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tion, descriptor systems. is non-minimal. Using an all-pass matrix dilation technique,
a state-space parametrisation of the complete family of solu-
Abstract tions can be obtained, in the form of a linear fractional map of

the ball of unstable contractions [1, 2, 4]. This can be subse-

We propose a method for designing Infinite Impulse Resporgggently reformulated using only the matrix Markov parameters
(IIR) filters with specified magnitude frequency-response to¥ H(z). When the results are specialised to the scalar case,
erances and approximately linear phase characteristics. Tgnitude and phase error bounds of the approximation error
design method consists of two steps. First, a Finite Impuléan be obtained in terms of the Hankel singular valugg of),
Response (FIR) filter with linear phase is designed using stavhich allows the a-priori determination of the IIR filter order
dard optimisation techniques (e.g. linear programming). In tiatisfying specified magnitude (“ripple”) specifications and an
second stage, the designed FIR filter is approximated by a staceptable phase deviation from linearity. The effectiveness of
ble IIR filter using a Hankel-norm approximation method. Thithe method is illustrated via a numerical example, involving the
is based on a recent technique for approximating discrete-tigeproximation of a high-order linear-phase FIR filter, designed
descriptor systems and requires only standard linear algebrsing linear programming techniques [8]. Finally, possible ex-
routines, while avoiding altogether the solution of two matrisensions of the method are briefly discussed.

Lyapunov equations which is computationally expensive. A-

priori bounds on the magnitude and phase errors are obtained ]

which may be used to select the lowest-order IR filter ordér Notation

which satisfies the specified design tolerances. The efectixl?d

ness of the method is illustrated with a numerical example. st of the notation used is standard and is reproduced here

for convenienceD denotes the open unit dife = {( € C :
_ |¢| < 1}, with D and 9D its closure and boundary respec-
1 Introduction tively. £,(9D) denotes the Hilbert space of all matrix-valued

- , . . functionsF' defined on the unit circle such that
Finite Impulse Response (FIR) filters are widely used in many

digital signal processing applications, especially in the field of
communications, because they can exHib#éar phase charac-
teristics. Unfortunately, in many cases the order of such filters
is prohibitively high for practical implementation. In generalwhere(-)* denotes the complex conjugate transpose of a ma-
the number of delay elements and multipliers needed for an RiX. The corresponding inner product of twfe (0D) functions
design tends to be much higher compared to similar Infinite Ini*andG of compatible dimensions is given as:

pulse Response (IIR) implementations. This is especially true .

for filters with sharp cut-off characteristics which have a long < F.G>= 1 trace[F* (/)G (e7)]d0

impulse response [6, 9]. 21 Jo

2
/ trace[F*(e’?)F(e/%)]df < oo
0

ith2(9D) and Hy (OD) are the closed subspaces ©f con-
H(z) can be approximated by a low-order (IIR) filter, With_sisting of all functions analytic i€ \ D andD, respectively.

out degrading significantly its magnitude and phase charactéPQ(a_D) IS the space of all umformly-pounded matm;-vglued
istics. In this paper we apply Hankel-norm approximationtecﬂincuons indD, i.e. all functions defined on the unit circle

niques to (matrix) FIR filters. Our technique is based on a r&nose norm:

cent result involving approximations of discrete-time descrip- Fllo = sup &[F(e’)]

tor systems [1, 2]. This allows us to treat systems with poles i )

at the origin and has been applied successfully in the context

of mixed H,/H» optimisation problems [5]. Our results apds finite. Herea(-) denotes the largest singular value of a
ply both to they-suboptimal and the strictly optimal problemsmatrix. H.,(0D) andH__ (0D) denote the closed subspaces

It is therefore natural to ask whether a linear-phase FIR f



of £..(0D) consisting of all functions analytic i \ D and for designing linear phase FIR filters with specified magnitude-
D, respectively, whileH;*(9D) is the set of all functions response characteristics (low-pass, high-pass, etc). As an ex-
in L (0D) with no more thark poles inD. Spaces of real- ample, consider the filter

rational functions will be indicated by the suffiR before the

corresponding space symbol. Thaeit ball of X (9D) is H(z) = h(0) + h(1)z™ + ...+ h(p— 1)z~ P~ + h(p)z*

the setBH__(0D) = {U € HL (D) : |U|l < 1}. |If Fh(p+1)2=®) 4y h(2p)eP
G € L,,(0D), then the Hankel operator with symh@lis de-
fined as: in which positive symmetry of the impulse response is en-
forced around the central coefficiehtp) by settingh(0) =
L'g : £2(0D) — H2(0D), I'c =111 Mclys (o) h(2p), h(1) = h(2p —1),...,h(p — 1) = h(p + 1). The fre-

. . o guency response of the filter may be written as:
in which Mg denotes the multiplication operataVls

Lo(0D) — L5(0D), Mg f = G f andIl, denotes the orthog- H(e?¥) = e3P M (w)

onal projectionll; : L2(0D) — H2(0D). If H € L(9D)

has dimension§; +p2) x (m1+me) andU € RL.(0D) has whereM (w) is a real linear function of the filter's coefficients:
dimensionsns, x po, we define théower linear fractional map

of H andU a.S]:l(H, U) = Hy +H12U(]—H22U)_1H21, h(O)
provided the indicated inverse exists Ufis a set ofims x po h(1)
matrix functions, ther; (H, ) denotes the set7 (H,U) : M (w) = (Zcos(pw) 2cos((p—Dw) ... 1) :
Uel}. )
U hp)
3 FIR filters with linear phase response Suppose now that we want to satisfy the following specifica-

tions: (a)1 — § < |H(e/*)| < 1+ ¢ for all frequencies in the
The fact that FIR filters can have a linear phase response Bass-band [0,w,], (b) |H (e7*)| < & for all frequencies in
been used extensively in many digital signal processing apphe stop-bands € [w,, 7] wherew, < w,, and (c) minimise
cations. A filter with a nonlinear phase characteristic causg@g “ripple” § subject to constraints (a) and (b). Specifications
distortion to its input signal, since the various frequency COI'(H) and (b) can enforced by discretising the pass-band and stop-

ponents in the signal will be delayed, in general, by amouriand frequency intervals usingfrequencies, say, i.e.
which are not proportional to their frequency, thus altering their

mutual harmonic relationships. A distortion of this form is un- O=wi <ws <...<wp=uwp
desirable in many practical digital signal processing applica-

tions such as music, video, data transmission and biomedicaresl

and can be avoided by using filters with linear phase over the W =Wntl <Wnpyo < ...< Wy =T

frequency range of interest [9]. . e . . .
q yrang (9] and enforcing the specifications via the inequalities:

Suppose that the unit pulse response of an FIR filter is given 1-0<Mw)<1+08, i=1,2,....n 1)
by {h(0),h(1),h(2),...,h(N)}. For this filter to have &n- - -

ear phase response, séijw) = —aw for a constant, it must gng

have an impulse response witbsitivesymmetry, i.e.h(n) =

h(N —n — 1), wheren varies as = 0,1,2,..., YL for N 6 < M(w;) <6, i=n+1,n+2,...,2n )

odd andn = 0,1,2,..., % — 1 for N even. Such a filter has
identical phase and group delay and these are independenthg optimisation problemmin § subject to (1) and (2), can
frequency, i.e. now be formulated as a linear programme in the standard form:

df(w) mincz st. Az <b

wherez’ = (h(0) h(1)...h(p) 0),¢ = (0...01), bis adn-

An FIR filter whose impulse response hagativesymmetry, dimensional vector and is a4n x (p+2)-dimensional matrix.
i.e. h(n) = —h(N — n — 1), has anaffine phase-responseThis can be solved efficiently using standard techniques, e.g.
characteristic of the formi(w) = 5—aw with « andg constant the simplex algorithm or interior point methods.
and its group dela§, = « is independent ab.

_ _ _ , 4 Hankel-norm approximation of FIR filters
The simple relationship between the impulse response of an
FIR filter and its frequency response has been exploited to diethis section we propose a Hankel-norm method for approx-
sign filters of this type via a variety of optimisation methodsnating FIR filters via lower-order IR filters. The method is
[3], [7], [8], [10]. One of the earliest and simplest approachédsmsed on a recent result involving model-reduction of descrip-
is [8], in which a linear programming procedure is proposeddr discrete-time systems [1], [2].



The main advantage of Hankel-norm approximation methods.
over other model-reduction techniques is that they offer tight
bounds on the infinity-norm of the approximation error; in par-

The controllability grammian of the realisation in part 2,
i.e. the unique solution of the Lyapunov equatiBn=
APA’ + BB’, can be factored aB = R, R}, where:

ticular, it is shown in [4] how to construdi-th order approx-

imations X (2) € RHoo(0D) of H(z) € RHoo(0D) with H, 0 ... 0
degX(z) = k < degH(z) = n, such that: R H, .+ H, ... 0
2 = . . :
1H(2) + X(2)lle < D 0iTh) ®) H,  H, H,

i=k+1

. . Equivalently P can be block-partitioned as:
whereo; (') denotes thé-th singular value ol g, indexed q y P

in non-increasing order of magnitude. This inequality can be

min(i,5)
used to determine a-priori the ordeof the low-order system (pij)g’;lgw: where P;; = Z Ho_iviH), iy
X (2) which satisfies magnitude error specifications. o 1

Theorem 2 below parametrises all solutioddz) to the ando?(T' ) = \;(P) for eachi.
Hankel-norm approximation problefil’y; + I'x| = v, in

which H(z) is the matrix FIR filter

Proof: Straightforward and hence omitted. O

H(z)=Ho+Hiz ' 4+...+ H,z" i

and X (2) is a matrix IR filter of degreeleg X () < k. The Theorem 2: Let H_(z) be the r?atnx FIR filter dfaﬁned in The-
Lo TR } . orem 1. Lety satisfyo,1(I') < v < ox(I'z). Then all

parametrisation is given in descriptor form and hence apph%s( ) € H=*(9D) such thalﬂﬁ( )+ X(2)||w < ~ are gen-

both in the sub-optimal casey(;:(I'y) < v < ox(T'y)) and ~ oo = #)lloo = 7 9

the optimal casey(= o411 (T's )). Before stating this theorem,erated via the lower linear fractional transformation:

however, the following preliminary result is needed: X = {Fi(Sa, U) : 7U € BHL (D)}

Theorem 1: Let where:

Se =Dg + Cs(ZES - As)71B5

H(z)=H(z) —Hy=Hyz ' + Hyz 2+ ...+ Hyz ™"

with H; € RP*! fori=1,2,...,n. Then: with

-1 2 P
1. The singularv_alues dfg,ai(l“ﬁ) (indexed in decreasing  £s = ( Igp 8 ) , Ag= ( X@p Y Irﬁo >
orde_rof magnitude) are the singular values of the (Hankel) 00 0 Ox-1p
matrix: BS_(B B0)7 CS_(O o >
Hl H2 anl Hn
Hs Hs ... H, 0 and
H; Hy ... 0 D — ( CX™'B ~I, >
R, = . . ) s ~I; 0
H, , H, 0 0 where A, B, C and P are defined in Theorem 1, andl =
H, 0 0 0 Lip+ A Ay =P —~v*XAX", By =vXX'C"andC, =

yB' X',

2. A state-space realisation d@f(z) is given by H(z)
C(zI — A)~! B with:

Proof: Minor adaptation of result in [1], [2]. |

0 00 ... 00 The proof of Theorem 2 follows readily by specialising the re-
I, 0 0 0 0 sults of [1] and [2] to our case, using the state-space descrip-
A= 0 I, O 0 0 | ¢ grexnp tion in Theorem 1. Note that the generator of all Hankel norm
R Co approximationsS,(z) is given in descriptor form; this can be
(') O 0 I 0 converted into a state-space form, if required, using a standard
P procedure. In particular, it is always possible to obtain a state-
B=(H), H, , ... H) Hj )/ e RPx! space realisation df,(z) of order2np — Rank(Ay); if Ap is
= ( 0 0 0 I, )/ c RPXnP non-singular, we obtain a state-space description of aigder

Note also, that although Theorem 2 is still valid in the optimal
Further, the realisation is output balanced, i.e. the uniquasey = o411 ('), the resulting realisation is non-minimal.
solution of the Lyapunov equatia@ = A’QA + C’'C'is In this case, a minimal realisation can be obtained in closed
given by@ = I,,,. form via a singular perturbation argument (see [2] for details).



It is clear from Theorem 2 that the solution of Lyapunov equ® Example

tions is completely avoided in our framework; in fact the gen- ) _

eratorS,(z) is completely defined by the Markov parameterg‘ this section some of the results presented in tlhe paper are
of F (=) (and~), although we have not made this dependendiistrated by means of a computer example. First, a linear
explicit. Due to the special structure of the state-space mo@Bse FIR filter of orden = 21 was designed using the lin-
describingH (z) in this case, it is possible to give a closed€@’ Programming procedure outlined in section 3. The design
form expression of the state-space realisatiofigk) directly SPecifications were defined as;, = 1 rad/samplew, = 1.5

in terms of the Markov parameters. Due to space limitatiof&ds/sample and the frequency intervels., | and(w,, 7| were:
we do not pursue this direction here. each discretised usirig) equally-spaced frequencies. The lin-

ear programme was then set up and solved using Matlab’s func-
In the remaining part of this section we specialise Theorem 1tgn Ip.-m. The minimum ripple was obtained &s= 0.0232;
the scalar case and obtain bounds on the phase of the appm_ﬂrstll Optlmal impulse response coefficients of the result-
mation error. Note first, that in the scalar case, the solutioniftg filter 2(z) are tabulated below (the lasd coefficients are
the Hankel-norm approximation problem is, in general, uniqgmmetric and are not included):
only in the optimal case. The so-called “central solution” is

obtained by setting/ = 0. Having obtained a state-space real- i h(i) i h(i) i h(i)
isation of an approximation, one next needs to remove its anti- 01 00017141 003581 8 | 0.0919
stable component; this extraction of the stable projection can 1| -002121l 51 -0.0015! 9 | 0.2995
be performed efficiently by transforming the system to block- 21 -00123!l 6| -0.06621| 10 | 0.3980
Schur form using an appropriate orthogonal state-space trans- 31 001781l 7| -0.0561

formation and ordering the eigenvalues of the “A” matrix in
ascending order of magnitude; decoupling of the stable and
anti-stable parts then requires the solution of a matrix Sylvester
equation.

Table 1: Impulse response coefficients

Reference [4] shows that having solved theh order Hankel- The magnitude frequency response of the filter is shown in Fig-

norm approximation problem, it is always possible to choogge 1 pelow. Note that the response in the passband and the
a constant term, so that the approximation error satisfies th§topband lies within the desired bourids: §.

bound:
1h(2) + (2(2) + z0)lloo < Y i(Th) 4

i=k+1

Optimal FIR filter and bounds
14 T T

1.2
Since this bound applies uniformly in frequency, it can be used
to give an immediate bound on the approximation phase error: ;-

Theorem 3: Let #(z) = z(z) + zo be ak-th order optimal
Hankel norm approximation of the scalar FIR filtefz) such
that (4) holds. Then, if)(w) = arg(h(e??)) + arg((e’@)),
we have that:

Gain

> i1 0i(Tn)
|h(edv)]

for everyw € [0,7). In particular, if the frequency interval  °?
[w1 wo] lies in the filter's passband in whidh-6 < |h(e’*)| <

|sin(¢(w))| < G

1 + 61 then OO 0.5 1 15 7/_\5 = 2.‘57 - 7? 3.5
Zn (1“ ) angular frequency rads/sample
. i=k+19iLh
< == 2 6 . .
|sin(¢(w))] < 1-96 ©) Figure 1:Magnitude frequency response
for everyw € [wy wa).
Proof: Straightforward and hence omitted. |

Next the Hankel-norm approximation method outlined in The-

The phase error bound given in Theorem 3 can be used to gem 2 was applied to the FIR filté(z). The Hankel singular
lect the minimum order of approximatidnconsistent with a values off(z) are shown in Table 2. Parametewas chosen as

worst-case phase-error specificationfi(t) is a linear-phase | ~ 0.03 r(i§ulti[1rgr1] ina7-th ?rgler (Srb'O?:Lmal) Hankel-n?rm
FIR filter, then the RHS of (5) or (6) quantifies the deviation iﬁlgfrpm;na 'g%mesggffi g 8? on e()54?977e:|:a(§)2r31);|mand were
the phase of the IIR approximation bfz) from linearity. obtained asv. r257, 0. 81527, 0. Hotiy an

0.6886 £+ 0.3363;.



) g; ) g; 7 g; 1 g;

1| 1.0000| 6 | 0.1765| 11 | 0.0117| 16 | 0.0116
2| 0.9973| 7 | 0.0602| 12| 0.0117| 17 | 0.0002
3| 0.9563| 8 | 0.0232| 13| 0.0117| 18 | 0.0002
4107791 9 | 0.0135| 14 | 0.0116| 19 | 0.0000
5] 0.4344| 10| 0.0118| 15| 0.0116| 20 | 0.0000

The magnitude response bfz) and its IIR approximation is
shown in Figure 2. It can be seen that the IIR filter has a slightl§ *°f |
larger ripple in the pass-band. Figure 3 shows the impulse rg-

Table 2: Hankel singular values

sponses of the two filters.

14

FIR/IIR magnitude response

121

Magnitude - linear

15
angular frequency rads/sample

25

Figure 2:FIR/IIR magnitude frequency response
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FIR and IIR impulse response
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Figure 3:FIR/IIR impulse response
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deviation of the phase of the IIR filter from linearity), while
Figure 5 shows the pole/zero pattern of the IIR filter (there is
an additional zero at = —15.6521 not shown in the figure).

Phase error in passband
2 T T T

o of

15 I I I I I I I I I
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Figure 4:Phase error in passband (deg)
Pole/zero plot
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Figure 5:Pole/zero pattern of IIR filter

6 Conclusions

In this work we have presented a systematic way for designing
low-order IIR filters with approximately linear phase response
characteristics. The method relies on two steps: (a) First a
linear-phase FIR filter is designed using linear programming
or an alternative optimisation technique; (b) In step 2, the FIR

Finally, Figure 4 shovys_ the phase error in t_he F’_E‘SSK_”’Z'J‘F‘—d filter is approximated by a low-order IIR filter using Hankel-
w < 1 rad/sample arising from the approximation (i.e. the



norm approximation methods. The method is computationa[] L.R. Rabiner (1972), Linear Program Design of Finite Im-
efficient and relies on recent results for approximating discrete-pulse Response (FIR) Digital FilterlsEE Tran. Audio and
time descriptor systems. A-priori bounds are obtained for the ElectroacousticsAU20(4):280-288.

magnitude and phase approximation error which can assist the i
designer to choose an approximation order consistent with {f& H- Stark and F.B. Tuteur (1979), Modem Electrical Com-
design specifications. A low-order example has illustrated the Munications,Prentice Hall, Inc., Englewood Cliffs, NJ.

effectiveness of the method. [10] S.P. Wu, S. Boyd and L. Vandenberghe (1997), FIR filter

) . design via Spectral factorization and Convex Optimization,
There are a number of issues related to the proposed technlqug\pp”ed Computational ContrpSignal and Comunications,
that we intend to pursue in the future. These include: Biswa Datta ed.. Birkhauser.

e Derivation of closed-form expressions for the IIR approx-
imation filter, directly from the Markov parameters of the
FIR filter.

e Derivation of tighter error bounds than those applying in
general for the Hankel-norm approach. This seems possi-
ble given the special structure of FIR filters (all poles lie
at the origin).

¢ Investigation of the sensitivity properties of the proposed
design under finite-precision implementation.

e Generalisation of the method to other types of approxima-
tion, e.g. relative-error and general frequency weighted
approximations.

e Extension of the method to more general application do-
mains.
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