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Abstract

In this note we propose an observer based stabilization
method for nonlinear discrete-time systems. The approach we
use here is based on the stabilization method recently
developed in [5] coupled with the EKO.
From the Lyapunov approach, sufficient conditions for
stability are deduced and expressed in terms of LMI that
depend on arbitrary matrices fixed by the user. This has the
advantage to enlarge the class of systems to be considered as
it can be shown through numerical examples.

1. Introduction

Over the past four decades, stabilization of nonlinear
dynamical systems has received a great attention in the
literature as it can be shown through basic works in this field
[3], [15] and [22]. Several design methodologies have been
developed for local and global stabilization problems of
continuous and discrete-time nonlinear systems, see for
instance [1], [6], [18], [19], [21], [23] and the references
inside.
When the control laws are designed, the state variables are
assumed to be available. But in general, this is not true in
practice and the current state must be estimated by another
dynamical system, that is a state observer.
Thus, observer based stabilization of nonlinear systems has
been studied in the past few years. The main contributions,
however, concern continuous time systems ; this problem has
been investigated by several authors, among them [2], [9],
[12], [14] and [20].
For discrete-time nonlinear systems only few designing
methods have been established [6], [8] and [17]. Relevant
ones have been developed by Byrnes and Lin [7] and Lin
[17]. In particular the work in [17], where a global
stabilization is achieved via state and output feedback, the
proposed technique is judicious but only systems with stable

state unforced dynamics are considered, this may be seen as a
conservative condition.
The aim of this work is to analyse behaviour of the state
feedback stabilization method recently developed in [5] with
the use of the EKO. Thanks to simple Lypunov function,
sufficient condition for stability are deduced and seem to
work for a large clan of nonlinear systems even with unstable
unforced dynamics. Two numerical examples are provided to
show performances of the proposed method and easiness of
the implementation.

2. Problem formulation

Consider  a class of discrete-time multi-input multi-output
(MIMO) nonlinear systems of the form

),()()(1 kkkkkkk uxuxgxxAx ƒ=+=+ (1)
)(    kk xhy = (2)

where n
k IRx ∈ , y

k IRu ∈ and p
k IRy ∈ denote the state,

input and output vectors respectively. The matrix A(.), g(.)
and the vector h(.) are continuously differentiable nonlinear
maps.

Problem :
The problem is to find a dynamic compensator

 ),(1 kkk yξηξ =+

)( kku ξθ= (3)
so that the closed loop system (1)-(3) is asymptotically stable
at the equilibrium )0,0(),( =−ξxx .

3. Main result

Consider the following EKO based stabilizator

         Lu

eK

kkk

kkkkk

(4.b)                                                                                      
   (4.a)                                                                

  11/11

−=
+= ++++ ξ

and the error vectors
111

~
+++ −= kkk xx ξ (5)

kkkkk xx /11/1
~

+++ −= ξ (6)



Where
)(/1 kukkk ξξ ƒ=+ (7)

),()( kkkuk uxx ƒ=ƒ (8)

( ) k

T

kkk

T

kkk APggPgL k

1

 

−
+Ω= (9)

( )kk
T
kkk

T
kkk QLLPP +Ω+ΛΛ=+ k1 λ (10)

( ) 1

1/1111/11

−

+++++++ Σ+Σ= T
kkkkk

T
kkkk HHRHK (11)

k
T

kkkkk SFF +Σ=Σ + /1 (12)
( ) kkkknk HKI /1111  ++++ Σ−=Σ (13)

With
)( /111 kkkk hye +++ −= ξ (14)

kkxk

kkk
kukk x

xLx
FF

ξ

ξ
=

∂
−∂ƒ

==
),(

)(  (15)

kkkxk

k
kkkk x

xh
HH

/11
1

1
/111

)(
)(

++ =+

+
+++ ∂

∂
==

ξ

ξ (16)

kkkk
LgA −= (17)

)(    and  )(  ,)( k kkkkk PPggAA ξξξ === (18)
The main result of this paper is summarized in the following
theorem.

3.1 Theorem :

Assume that there exists an integer N such that:
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for all kx ∈ K and N-tuple of controls ),,( 1−+Nkk uu �  ∈ U (K

and U are two compact subsets of nIR and NrIR )( ,
respectively).
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σ  and σ  denote the maximum and minimum singular
values, respectively.
Then, the EKO based stabilization method (4) renders the
equilibrium )0,0()~,( =kk xx of the closed loop system (1)-(2)-
(4.b) asymptotically stable.
The parameter kk βα  and  will be detailed later. The arbitrary
positive real parameters { } ,...1=kkλ and the positive definite

matrices Ωk and Qk are fixed by the user.

4. Convergence Analysis

In this section, the convergence analysis of the EKO based
stabilization law (1)-(2)-(5) will be performed by the standard
Lyapunov approach.

First, we define a candidate Lyapunov function
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by substracting both sides of (4.a) from 1+kx , we obtain

11/11  ~~
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Here, we introduce unknown diagonal matrices
),,( 1 nkkk diag βββ �=  and ),,( 1111 +++ = pkkk diag ααα � ,to model

errors due to the first order linearization technique, so that we
obtain the following exact equalities :
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The importance of this choice is given in [4].

Next, from (11) and (13), we have
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substituting (26) into (23), then (23) into (22), the Lyapunov
function 1+kV  becomes

)28(  ~  

~~~

1
1
1111

1
1111

1
11

1
1
1111

1
111

1
111

 eRHHRexHRe          

eRHxxxxPxV

kk
T
kkkk

T
k/kkkk

T
k

kk
T
k

T
/kk/kkk

T
/kkkk

T
kk

+
−
++++

−
++++

−
++

+
−
++++

−
+++

−
+++

+−
−+=
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From (24) and (25), (29) becomes
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On the other hand, kkV /1+  may be written as
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A decreasing sequence { } ,....1=kkV  means that there exists a

positive scalar 1    0 << δ  such that
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A sufficient condition to ensure (35) leads to the following
nonlinear inequalities
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It is easy to deduce, by matrix manipulations, that under the
hypothesis H2, we ensure that :
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We notice that (37) may be written into an equivalent form.
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which induce that (45) and (46) are satisfied, and
consequently Vk is a strictly decreasing sequence.

Now, we will prove that, the matrices kP , and kΣ are
bounded from above and below for all k,  i.e. there exists γ ,

γ , η  and η  such that :
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Indeed, if we consider the following auxiliary Riccati
equation
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we notice that, under hypothesis H1, and for a large
parameter γ , we have
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So the boundness of kP  is proved.

The proof of (56) is obtained from the local observability
hypothesis H3, which ensure the boundness of kΣ  (see [10]
and [24]).
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Therefore the convergence of both the state space and the
error dynamics to zero is ensured.

4.1 Remarks :

1. we introduce the weighting factor kλ  to control
boundedness of kP and, by the way, to relax the Lyapunov
stability condition of the unforced dynamic system without
preliminary coordinate transformations of the initial system.
A simple method to design kλ consists to set kλ = 1 as long as

nIP γ  k ≤  and kλ < 1 otherwise.

2. the two inequalities (20) and (21), connot be always
checked, since the parameter ikα  and jkβ are unknown ;

however, they give us the domains to which ikα , jkβ should
belong such that Vk is a decreasing sequence.

5. Simulation results

In order to show the high performances of the theory
developed so far, we consider two numerical examples
chosen from the literature.
The EKO control law given in (4), makes the origin
asymptotically stable as we can see in the different figures.

5.1  Example 1 :

The following nonlinear discrete-time system has been
considered in [7]

kkkk uxgAxx )(1 +=+ (63)

kk Cxy = (64)
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where A is unstable. Fig. 1 and Fig. 2 show the convergence
behaviour of x  and ξ−x  to the equilibrium )0,0( , where
the initialization vectors are ]10  7.5-  10[0 −=x  and

]4  3  4[0 −=ξ .

Fig. 1. The state kx  with respect to sampling time k. 

Fig. 2 : State estimation error )( kkx ξ−  with respect to
sampling time k.
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5.2  Example 2 :

Here, we study the example of the planar vertical take-off and
Landing (PVTOL) aircraft. This example is treated in several
papers in the literature [11] and [13] and [16]. The equations
of motion are given by [11] :
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Where x, y denote the horizontal and the vertical position of
the aircraft center of mass and θ is the roll angle that the
aircraft makes with the horizon. The control inputs u1 and u2

are the thrust (direct out of the bottom of the aircraft) and the
angular acceleration (rolling moment). The parameter ε is a
small coupling coefficient between the rolling moment and
the lateral acceleration of the aircraft. The coefficient “-1” is
the normalized gravitational acceleration. Let us use (65)
with u1=1+v1, after Euler discretization of step T, we obtain
the next state space model
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We assume that only, the vertical and horizontal
positions and the roll angle are available

kk xCy  =        with        















=

010000
000100
000001

C (67)

We consider the discrete-time model, with T=0.007, ε =0.02
and the initializations x0= [200 0 10 0 0.5 0],

]3  3  15  30  3  75[0 =ξ . The simulations confirm the high
quality of our approach.

Fig. 3. EKO based control law applied to example 2,

kx  with respect to time t(Sec).

Fig. 4. State estimation error kkx ξ−  with respect
to time t(Sec).(a : 0-1sec) and (b : 0.5-35sec).
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6.  Conclusion

In this paper, we have presented an observer based control
law which asymptotically stabilize a class of discrete-time
affine nonlinear systems. A simple and useful approach,
using the EKO and a modified Riccati equation is given. We
establish a separation principle, and the  EKO based
stabilization method we use gives a good results, even when
the free dynamics are not Lyapunov stable. Finally, the
proposed control law was successfully applied to a large
numerical examples treated in the literature , and two of them
are detailed in this paper.
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