in the previous section to-
gether with x̃(k) = [xT (k) x̂T (k)]T , we describe the

closed-loop system by applying the controller (29) to the
system (28) as{

x̃(k + 1) = Aclx̃(k) + Bclw(k)
z(k) = Cclx̃(k) + Dclw(k) .

(30)

Now, we recall the Bounded Real Lemma [2] for
discrete-time LTI systems.

Lemma 2. The following statements are equivalent:

(i) A is Schur stable and ‖C(zI − A)−1B + D‖∞ < γ .

(ii) There exists a positive definite solution P to the LMI:


−P PA PB 0
AT P −P 0 CT

BT P 0 −γI DT

0 C D −γI


 < 0 . (31)

Applying this lemma to the closed-loop system (30),
we see that the desired low order H∞ controller exists if
and only if there are matrices G and P̃ > 0 satisfying


−P̃ P̃Acl P̃Bcl 0

AT
clP̃ −P̃ 0 CT

cl

BT
clP̃ 0 −γI DT

cl

0 Ccl Dcl −γI


 < 0 . (32)

Same as (7), this matrix inequality is a BMI with respect
to G and P̃ , and thus not easy to solve. In this section
as well, we consider setting an equivalent matrix of the
Lyapunov matrix P̃ to be block diagonal appropriately
so that the BMI (32) is reduced to an LMI.

Next, we state two theorems which are analogous to
Theorems 1 and 2, respectively. The proofs are omitted
since the same ideas in the proofs of Theorems 1 and 2
can be used here for the matrix inequality (32).

Theorem 3. Assume D12 = 0, rank(B2) = mr ≤ m.
The system (28) is stabilizable with the H∞ disturbance
attenuation level γ via a low order controller (29) if there
exist a positive definite matrix P structured as in (9) and
a matrix Wy ∈ R(n̂+mr)×(n̂+q) such that the LMI


−P F11 F12 0

FT
11 −P 0 ĈT

1

FT
12 0 −γI D̃T

11

0 Ĉ1 D̃11 −γI


 < 0 (33)

is satisfied, where all the matrices are defined samely as
in Theorem 1.

If the LMI (33) is feasible, one of the controller coeffi-
cient matrices is computed as in (14).

Theorem 4. Assume D21 = 0, rank(C2) = qr ≤ q.
The system (28) is stabilizable with the H∞ disturbance



attenuation level γ via a low order controller (29) if there
exist a positive definite matrix Q structured as in (18)
and a matrix Wy ∈ R(n̂+m)×(n̂+qr) such that the LMI




−Q M11 B̄1 0
MT

11 −Q 0 MT
13

B̄T
1 0 −γI D̃T

11

0 M13 D̃11 −γI


 < 0 (34)

is satisfied, where all the matrices are defined samely as
in Theorem 2.

If the LMI (34) is feasible, one of the controller coeffi-
cient matrices is computed as in (23).

4 Numerical Example

In this section, we present a simple example for the
continuous-time LTI system. We consider the system (1)
in the case of n = 8, m = 2, p = 4, q = 2, r = 4, whose
matrices are

A =




−1.42 2.21 −0.49 3.64
−6.98 −5.30 −0.81 0.37

0.94 1.60 −6.34 0.79
3.37 −1.03 5.14 1.27
2.61 −0.82 1.86 −0.63
1.64 4.91 0.58 3.37

−1.07 0.03 1.38 3.45
2.78 0.59 0.60 −0.72

0.27 1.53 −0.49 −3.05
−3.35 −2.86 −1.77 −3.54
−6.13 3.09 −1.42 2.02

1.37 −1.12 −6.06 −2.42
−3.75 2.03 −3.54 −5.08
−2.57 −2.43 −2.10 −3.02

1.10 2.57 −3.93 4.73
0.58 3.45 3.73 −0.67




B1 =




−0.34 1.51 −1.45 −0.59
1.19 −1.37 2.10 −1.93

−0.17 2.74 0.47 1.22
1.79 −0.76 3.54 −0.25

−0.56 −0.27 −2.65 1.16
−1.19 1.22 1.70 1.35

0.51 −0.15 −0.71 −1.46
0.19 3.00 0.08 −2.14




B2 =




−0.21 0.63
0.77 −2.31
1.29 −3.87
1.43 −4.29
2.52 −7.56
1.74 −5.22
0.10 −0.30
1.89 −5.67




C1 =




0.09 0.09 −0.12 0.02
0.19 −0.14 −0.39 −0.16
0.04 0.11 −0.16 0.12

−0.11 0.09 0.02 0.11

−0.11 −0.11 0 −0.05
−0.28 0.07 −0.09 −0.18

0.09 0.18 −0.07 −0.07
−0.11 −0.30 0.04 0




C2 =
[ −5.74 11.90 −6.61 −7.65

−8.80 −6.70 −0.36 −3.15

−1.84 −2.18 −0.25 −2.84
0.86 −4.32 −0.68 10.08

]

D11 =




−0.12 0.06 0.06 −0.26
0.09 −0.32 −0.12 −0.03
0.37 0 0.17 0.43
0.32 −0.17 −0.09 0


 , D12 = 0

D21 =
[

3.14 1.53 −1.00 −1.65
−3.63 1.18 0.99 −2.10

]
(35)

For this system, we set γ = 2.5 as the desired H∞
disturbance attenuation level, and aim to design a low
order H∞ controller (2) in the cases of n̂ = 5 and n̂ = 3.
Notice that the values of n̂ are less than the order (n = 8)
of the controlled system, and that the matrix B2 is not
full column rank.

In the case of n̂ = 5, we solve the LMI in Theorem 1,
and then set the arbitrary matrix G2 as[

1.07 −1.28 0.64 −1.23 −0.51 −0.85 0.29
]
,

(36)
to obtain the controller coefficient matrix G as



0.11 −0.19 0.05 −0.19 1.04 0.03 0.96
0.29 −1.30 0.05 −0.29 −0.31 0.01 0.21

−0.08 0.05 −1.26 0.58 0.18 0 −0.06
0.29 −0.29 0.58 −1.57 −0.38 0.01 0.22
1.36 −0.81 0.32 −0.89 −0.28 0.03 1.15

−7.10 2.58 −1.00 2.55 −4.99 0.66 −5.67
17.90 −3.69 0.98 −3.76 16.58 0.72 16.10




.

(37)
We can confirm that the closed-loop system is Hurwitz
stable and the achieved H∞ disturbance attenuation level
is γ = 2.0912 < 2.5.

In the case of n̂ = 3, we also solve the LMI in Theorem
1, and then set G2 as

G2 =
[ −2.55 −1.26 −0.52 −1.46 1.18

]
(38)

to obtain

G =




1.03 0.41 1.96 −0.02 −0.98
−0.30 −1.31 0.22 0 0.12

2.21 0.96 0.85 −0.02 −1.05
13.26 3.79 10.79 1.27 −6.55

−31.73 −7.39 −30.73 0.82 15.93


 .

(39)



Then, the closed-loop system is Hurwitz stable and
the achieved H∞ disturbance attenuation level is γ =
2.0516 < 2.5. Thus, we have obtained the desired low
order H∞ controllers.

5 Concluding Remarks

In this paper, we have considered the low order H∞
controller design problem for both continuous-time and
discrete-time LTI systems where B2 and C2 do not have
full rank, by using a matrix inequality approach. We ex-
press the existence condition of the desired low order H∞
controller as a BMI with respect to a coefficient matrix
defining the controller and a Lyapunov matrix. To solve
the BMI, we have derived two LMIs which deal with the
case of D12 = 0 and D21 = 0, respectively. The key idea
is to set an equivalent matrix of the Lyapunov matrix in
the BMI as block diagonal, the block size of which cor-
responds to the controller’s desired order. We have given
an example to show the usefulness of the results.

We suggest that the approach proposed in this paper
should be practical for mamy control problems concern-
ing matrix inequality approach. For example, we have
extended the results in this paper to H∞ controller de-
sign problems for decentralized control systems [13] and
descriptor systems [14, 15].
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