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Abstract

The aim of this paper is to study the force/position track-
ing problem of robot manipulators using the well–known
hybrid/position control approach. It is shown that the ro-
bot system is closed-loop stable and that the desired force
can always be reached. A systematic procedure of control
synthesis is presented and stability conditions for the con-
trol parameters are derived. No velocity measurements
are assumed to be available, so that a nonlinear observer
is proposed.

1 INTRODUCTION

In many industrial applications, robot manipulators are
required to make contact with the environment, for exam-
ple when deburring, grinding or in assembling tasks. In
these cases, it is necessary to control not only position but
also the force exerted at the contact. Several approaches
to control force and position have been proposed in the
literature (see [11, 12] for an overview). Depending on
the adopted model of contact force, these schemes can be
classified as compliant [10], impedance [4] and constrained
motion control [7]. On the other hand, control techniques
that apply directly position and force feedback such as hy-
brid control [9], and parallel control [3] have also been de-
veloped. All these schemes require an environment model,
either in controller designing or for stability proofs. Also,
most control schemes make use of velocity measurements,
which may not be available. For example, the approaches
shown in [1, 5] developed a hybrid position/force control
by dividing the problem in a force controller where the
motion is constrained and by a tracking controller oth-
erwise. In this note, we proposed a similar method but
using only joint measurements.

The paper is organized as follows: Section 2 describes
the robot manipulator–environment system. Section 3
presents the proposed controller and the stability analysis.
Section 4 illustrates the performance of the proposed con-
troller via experimental work. Finally, Section 5 presents
some conclusions.

2 System model and properties

Consider a n degrees of freedom rigid robot manipulator in
contact with a smooth surface. In this case, the dynamics
of the system is given by [8]

H(q)q̈ + C(q, q̇)q̇ + Dq̇ + g(q) (1)

= τ + JT
ϕ(q)λ,

where q ∈ R
n is the vector of generalized joint coordi-

nates, H(q) ∈ R
n×n is the symmetric positive definite

inertia matrix, C(q, q̇)q̇ ∈ R
n is the vector of Coriolis

and centrifugal torques, g(q) ∈ R
n is the vector of grav-

itational torques, D ∈ R
n×n is the positive semidefinite

diagonal matrix accounting for joint viscous friction co-
efficients, τ ∈ R

n is the vector of torques acting at the
joints, and λ ∈ R

m is the vector of Lagrange multipli-
ers (physically represents the force applied at the contact
point). Jϕ(q) = ∇ϕ(q) ∈ R

m×n is assumed to be of full
rank in this paper. ∇ϕ(q) denotes the gradient of the
object surface vector ϕ ∈ R

m which maps a vector onto
the normal plane at the tangent plane that arises at the
contact point described by

ϕ(q) = 0, (2)

while m is the number of constraints given by the surface.

Let us denote the largest (smallest) eigenvalue of a ma-
trix by λmax(·) (λmin(·)). The norm of an n × 1 vec-

tor x is defined by ‖x‖ 4
=

√
xTx, while the norm of

an m × n matrix A is the corresponding induced norm

‖A‖ 4
=

√

λmax(A
TA). By recalling that revolute joints

are considered, the following properties can be established
[2, 6, 8]:

Property 2.1 The H(q) satisfies λh‖x‖2 ≤ xTHx ≤
λH‖x‖2 ∀ q, x ∈ R

n, where λh
4
= min

∀q∈Rn

λmin(H),

λH
4
= max

∀q∈Rn

λmax(H), and 0 < λh ≤ λH < ∞. 4

Property 2.2 With a proper definition of C(q, q̇), Ḣ(q)−
2C(q, q̇) is skew–symmetric. 4

Property 2.3 The vector C(q, x)y satisfies C(q, x)y =
C(q, y)x ∀ x, y ∈ R

n 4



Property 2.4 It is satisfied ‖C(q, x)‖ ≤ kc‖x‖ with 0 <
kc < ∞, and ∀ x ∈ R

n 4

Property 2.5 q̇ can be written as

q̇ = q̇ +
(

J+
ϕJϕq̇ − J+

ϕ Jϕq̇
)

(3)

=
(

In×n − J+
ϕJϕ

)

q̇ + J+
ϕJϕq̇

4
= Q(q)q̇ + J+

ϕ (q)ṗ,

where J+
ϕ = JT

ϕ

(

JϕJT
ϕ

)−1

∈ R
n×m stands for the Pen-

rose’s pseudoinverse and Q ∈ R
n×n satisfies rank(Q) =

n−m. These two matrices are orthogonal, i.e. QJ+
ϕ = O

(and QJT
ϕ = O). ṗ = Jϕq̇ ∈ R

m is the so called con-
strained velocity. Note that

ṗ = 0 and p = 0. (4)

p is called the constrained position. 4

3 Control with velocity estimation

Control Law

In this section, the tracking control problem of a coopera-
tive system of rigid robots is studied. Consider model (1)
and define the tracking and observation errors as

q̃
4
= q − qd (5)

z
4
= q − q̂ (6)

where qd is a desired smooth bounded trajectory satisfy-
ing constraint (2), and (̂·) represents the estimated value
of (·). Other error definitions are

∆p
4
= p − pd (7)

∆λ
4
= λ − λd, (8)

where pd is the desired constrained position which satisfies
equation (4). λd is the desired force to be applied by each
finger on the constrained surface. Other useful definitions
are

q̇r

4
= Q(q) (q̇d −Λ (q̂ − qd)) (9)

+ J+
ϕ (q) (ṗd − β∆p + ξ∆F )

s
4
= q̇ − q̇r (10)

= Q(q)
(

˙̃q + Λ (q̂ − qd)
)

+ J+
ϕ (q) (∆ṗ + β∆p − ξ∆F )

4
= sp + sf

∆F
4
=

∫ t

0

∆λ(ϑ)dϑ, (11)

where Λ ∈ R
n×n, ξ ∈ R

m×m are diagonal positive definite
matrices, and β is a positive constant. Note that sp and

sf are orthogonal vectors, and that s can also be written
as

s = Q(q)
(

˙̃q + Λq̃ −Λz
)

(12)

+ J+
ϕ (q) (∆ṗ + β∆p − ξ∆F ) .

Let us analyze q̈r. This quantity is given by

q̈r

4
= Q̇(q) (q̇d −Λ (q̂ − qd)) (13)

+ J̇
+

ϕ (q) (ṗd − β∆p + ξ∆F )

+ Q(q)
(

q̈d −Λ

(

˙̂q − q̇d

))

+ J+
ϕ (q) (p̈d − β (ṗ − ṗd) + ξ∆λ) .

As it will be shown later, q̈r is necessary to implement the
controller and the observer. However, this quantity is not
available since q̇ is not measurable. In order to overcome
this drawback, let us consider Q(q) ∈ R

n×n. Then you
have

Q̇(q) =













∂a11(q)

∂q
q̇ · · · ∂a1n(q)

∂q
q̇

...
...

∂an1(q)

∂q
q̇ · · · ∂ann(q)

∂q
q̇













, (14)

where aαβ is the αβ element of Q(q). Based on equa-
tion (14), considered the following definition

˙̂
Q(q)

4
=













∂a11(q)

∂q
q̇o · · · ∂a1n(q)

∂q
q̇o

...
...

∂an1(q)

∂q
q̇o · · · ∂ann(q)

∂q
q̇o













, (15)

with

q̇o

4
= ˙̂q −Λz. (16)

Then, one can compute

˙̄Q(r)
4
= Q̇(q) − ˙̂

Q(q̇o) (17)

=













∂a11(q)

∂q
r · · · ∂a1n(q)

∂q
r

...
...

∂an1(q)

∂q
r · · · ∂ann(q)

∂q
r













,

where

r
4
= q̇ − q̇o = ż + Λz. (18)

In view of equation (15), we proposed the following sub-
stitution for q̈r

¨̂qr

4
=

˙̂
Q(q) (q̇d −Λ (q̂ − qd)) (19)

+
˙̂
J

+

ϕ (q) (ṗd − β∆p + ξ∆F )

+ Q(q)
(

q̈d −Λ

(

˙̂q − q̇d

))

+ J+
ϕ (q) (p̈d − β (Jϕ(q)q̇o − ṗd) + ξ∆λ) ,



where
˙̂
J

+

ϕ (q) is defined in the same fashion as
˙̂
Q(q) in

equation (15). After some manipulation, it is possible to
get

¨̂qr = q̈r + e(r), (20)

where

e(r)
4
= − ˙̄Q(q) (q̇d −Λ (q̂ − qd)) (21)

− ˙̄J
+

ϕ (q) (ṗd − β∆p + ξ∆F )

+ βJ+
ϕ (q)Jϕ(q)r.

The proposed controller is then given by

τ
4
= H(q)¨̂qr + C(q, q̇r)q̇r (22)

+ Dq̇R + g(q)

− KR (q̇o − q̇r) − JT
ϕ(q) (λd − kf∆F ) ,

where Kr ∈ R
n×n is a diagonal positive definite ma-

trix and kf is a positive constant. Note that from equa-
tions (10) and (18) it is q̇o − q̇r = s − r. Thus, from
equation (20) one gets

τ = H(q) (q̈r + e(r)) + C(q, q̇r)q̇r (23)

+ Dq̇R + g(q)

− KR (s − r) − JT
ϕ(q) (λd − kf∆F ) .

Substituting equation (23) into (1), one can compute the
closed loop dynamics after some manipulation as

H(q)ṡ = −C(q, q̇)s − KDRs (24)

+ H(q)e(r) − C(q, q̇r)s

+ KRr + JT
ϕ(q) (∆λ + kf∆F ) ,

where KDR
4
= KR + D. In order to get equation (24),

Property 2.3 has been used.

Observer definition

The proposed dynamics of the observer is given by

˙̂q = ˙̂qo + Λz + kdz (25)
¨̂qo = ¨̂qr + kdΛz (26)

+ H−1(q)JT
ϕ(q) (∆λ + kf∆F ) ,

where kd is a positive constant. Note that equation (26)
can be rewritten as

¨̂qo = q̈r + e(r) + kdΛz (27)

+ H−1(q)JT
ϕ(q) (∆λ + kf∆F ) .

Now, from equation (25) you have

¨̂qo = ¨̂q −Λż − kdż. (28)

Thus, from equation (27) one has

ṡ = ṙ + kdr + e(r) (29)

+ H−1(q)JT
ϕ(q) (∆λ + kf∆F ) .

By multiplying both sides of equation (29) by H(q), and
by taking into account equation (24) one gets

H(q)ṙ = −Hrdr − C(q, q̇)s (30)

− C(q, q̇r)s − KDRs,

where Hrd
4
= kdH(q) − KR. Finally, by using Property

2.3 again and after some manipulation, it is

H(q)ṙ = −Hrdr − C(q, q̇)r (31)

− C(q, s + 2q̇r)s

+ C(q, s + q̇r)r − KDRs,

Now, let us define

x
4
= [ sT rT ∆F T ]

T
, (32)

as state for (11), (24), and (31), and consider for each x

a ball given by

Sa = {x : ‖x‖ ≤ a} . (33)

For any x in the ball (33), s, r, and ∆F are bounded.
In view of the definition (18), one has that both z, and ż

are bounded. However, q̃ and ˙̃q require more attention.
Recall from equation (12) that s is given by

s = Q(q)
(

˙̃q + Λq̃ −Λz
)

+ J+
ϕ (q) (∆ṗ + β∆p − ξ∆F ) .

By assumption, the finger joints are revolute, thus mean-
ing that both Q(q) and J+

ϕ (q) are bounded. Also, p,
ṗ, pd and ṗd must be zero in view of Property 2.5, and
constraint (4). This means that

Q(q)
(

˙̃q + Λq̃
)

(34)

must be bounded. Since Q(q) is not a full rank matrix,
in general one cannot conclude that ˙̃q + Λq̃ is bounded.
However, it can be shown that, if the desired region of
attraction a in (33) is small enough, then the boundedness
of (34) does not only guarantee that both ˙̃q, and q̃ are
bounded, but also that they will tend to zero if (34) tends
to zero [6, 8]. This assumption means that q̃, and ˙̃q are
bounded if x is bounded and small enough. Finally, in
view of the fact that q̇d must be bounded, if x belongs to
(33), then from definition (21) there must exist a constant

Me
4
= Me(a) (35)

such that

‖e(r)‖ ≤ Me‖r‖ < ∞ (36)

holds. We define the following Lyapunov function for sys-
tem (11), (24), and (31)

V (x) =
1

2
xTMx, (37)



where M
4
= block diag {H(q), H(q), ξ }, and V (x)

satisfies

λ1‖x‖2 ≤ V (t) ≤ λ2‖x‖2, (38)

with

λ1
4
=

1

2
min

∀q∈Rn

λmin(M ) (39)

λ2
4
=

1

2
max
∀q∈Rn

λmax(M ).

Next, we analyze the stability properties of our control–
observer approach.

Theorem 3.1 Consider the cooperative system dynamic
given by equations (1) and (2), in closed loop with the con-
trol law (22) and the observer (25)–(26), where qd, and pd

are the desired bounded joint and constrained positions,
whose derivatives q̇d, q̈d, ṗd, and p̈d are also bounded, and
they all satisfy constraint (4). Consider also equation (39),
and a given region of attraction defined by equation (33),
where the bound a is chosen small enough so that if

‖x‖ ≤ xmax, (40)

with

xmax
4
=

√

λ2

λ1

a, (41)

then the boundedness of equation (34) does not only guar-
antee that both ˙̃q, and q̃ are bounded, but also that they
will tend to zero if equation (34) tends to zero. Then, as-
ymptotic stability of tracking, observation and force errors
arise, i.e.

lim
t→∞

˙̃q = 0 lim
t→∞

q̃ = 0 lim
t→∞

ż = 0 (42)

lim
t→∞

z = 0 lim
t→∞

∆λ = 0,

if the following conditions are satisfied

λmin(KR) > µ1 + 1 (43)

kd >
λmax(KR) + α

λH

, (44)

where α = µ2 + 1
4

(λd + µ3 + µ4)
2, and

µ1
4
= max

‖x‖≤xmax

‖C(q, q̇r)‖ (45)

µ2
4
= max

‖x‖≤xmax

‖C(q, s + q̇r)‖ (46)

µ3
4
= max

‖x‖≤xmax

‖C(q, s + 2q̇r)‖ (47)

µ4
4
= Me(xmax)λH (48)

λd
4
= λmax(D), (49)

where equation (35), and Properties 2.1 and 2.4 have been
used.

Proof: Rewrite equation (37) as

V (x) =
1

2
sTH(q)s +

1

2
rTH(q)r (50)

+
1

2
∆F Tξ∆F .

By using Properties 2.2 and 2.5, the derivative of (50)
along (11), (24), and (31) can be computed as

V̇ (x) = −kf∆F Tξ∆F − sTKDRs (51)

− rTHrdr − sTC(q, q̇r)s

+ rTC(q, s + q̇r)r

− rTDs − rTC(q, s + 2q̇r)s

+ sTH(q)e(r).

Since x(0) is in region (33), there must exist a time greater
than zero such that

V̇ (x) ≤ −kfλmin(ξ)‖∆F ‖2

− (λmin(KR) − µ1) ‖s‖2

− (kdλHi − λmax(KR) − µ2) ‖r‖2

+ (µ3 + µ4 + λd) ‖s‖‖r‖

is valid. By taking conditions (43)–(44) into account, one
concludes that V̇ (x) ≤ 0 ∀ t ≥ 0, and that V̇ (x) = 0 only
if x = 0. Thus, x → 0. From definition (18) one has
directly

lim
t→∞

z = 0 lim
t→∞

ż = 0.

On the other hand, since s → 0, both sp, and sf defined
in equation (10) tend to zero as well. Since

Jϕ(q)s = Jϕ(q)Q(q)
(

˙̃q + Λq̃ −Λz
)

+ Jϕ(q)J+
ϕ (q) (∆ṗ + β∆p − ξ∆F )

= ∆ṗ + β∆p − ξ∆F ,

one also gets lim
t→∞

∆ṗ = 0 lim
t→∞

∆p = 0. Furthermore, in

view of the assumption made on xmax, and the fact that
sp → 0, it can be shown that [6, 8]

lim
t→∞

˙̃q = 0 lim
t→∞

q̃ = 0.

Finally, we know from equation (12) that ∆F → 0. This,
however, does not necessarily means that ∆λ tends to zero
as well. In order to prove it, one may use again the fact
that Jϕ(q)s = ∆ṗ + β∆p − ξ∆F , which means that

Jϕ(q)ṡ + J̇ϕ(q)s (52)

= ∆p̈ + β∆ṗ − ξ∆λ = −ξ∆λ.

The result on the right hand side of the last equation is
valid since constraint (4) must be satisfied. When the time
t is large enough, (24) becomes

H(q)ṡ = JT
ϕ(q)∆λ

⇒ ṡ = H−1(q)JT
ϕ(q)∆λ.



By multiplying this last equation by Jϕ(q) and taking
equation (52) into account one gets

−J̇ϕ(q)s − ξ∆λ = Jϕ(q)H−1(q)JT
ϕ(q)∆λ,

or
(

ξ + Jϕ(q)H−1(q)JT
ϕ(q)

)

∆λ = −J̇ϕ(q)s.

Since ξ+Jϕ(q)H−1(q)JT
ϕ(q) is a nonsingular matrix and

J̇ϕ(q) remains bounded because of the fact that the track-
ing error is bounded and tends to zero for bounded desired
velocities, we arrive to the conclusion that

lim
t→∞

∆λ = 0.

4

4 EXPERIMENTAL RESULTS

In this section, some experimental results are presented.
To this end, a test bed with a A465 of CRS Robotics in-
dustrial robots is employed (see Figure 1). Even though
it has six degrees of freedom, only the first three joints
are used for the experiments, while the rest of them are
mechanically braked. Each joint is actuated by a CD mo-
tor. Thus, in order to implement control law (22) and
observer (25)–(26), the motors dynamics has to be taken
into account.

Figure 1: Robot A465 of CRS Robotics.

The constraint in Cartesian coordinates is simply given by

ϕ = x − b = 0, (53)

with b a positive constant. The desired trajectories are
given by

xd = 0.626[m] (54)

yd = 0.05 sin(ω(t − ti))[m]

zd = (0.585 + 0.05 cos(ω(t − ti)) − 0.05)[m].

Note that the inverse kinematics of the manipulator has to
be employed to compute qd. These trajectories are valid
from an initial time ti to a final time tf , while ω is a fifth
order polynomial designed to satisfy ω(ti) = ω(tf) = 0.
Also, the derivatives of ω are zero at ti and tf . By choosing
(54), the robot will make a circle in the y–z plane. Also,
no force control is carried until the manipulator is in the
initial position for the circle, at (0.626, 0, 0.585)[m]. The
desired pushing force is given by

fdx = 45 + 30 sin(2π(t − ti)/40)[N], (55)

and fdy = fdz = 0[N]. The different control and observer
parameters are Λ = 20I, KR = 70I, kd = 8, kf = 10,
ξ = 0.001I.

The observer–controller scheme has been programmed in
a PC computer, while the sampling time is 7ms. Only the
time from ti = 15s to tf = 55s is shown because otherwise
no force control is being used. The results for the tracking
and observation errors can be seen in Figure 2 in joint co-
ordinates. It is evident that the observer is working pretty
well, while the tracking errors are relatively large. This
can also be appreciated in Figure 3 in Cartesian coordi-
nates, where the force measurements are shown. Note that
the desired force is being applied pretty well. The rather
poor results in the position tracking is mainly due to the
fact that an exact knowledge of the manipulator dynamics
is required and the model used in the experiment is not
very accurate. On the other hand, it is remarkable that
the observer and the force controller work very well.
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Figure 2: Tracking errors in joint coordinates. a) q̃11. b)
q̃12. c) q̃13. Observation errors. d) z11. e) z12.
f) z13.

5 CONCLUSIONS

The tracking control problem for position and force ap-
plication of rigid robots without velocity measurements
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Figure 3: Tracking errors in Cartesian coordinates. a) x̃1.
b) ỹ1. c) z̃1.
Force measurements. d) Fx1

. e) Fy1
. f) Fz1

.
—– measured value. - - - desired value.

is considered in this paper. The control law is a decen-
tralized approach which takes into account motion con-
straints. By assuming that the robot dynamics is well
known and that contact force measurements are available,
a nonlinear observer is proposed that requires only the
knowledge of the inertia matrix.

Experimental results have been carried out to test the
proposed approach. The overall results can be considered
good, even though it has become clear that the approach
should be modified to take into account inaccuracies in
the robot model and the possible lack of force sensors.
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and G. Hirzinger, “High precision constrained grasp-
ing with cooperative adaptive handcontrol,” Journal
of Intelligent and Robotic Systems, vol. 32, pp. 235–
254, 2001.

[9] M. Raibert and J. Craig, “Hybrid position/force
control of manipulators,” ASME Journal of Dy-
namic Systems, Measurement, and Control, vol. 103,
pp. 126–133, 1981.

[10] M. W. Spong and M. Vidyasagar, Robot Dynamics
and Control. New York: John Wiley & Sons, 1989.

[11] T. Yoshikawa, “Force control of robot manipulators,”
in Proc. IEEE Int. Conf. on Robotics and Automa-
tion, (San Francisco, USA), April 2000.

[12] G. Zeng and A. Hemami, “An overview of robot force
control,” Robotica, vol. 15, pp. 473–482, 1997.


	Session Index
	Author Index



