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Abstract

In this paper a hybrid observer for hybrid systems is pre-
sented. The continuous time and the discrete event dy-
namics are determined in such a way that the observation
problem is solved. The observer is built using a nested
structure, in which the nesting is due to a refinement of
those states corresponding to undecided cases. The con-
tinuous dynamics implement an estimator which extracts
extra information from the continuous dynamics associ-
ated to the discrete event state. These information are
based on the convergence ratio of the output estimate to
the system output. The resulting continuous dynamics
are not simply those of a Luenberger’s observer.

Key Words—Hybrid observer, hybrid system, dynamic
estimator.

1 Introduction

In output feedback control schemes the estimation of the
state of the system is a central problem for the determi-
nation of a control action. In the continuous and discrete
time setting, the state estimation problem is well known
and easily solved. Also in the case of discrete event dy-
namics some results are available in literature [9]. On the
contrary, for hybrid systems, namely for those systems in
which continuous or discrete time dynamics coexist with
discrete event dynamics, this problem has been only par-
tially investigated and still need a deeper study. Some
partial results in this direction can be found in [2] for the
case of power-train control, and in [3], where a more gen-
eral synthesis procedure for an observer of hybrid systems
is presented. Other results regarding switching systems
can be found in [1], [8].

An example in which the state estimation of a hybrid
system is of paramount interest is given by the air traf-
fic management. In this case the fault detection error
in the human behavior (pilots, controllers, etc.) and in
the hardware subsystems is of capital importance. Fol-
lowing [5], this paper tries to give some new results on
the construction of a hybrid observer. On the basis of
the outputs of the system and using some extra infor-
mation obtained from the system dynamics, this observer
enables the determination of the hybrid state of the sys-
tem. In fact, the main problem in the construction of a
hybrid observer is the determination of the discrete state
of the system. But very often the information from the
discrete output of the system is too poor for determining
this discrete state. Hence, motivated by the results of [10],

on fault detection and identification, and [3], on the con-
struction of observers for hybrid systems exploiting the
information derived from the analysis of the continuous
time dynamics, in this paper a procedure for the design
of a hybrid observer is proposed. While in [3] one builds
an observer as a finite state machine which, under appro-
priate conditions, allows the determination of the discrete
event state of the hybrid system using Luenberger’s ob-
servers for resolving indecision situations, in this work the
observer is presented directly as a hybrid system and the
discrete event and the continuous time dynamics are de-
termined in such a way that the observation problem is
solved. Since the observer is directly expressed as a hy-
brid system, it is avoided the use of logic blocks, as in [3],
which hide the hybrid structure of the observer. This clar-
ifies the derivation of the observer dynamics. Moreover, a
more effective mechanism is used to get extra information
from the continuous dynamics associated to the discrete
event state, based on the convergence ratio of the out-
put estimate to the system output and not on its simple
convergence. This renders faster the discrimination of the
undecided cases. In general, the resulting continuous dy-
namics are not simply those of a Luenberger’s observer.
Another advantage of the proposed observer design is the
fact that these observers are built as nested observers, in
which the nesting is due to a refinement of those states
corresponding to undecided cases. Finally, a feasible solu-
tion for the observer problem is given also in the case of
undetectable systems.

2 The Mathematical Model

We consider a hybrid system H with N locations q1, · · · ,
qN . Each location identifies the continuous dynamics de-
scribed by the equations

ẋ = Aix + Biu y = Cix i = 1, · · · , N (1)

with Ai ∈ IRn×n, Bi ∈ IRn×m, Ci ∈ IRp×n, x ∈ X ⊆
IRn the continuous state, y ∈ Y ⊆ IRp the continuous

output, and u ∈ U ⊆ IRm the system input.
Remark 1. The solution of the observation problem does
not change sensibly considering systems with output y =
Cix + Diu.

The discrete event dynamics are given by a generator
of formal language [11]

q(k + 1) ∈ ϕ(q(k), σ(k))

σ(k) ∈ φ(q(k), x(tk), u(tk))

ψ(k) = η(q(k), σ(k))

(2)



with q(k) ∈ Q the discrete location, ψ(k) ∈ Ψ the out-
put symbol, σ(k) ∈ Σ the kth input symbol, which takes
place at tk and force the discrete evolution. It is not pos-
sible to know these instants before the events occur. Here
Q =

{
q1, · · · , qN

}
, Ψ =

{
ψ1, · · · , ψr

}
, Σ =

{
ε, σ1, · · · , σs

}
(with ε the null event) are the finite sets of locations, out-
put and input symbols. Moreover,

ϕ:Q×Σ → 2Q, φ:Q×X × U → Σ, η:Q×Σ → Ψ

are the transition, the input, and the output functions
(in general these are partial functions). The function φ
specifies the possible input events σ. The functions ϕ,
η can be extended in the usual way to accept sequences
s = σ1 · · ·σk−1σk ∈ Σ∗, with Σ∗ the monoid on Σ [11].
For instance for ϕ one has ϕ(q, ε) = q and

ϕ(q, σ1 · · ·σk−1σk) = ϕ(ϕ(q, σ1 · · ·σk−1), σk)

when ϕ(q, σ1 · · ·σk−1)! and ϕ(q, σ1 · · ·σk−1σk)! (“!” indi-
cates that the partial function is defined for the given ar-
guments)

The hybrid system H here considered is given by the
systems described by equations (1), (2). The action of the
discrete dynamics on the continuous ones is the change of
the equations (1) when a location transition takes place.
On the other hand, the action of the continuous dynamics
on the discrete ones is the change of location when the
continuous state x and/or the continuous control u belong
to a certain region or when the system trajectory hits a
certain boundary.

The problem addressed in this paper is the design of a
hybrid observer O which determines the state (q, x) of H.
This is done by constructing an observer for H, according
to the following definitions which generalize the ones given
in [3].
Definition 1. [5] A hybrid state (q, x) ∈ Q × X of H is
observable with respect to (q′, x′) �= (q, x) if there exists a
hybrid input (s, u(·)) ∈ Σ∗ ×U such that η(q, s) �= η(q, s)
and Ciqx(t) �= Ciq′x

′(t) for k ≥ k̄, t ≥ tk̄, where s =
σ1 · · ·σk̄σk̄+1 · · ·σk ∈ Σ∗, and U is the set of admissible
continuous inputs.

This definition reduces to the notion of current-location
observability in [3] when the continuous states are observ-
able.
Definition 2. Given a hybrid system H described by equa-
tions (1), (2), a hybrid observer O is a dynamic system of
the form

q̂(k + 1, h + 1) = ϕ̂(q̂(k, h), ψ(k), ψ̄(tk + δ1))

χ̇j = Hjχj + Mju + Njy, j ∈ Q̂k+1

ξ̇j = Pjξj + Rju + Sjy + Tjχj

ψ̄(t) = Φj(χj , ξj , u, y)

(3)

χj ∈ IRn1 , ξj ∈ IRn2 , δ1 ∈ (0, tk+1 − tk), such that

q̂(k, h) = q(k), for k > k̄, for some positive integer

k̄ and some integer h ≥ 0

lim
t→∞

‖x− xj‖ = 0, for some index j ∈ Q̂k+1.

Here
ϕ̂: Q̂× Ψ ′ × Ψ̄ → 2Q̂ (4)

is a (partial) function defining the discrete event dynamics
of the observer, such that

q̂(k + 1, 0) = ϕ̂(q̂(k, h), ψ(k), ε), h ≥ 0

Q̂ is the state set, Ψ ′ =
{
ε
}
∪ Ψ , Ψ̄ =

{
ε, ψ̄1, · · · , ψ̄s

}
is

the set of symbols generated by the functions

Φj : IRn1 × IRn2 × U × Y → Ψ̄

and Q̂k+1 ⊆ 2{1,···,N} is the set of the indices of the loca-
tions belonging to ϕ̂(q̂(k, 0), ψ(k), ε).

The function ϕ̂ can be extended as usual to accept, in
particular, strings p̄h = ψ̄(tk + δ1) · · · ψ̄(tk + δh−1)ψ̄(tk +
δh) ∈ Ψ̄∗ of length h. On the base of the definition, the
time instants tk + δ1 < · · · < tk + δh are in (tk, tk+1).

In this definition O has discrete event dynamics speci-
fied by ϕ̂(·, ·, ·) and continuous ones. Possibly, these latter
can be absent; in this case O results to be a simple finite
state machine OM . Nevertheless, when it is necessary to
extract extra information on the discrete state from the
continuous output y and input u, as shown in what fol-
lows, it will contain also the continuous time dynamics as
in (3).

Note that the inputs of O are the outputs ψ of the
discrete event dynamics (along with the continuous input
u and output y), but not the discrete event input σ. This
is due to the fact that the discrete event input σ is consid-
ered generated by the generator of formal language (like
an unobservable exosystem [7]). Note also that in the
continuous time equations of (3) we considered in general
j ∈ Q̂k+1, namely we supposed that only |Q̂k+1| ≤ N
continuous dynamics are used. Clearly nothing changes,
from the conceptual point of view, considering that all the
continuous dynamics are used.

In what follows we recall some results about the con-
struction of such an observer, while in Section 3 some new
criteria for deriving a hybrid observer are given.

3 A Simple Hybrid Observer

A simple observer OM for H (a finite state machine, with
no continuous dynamics) can be derived as in [9], [3], [5]
applying the standard procedure for constructing an ob-
server. This observer is a finite state machine which, un-
der appropriate conditions, allows the determination of
the discrete event state of H. This procedure, analogous
to the one used to construct a deterministic automaton
from a non-deterministic one [6], is based on the iterative
construction of the function ϕ̂ in (4) as follows

ϕ̂(q̂, ψ): =
{
q ∈ Q | ∃ q̄ ∈ q̂, σ ∈ Σ :

q ∈ ϕ(q̄, σ)! and ψ = η(q̄, σ)
} (5)

which is a particularization of the discrete-event dynamics
(3). In words, the function ϕ̂ is defined for each pair (q̂, ψ)
such that there exist at least a state q̄ ∈ q̂ and a state



transition from q̄ to q labeled σ (namely such that ϕ(q̄, σ)!)
and such that the resulting output is ψ. The initial state
of the observer is q̂(0) = Q.

The conditions under which such an observerOM exists
are the following [9], [3], [4], [5].
Definition 3. A cycle is a sequence of states qi1qi2 · · ·
qik−1qik such that qi1 = qik . A primary cycle is a cycle
which does not contain other cycles.

Proposition 1. OM is an observer for H if

1. Q ∩ Q̂ is nonempty and invariant with respect to
the dynamics of ϕ̂ (namely ϕ̂(q̂, ψ) ∈ Q ∩ Q̂ for all
q̂ ∈ Q ∩ Q̂ and ψ ∈ Ψ such that ϕ̂(q̂, ψ)!)

2. every primary cycle Qi
c ⊂ Q̂ is such that Qi

c ∩ Q �=
� ◦.

These conditions are the formalization of intuitive con-
ditions: the first condition requires that OM have a state
set constituted by single states of Q (namely its states q̂
have cardinality equal to 1), and that the discrete event
dynamics do not bring the state outside this set; the sec-
ond condition requires that all the primary cycles can
bring to a state q̂ = {qi} with cardinality equal to 1. It
is clear that these are necessary and sufficient conditions
ensuring that, after a transient, one can individuate the
precise discrete event state of H.

When the conditions given by Proposition 1 are vio-
lated it is hence clear that one can not know the discrete
event state of H for k greater than a certain positive inte-
ger k̄, at least with a pure discrete event-driven observer.
This is due to the fact that Q∩Q̂ is not invariant, namely ϕ̂
brings to a state q̂ = {qi1 , · · · , qir} with cardinality greater
then 1, and/or there exists a primary cycle Qi

c ∩ Q = � ◦,
so that it is not possible to reach states q̂ with cardinality
equal to 1.

In this case one can exploit the idea contained in [3],
namely one can use some knowledge coming from the con-
tinuous dynamics to create further labels (called “signa-
tures” in [3]) giving extra information, so discriminating
some of the cases in which Proposition 1 does not apply.
Clearly, these extra information must be “rich enough” to
determine an observer respecting Proposition 1.

In order to exploit this quite straightforward idea, in [3]
one uses Luenberger’s observers as generators of signals
which, fed into a decision function block, give these sig-
natures ψ̄1, · · · , ψ̄s. Each label ψ̄ ∈ Ψ̄ = {ψ̄1, · · · , ψ̄s} is
a signature characteristic of a specific location q̄ and is
added as output to the arcs entering q̄. With this change
in H one can obtain a finite state machine OM , respecting
Proposition 1. Note that this sums up in rendering differ-
ent the output labels ψ ∈ Ψ which render unobservable a
pair (q, x), (q′, x′), substituting to these labels the labels
in Ψ̄ . In some sense, with these extra labels ψ̄1, · · · , ψ̄s
one renders trivial the observation problem and reduces
substantially to the problem of designing an observer OM
(with no continuous dynamics).

Since the signature ψ̄ ∈ Ψ̄ is not known until the Luen-
berger’s observers converge, a location identification logic
block is used. What does this block is to wait a time δ

until ψ̄ is produced; then the transition in the observer
OM happens. The original contribution of [3] is the deter-
mination of the gains in the Luenberger’s observers such
that ψ̄ is produced in the prescribed time δ.

In the following Section it is shown how to construct a
hybrid observer O (with continuous dynamics) using the
extra information ψ̄1, · · · , ψ̄s in a quite different way. The
main difference with the observer in [3] is its construction.
In fact, a finite state machine M (which, in general, will
not be an observer since will violate Proposition 1) will
be constructed. Hence, a refinement of the states ofM is
introduced so obtaining an observer O for H. Another dif-
ference with [3] will be the generation mechanism of the
extra labels ψ̄1, · · · , ψ̄s, not based on the simple asymp-
totic convergence.

4 Nested Hybrid Observers

In this Section we propose an observer procedure design
based on the refinement of the states of a finite state ma-
chine M which mimics the hybrid system H on the base
of the outputs ψ [5]. First we present the design of the dis-
crete event dynamics of the observer and the refinement
mechanism; then, the continuous time dynamics will be
derived. The resulting observer will have the structure
(3).

A finite state machineM which mimics the hybrid sys-
temH on the base of the outputs ψ can be obtained follow-
ing the procedure illustrated in Section 2, using equation
(5), but in general it will not result to be an observer OM
since Proposition 1 does not apply.
Example 1. Let us consider the system shown in Figure 1,
where on the arcs are the outputs ψ ∈ Ψ . Applying the
procedure shown in Section 2 one obtains the finite state
machine M, Figure 2. This is not an observer due to the
presence of the state {q1, q2}.

Exploiting the idea of [10], [3], one needs to produce ex-
tra signals ψ̄ ∈ Ψ̄ which allow the discrimination of those
cases in which Proposition 1 does not apply. These extra
information must be produced from the estimation of the
state system, using u, y and ψ as inputs of the observer
O. In order to extract information from the continuous
dynamics, for the continuous systems (1) the following is
supposed to hold.

(H1) Systems (1) are detectable.

These information, such as the signatures of the previ-
ous Section, can be used to induce a refinement on those
states on M composed of more than one state of Q.
Example 2. The refinement of the state q̂ = {q1, q2}
in M, Figure 2, can be obtained considering signals ψ̄1,
corresponding to the negation of being in q1, and ψ̄2, cor-
responding to the negation of being in q2. The refinement
is given in Figure 3.

More in general, if the state of the finite state machine
M obtained applying the procedure of Section 2 is

q̂ = {qi1 , · · · , qih} ∈ Q̂

one has to discriminate among the dynamics (1) and indi-
viduate the right location i ∈ {i1, · · · , ih}. To this aim, in



this paper one considers a generation mechanism of the la-
bels ψ̄ which forces the observer to evolve on a refinement
of the state q̂. This refinement is nested into the state q̂
of M. Note that the resulting system is of the form (3).
Moreover, if the events ψ̄ occur instantaneously,M would
respect Proposition 1, so constituting an observer O for
H. It is hence clear that Proposition 1 has to be weakened
to consider events ψ̄ which occur in finite (bounded) time.
This is done by the following.
Theorem 1. Let δ a positive real number and let us sup-
pose that for the hybrid system H given by (1), (2) one
has tk+1 ≥ tk + δ, for all k ≥ 0. Then, O given by (3) is
an observer for H if

1. Q ∩ Q̂ �= � ◦ and, for all q̂ ∈ Q ∩ Q̂ and ψ ∈ Ψ such
that ϕ̂(q̂, ψ, ε)!, there exists a string p̄h = ψ̄(tk +
δ1) · · · ψ̄(tk + δh) ∈ Ψ̄∗, h ≥ 0, with δ1 < · · · < δh <

δ, such that ϕ̂(q̂, ψ, p̄h) ∈ Q ∩ Q̂;

2. every primary cycle Qi
c ⊂ Q̂ is such that Qi

c ∩ Q �=
� ◦.

Proof. This results can be proved by considering that af-
ter each discrete event transition due to an output label
ψ such that ϕ̂(q̂, ψ, ε) /∈ Q ∩ Q̂ there exists a sequence
p̄h which ensures that ϕ̂(q̂, ψ, p̄h) ∈ Q ∩ Q̂, namely that
ϕ̂(q̂, ψ, p̄h) ∈ Q∩Q̂ is a set formed by a single state. There-
fore, Proposition 1 can be applied and the result is readily
shown.

This result is quite obvious. When entering a state{
qi1 , · · · , qih

}
∈ 2Q (which does not allow the precise de-

termination of the state of H), if the transition in the
nested refinement is fast enough (namely if it occurs be-
fore of the next discrete event transition in H) then it
is possible to determine the state qi of H by using the
information ψ̄j coming from the continuous dynamics (1).

We are ready to build the discrete event dynamics of
the observer (3). This is done using the following defining
rules

ϕ̂(q̂, ψ, ε): =
{
q ∈ Q | ∃ q̄ ∈ q̂, σ ∈ Σ : q ∈ ϕ(q̄, σ)!

and ψ = η(q̄, σ)
}

ϕ̂(q̂, ε, ψ̄): =
{
q ∈ ϕ̂(q̂, ψ, ε) | ψ̄ ∧ q = 1

}
(6)

where we write ψ̄∧q = 1 to mean that the signal ψ̄ is com-
patible with the dynamics corresponding to the state q.
The second of (6) specifies the construction of the nested
discrete event dynamics.
Definition 4. Given a hybrid system H, expressed by (1),
(2), a system (3) with discrete event dynamics specified by
(6) and satisfying Theorem 1 is called a nested observer.

Example 3. The nested observer for the hybrid system of
Figure 1 is given by Figure 4.

The remaining of this Section will be devoted to the
determination of the signals ψ̄ ∈ Ψ̄ . The discrimination
among the states in q̂ = {qi1 , · · · , qih} can be done by
using state estimators, giving the signals ŷj = Cj x̂, j =

i1, · · · , ih, and checking when the differences between the
output y = Cix and its estimates ŷj go to zero (or, better,
do not go to zero, so eliminating some of the possible
cases). The condition to be checked is therefore eij =
Ci(Aix + Biu) − ˙̂yj > 0, ∀ t ∈ [tk, tk+1), for at least a
j ∈ Q̂k+1, namely we need to build estimators giving eij
as outputs.

The fact that the state estimators we will propose are
based on the convergence ratio of the output estimate to
the system output (and not on its simple convergence)
renders faster the discrimination of the undecided cases.
The problem is that in general ẏ = Ci(Aix + Biu) is not
available, except in the trivial case in which x is measur-
able. Possible solutions are discussed in the following [5].

4.1 Dynamic Estimators

If x is not available to get eij we need to build an esti-
mation of this signal which asymptotically converges to
eij . This is done as follows. Let us suppose that the dis-
crete state for H is qi at time tk, and let us consider the
dynamic estimators

˙̂xj = (Aj −KjCj)x̂j + Bju + Kjy

ζ̇j = Fjζj + Gj ẏ + H0,ju + H1,j u̇ + κj
j ∈ Q̂k+1 (7)

ζj ∈ IRp, where Fj , Gj ∈ IRp×p, H0,j , H1,j ∈ IRp×m are
matrices to be determined, as well as the functions κj(t) ∈
IRp, while Kj are such that the matrices (Aj − KjCj)

are Hurwitz, which is possible thanks to hypothesis (H1).
The hypothesis of availability of ẏ and u̇ will be removed
later on. One considers the estimation errors xi − x̂j and
eij = ẏ − ζj = Ci(Aixi + Biu)− ζj , whose dynamics are

ẋi − ˙̂xj = Aixi + Biu− (Aj −KjCj)x̂j −Bju−KjCixi

ėij = CiAi(Aixi + Biu) + CiBiu̇

− (Fjζj + Gj ẏ + H0,ju + H1,j u̇ + κj(t)).

Hence, setting

Gj = −Fj , H0,j = CjAjBj ,

H1,j = CjBj , κj(t) = CjA
2
j x̂j

(8)

one works out

ẋi − ˙̂xj = (Ai −KjCi)xi − (Aj −KjCj)x̂j
+ (Bi −Bj)u

ėij = CiA
2
ixi − CjA

2
j x̂j + (CiAiBi − CjAjBj)u

+ (CiBi − CjBj)u̇ + Fj(ẏ − ζj).

For the ith estimator one has(
ẋi − ˙̂xi

ėii

)
=
(

Ai −KiCi 0
CiA

2
i Fi

)(
xi − x̂i

eii

)
.

Hence, choosing the matrices Fj , to be Hurwitz, one has
lim
t→∞

ζi = ẏ and lim
t→∞

(ζi − ζ̂i) = ẏ − ζ̂i, where

ζ̂j = Cj(Aj x̂j + Bju), j ∈ Q̂k+1. (9)



Therefore, with positions (8) and definitions (9), the
dynamic estimators (7) assume the form

˙̂xj = (Aj −KjCj)x̂j + Bju + Kjy

ζ̇j = −Fj(ẏ − ζj) + CjAjBju + CjBj u̇ + CjA
2
j x̂j

γj = ζj − Cj(Aj x̂j + Bju)

(10)

j ∈ Q̂k+1, with the output γj converging asymptotically
to the error eii when j = i. The necessity of ẏ, u̇ are now
removed. It suffices to note that for the following system

˙̂xj = (Aj −KjCj)x̂j + Bju + Kjy

ξ̇j = Fjζj + CjAjBju + CjA
2
j x̂j

ζj = −Fjy + CjBju + ξj

γj = ζj − Cj(Aj x̂j + Bju)

j ∈ Q̂k+1 (11)

the expression of ζ̇j results to be the same as in (10). The
estimators (11) can be eventually rewritten as

˙̂xj = (Aj −KjCj)x̂j + Bju + Kjy j ∈ Q̂k+1

ξ̇j = Fj(−Fjy + CjBju + ξj) + CjAjBju + CjA
2
j x̂j

γj = −Fjy + CjBju + ξj − Cj(Aj x̂j + Bju)
(12)

The first two equations of (12) are in the form of the
second and third of (3), with x̂j = χj , n = n1, p = n2.
Moreover, function Φj in (3) are defined as

Φj(χj , ξj , u, y): = Φj(γj) =
{

ε if eij < 0
ψ̄j otherwise (13)

namely a signal ψ̄j is generated if the output estimate does
not converge to the output of the system.

4.2 Reduced–Order Estimators

The dynamic estimators (12) have a state vector
(

x̂j
ξj

)
∈

IRn+p. In order to reduce the dimensions of these estima-
tors, one can consider in (7) a reduced order observer in-
stead of a full-order one. To this aim, it is well known that

one can use appropriate state vectors zi =
(

zi,1
zi,2

)
= Tix

such that the systems (1) are given by

żi,1 = Ai,11zi,1 + Ai,12zi,2 + Bi,1u

żi,2 = Ai,21zi,1 + Ai,22zi,2 + Bi,2u

y = zi,1

(14)

i = 1, · · · , N , with Ti such that CiT
−1
i = ( I 0 ), where

I is the p× p identity matrix. Hence, repeating the same
passages of the previous Section, and supposing H in qi,
one considers the dynamic estimators

χ̇j = (Aj,22 − LjAj,12)χj + (Aj,21 − LjAj,11

+ Aj,22Lj − LjAj,12Lj)y + (Bj,2 − LjBj,1)u

ξ̇j = Fj(−Fjy + Bj,1u + ξj) + (A2
j,11 + Aj,12Aj,21)y

+ (Aj,11Bj,1 + Aj,12Bj,2)u

+ (Aj,11Aj,12 + Aj,12Aj,22)(χj + Ljy)

γj = −Fjy + Bj,1u + ξj − (Aj,11y + Aj,12(χj + Ljy)

+ Bj,1u)

j ∈ Q̂k+1, which have a state vector
(

χj
ξj

)
∈ IRn. The

construction of the functions Φj is as in (13).

4.3 Derivative of the Output Signal

A further solution to the problem of generating the
signals eij is the approximate derivation of the output y.
The advantage of this solution is that in this case the con-
tinuous estimation dynamics are much smaller compared
with the previous cases, since one has to consider only one
p–dimensional system. Another advantage is the fact that
this approach can be used also when hypothesis (H1) is
not verified. The drawbacks are obviously that this esti-
mator is noisy and is capable to follow only signals up to
a certain frequency.

Supposing that the signal y is affected by noise only at
frequencies high with respect to the integration range, we
build the estimation dynamics as follows. Supposing for
the moment ẏ available, one considers the system

ζ̇ =
1
ε
(−ζ + ẏ)

ε > 0, which gives as output the signal ẏ. Now, since ẏ is
not available, one considers the change of variable ζ = ξ̇
so that

ξ̈ = 1
ε (−ξ̇ + ẏ)

ζ = ξ̇.

Hence, one obtains a p–dimensional system

ξ̇ = 1
ε (−ξ + y)

eij = 1
ε (−ξ + y)− CjAj x̂j − CjBju j ∈ Q̂k+1.

(15)
Clearly, no proof of convergence for eij can be done. The
construction of the functions Φj is as in (13).

4.4 The Convergence Velocity

It is clear that a key point is the respect of Theorem 1,
namely the production of a sequence

p̄h = ψ̄(tk + δ1) · · · ψ̄(tk + δh) ∈ Ψ̄∗, h ≥ 0

with
δ1 < · · · < δh < δ (16)

such that ϕ̂(q̂, ψ, p̄h) ∈ Q ∩ Q̂. In order to obtain signals
ψ̄ respecting condition (16) for a given a time interval δ,
one needs to be capable to fix the observers’ convergence
velocity. Therefore, hypothesis (H1) has to be substituted
by

(H2) Systems (1) are observable.



The determination of the observers’ gains can be done
exploiting the results in [3].

As previously noted, system (15) which realizes the
derivative of the output can be used also when hypotheses
(H1), (H2) are not verified. This is a clear advantage in
realizing the observer O making use of (15).

Conclusions

A hybrid observer has been presented for the estimation
of the discrete event state and the continuous time state of
a hybrid system H. This observer is built considering first
a finite state machine accepting the discrete event output
of H, and then refining the states with cardinality greater
than one. The resulting observer has a nested structure.
The dynamics in these refinements are driven by informa-
tion coming from the continuous time dynamics, based on
the convergence ratio of the output estimate to the sys-
tem output. This renders faster the discrimination of the
undecided cases.
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