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Abstract

We propose a method for designing Infinite Impulse Response
(IIR) filters with specified magnitude frequency-response tol-
erances and approximately linear phase characteristics. The
design method consists of two steps. First, a Finite Impulse
Response (FIR) filter with linear phase is designed using stan-
dard optimisation techniques (e.g. linear programming). In the
second stage, the designed FIR filter is approximated by a sta-
ble IIR filter using a Hankel-norm approximation method. This
is based on a recent technique for approximating discrete-time
descriptor systems and requires only standard linear algebraic
routines, while avoiding altogether the solution of two matrix
Lyapunov equations which is computationally expensive. A-
priori bounds on the magnitude and phase errors are obtained
which may be used to select the lowest-order IIR filter order
which satisfies the specified design tolerances. The efective-
ness of the method is illustrated with a numerical example.

1 Introduction

Finite Impulse Response (FIR) filters are widely used in many
digital signal processing applications, especially in the field of
communications, because they can exhibitlinear phase charac-
teristics. Unfortunately, in many cases the order of such filters
is prohibitively high for practical implementation. In general,
the number of delay elements and multipliers needed for an FIR
design tends to be much higher compared to similar Infinite Im-
pulse Response (IIR) implementations. This is especially true
for filters with sharp cut-off characteristics which have a long
impulse response [6, 9].

It is therefore natural to ask whether a linear-phase FIR filter
H(z) can be approximated by a low-order (IIR) filter, with-
out degrading significantly its magnitude and phase character-
istics. In this paper we apply Hankel-norm approximation tech-
niques to (matrix) FIR filters. Our technique is based on a re-
cent result involving approximations of discrete-time descrip-
tor systems [1, 2]. This allows us to treat systems with poles
at the origin and has been applied successfully in the context
of mixedH∞/H2 optimisation problems [5]. Our results ap-
ply both to theγ-suboptimal and the strictly optimal problems,

although in the later case the resulting state-space realisation
is non-minimal. Using an all-pass matrix dilation technique,
a state-space parametrisation of the complete family of solu-
tions can be obtained, in the form of a linear fractional map of
the ball of unstable contractions [1, 2, 4]. This can be subse-
quently reformulated using only the matrix Markov parameters
of H(z). When the results are specialised to the scalar case,
magnitude and phase error bounds of the approximation error
can be obtained in terms of the Hankel singular values ofH(z),
which allows the a-priori determination of the IIR filter order
satisfying specified magnitude (“ripple”) specifications and an
acceptable phase deviation from linearity. The effectiveness of
the method is illustrated via a numerical example, involving the
approximation of a high-order linear-phase FIR filter, designed
using linear programming techniques [8]. Finally, possible ex-
tensions of the method are briefly discussed.

2 Notation

Most of the notation used is standard and is reproduced here
for convenience.D denotes the open unit discD = {ζ ∈ C :
|ζ| < 1}, with D̄ and ∂D its closure and boundary respec-
tively. L2(∂D) denotes the Hilbert space of all matrix-valued
functionsF defined on the unit circle such that

∫ 2π

0

trace[F ∗(ejθ)F (ejθ)]dθ < ∞

where(·)∗ denotes the complex conjugate transpose of a ma-
trix. The corresponding inner product of twoL2(∂D) functions
F andG of compatible dimensions is given as:

< F, G >=
1
2π

∫ 2π

0

trace[F ∗(ejθ)G(ejθ)]dθ

H2(∂D) andH⊥2 (∂D) are the closed subspaces ofL2 con-
sisting of all functions analytic inC \ D̄ andD, respectively.
L∞(∂D) is the space of all uniformly-bounded matrix-valued
functions in∂D, i.e. all functions defined on the unit circle
whose norm:

‖F‖∞ = sup
θ∈[0,2π)

σ̄[F (ejθ)]

is finite. Hereσ̄(·) denotes the largest singular value of a
matrix. H∞(∂D) andH−∞(∂D) denote the closed subspaces



of L∞(∂D) consisting of all functions analytic inC \ D̄ and
D, respectively, whileH−,k

∞ (∂D) is the set of all functions
in L∞(∂D) with no more thank poles inD. Spaces of real-
rational functions will be indicated by the suffixR before the
corresponding space symbol. Theunit ball of H−∞(∂D) is
the setBH−∞(∂D) = {U ∈ H−∞(∂D) : ‖U‖∞ ≤ 1}. If
G ∈ L∞(∂D), then the Hankel operator with symbolG is de-
fined as:

ΓG : L2(∂D) → H2(∂D), ΓG = Π+MG|H⊥2 (∂D)

in which MG denotes the multiplication operatorMG :
L2(∂D) → L2(∂D), MGf = Gf andΠ+ denotes the orthog-
onal projectionΠ+ : L2(∂D) → H2(∂D). If H ∈ L∞(∂D)
has dimensions(p1+p2)×(m1+m2) andU ∈ RL∞(∂D) has
dimensionsm2×p2, we define thelower linear fractional map
of H andU asFl(H,U) = H11 + H12U(I −H22U)−1H21,
provided the indicated inverse exists. IfU is a set ofm2 × p2

matrix functions, thenFl(H,U) denotes the set{Fl(H, U) :
U ∈ U}.

3 FIR filters with linear phase response

The fact that FIR filters can have a linear phase response has
been used extensively in many digital signal processing appli-
cations. A filter with a nonlinear phase characteristic causes
distortion to its input signal, since the various frequency com-
ponents in the signal will be delayed, in general, by amounts
which are not proportional to their frequency, thus altering their
mutual harmonic relationships. A distortion of this form is un-
desirable in many practical digital signal processing applica-
tions such as music, video, data transmission and biomedicine
and can be avoided by using filters with linear phase over the
frequency range of interest [9].

Suppose that the unit pulse response of an FIR filter is given
by {h(0), h(1), h(2), . . . , h(N)}. For this filter to have alin-
ear phase response, sayθ(ω) = −αω for α constant, it must
have an impulse response withpositivesymmetry, i.e.h(n) =
h(N − n − 1), wheren varies asn = 0, 1, 2, . . . , N−1

2 for N

odd andn = 0, 1, 2, . . . , N
2 − 1 for N even. Such a filter has

identical phase and group delay and these are independent of
frequency, i.e.

Tp = −θ(ω)
ω

= Tg = −dθ(ω)
dω

= α

An FIR filter whose impulse response hasnegativesymmetry,
i.e. h(n) = −h(N − n − 1), has anaffine phase-response
characteristic of the formθ(ω) = β−αω with α andβ constant
and its group delayTg = α is independent ofω.

The simple relationship between the impulse response of an
FIR filter and its frequency response has been exploited to de-
sign filters of this type via a variety of optimisation methods
[3], [7], [8], [10]. One of the earliest and simplest approaches
is [8], in which a linear programming procedure is proposed

for designing linear phase FIR filters with specified magnitude-
response characteristics (low-pass, high-pass, etc). As an ex-
ample, consider the filter

H(z) = h(0) + h(1)z−1 + . . . + h(p− 1)z−(p−1) + h(p)z−p

+ h(p + 1)z−(p+1) + . . . + h(2p)z−2p

in which positive symmetry of the impulse response is en-
forced around the central coefficienth(p) by settingh(0) =
h(2p), h(1) = h(2p − 1), . . . , h(p − 1) = h(p + 1). The fre-
quency response of the filter may be written as:

H(ejω) = ejωpM(ω)

whereM(ω) is a real linear function of the filter’s coefficients:

M(ω) = (2 cos(pω) 2 cos((p− 1)ω) . . . 1)




h(0)
h(1)

...
h(p)




Suppose now that we want to satisfy the following specifica-
tions: (a)1 − δ ≤ |H(ejω)| ≤ 1 + δ for all frequencies in the
pass-bandω ∈ [0, ωp], (b) |H(ejω)| ≤ δ for all frequencies in
the stop-bandω ∈ [ωs, π] whereωp < ωs, and (c) minimise
the “ripple” δ subject to constraints (a) and (b). Specifications
(a) and (b) can enforced by discretising the pass-band and stop-
band frequency intervals usingn frequencies, say, i.e.

0 = ω1 < ω2 < . . . < ωn = ωp

and
ωs = ωn+1 < ωn+2 < . . . < ω2n = π

and enforcing the specifications via the inequalities:

1− δ ≤ M(ωi) ≤ 1 + δ, i = 1, 2, . . . , n (1)

and

−δ ≤ M(ωi) ≤ δ, i = n + 1, n + 2, . . . , 2n (2)

The optimisation problem:min δ subject to (1) and (2), can
now be formulated as a linear programme in the standard form:

min c′x s.t. Ax ≤ b

wherex′ = (h(0) h(1) . . . h(p) δ), c′ = (0 . . . 0 1), b is a4n-
dimensional vector andA is a4n×(p+2)-dimensional matrix.
This can be solved efficiently using standard techniques, e.g.
the simplex algorithm or interior point methods.

4 Hankel-norm approximation of FIR filters

In this section we propose a Hankel-norm method for approx-
imating FIR filters via lower-order IIR filters. The method is
based on a recent result involving model-reduction of descrip-
tor discrete-time systems [1], [2].



The main advantage of Hankel-norm approximation methods
over other model-reduction techniques is that they offer tight
bounds on the infinity-norm of the approximation error; in par-
ticular, it is shown in [4] how to constructk-th order approx-
imationsX(z) ∈ RH∞(∂D) of H(z) ∈ RH∞(∂D) with
degX(z) = k ≤ degH(z) = n, such that:

‖H(z) + X(z)‖∞ ≤
n∑

i=k+1

σi(ΓH) (3)

whereσi(ΓH) denotes thei-th singular value ofΓH , indexed
in non-increasing order of magnitude. This inequality can be
used to determine a-priori the orderk of the low-order system
X(z) which satisfies magnitude error specifications.

Theorem 2 below parametrises all solutionsX(z) to the
Hankel-norm approximation problem‖ΓH + ΓX‖ = γ, in
whichH(z) is the matrix FIR filter

H(z) = H0 + H1z
−1 + . . . + Hnz−n

andX(z) is a matrix IIR filter of degreedegX(z) ≤ k. The
parametrisation is given in descriptor form and hence applies
both in the sub-optimal case (σk+1(ΓH) < γ < σk(ΓH)) and
the optimal case (γ = σk+1(ΓH)). Before stating this theorem,
however, the following preliminary result is needed:

Theorem 1: Let

H̃(z) = H(z)−H0 = H1z
−1 + H2z

−2 + . . . + Hnz−n

with Hi ∈ Rp×l for i = 1, 2, . . . , n. Then:

1. The singular values ofΓH̃ , σi(ΓH̃) (indexed in decreasing
order of magnitude) are the singular values of the (Hankel)
matrix:

R1 =




H1 H2 . . . Hn−1 Hn

H2 H3 . . . Hn 0
H3 H4 . . . 0 0
...

...
...

...
Hn−1 Hn . . . 0 0
Hn 0 . . . 0 0




2. A state-space realisation of̃H(z) is given by H̃(z) =
C(zI −A)−1B with:

A =




0 0 0 . . . 0 0
Ip 0 0 . . . 0 0
0 Ip 0 . . . 0 0
...

...
...

...
...

0 0 0 . . . Ip 0



∈ Rnp×np

B =
(

H ′
n H ′

n−1 . . . H ′
2 H ′

1

)′ ∈ Rnp×l

C =
(

0 0 . . . 0 Ip

)′ ∈ Rp×np

Further, the realisation is output balanced, i.e. the unique
solution of the Lyapunov equationQ = A′QA + C ′C is
given byQ = Inp.

3. The controllability grammian of the realisation in part 2,
i.e. the unique solution of the Lyapunov equationP =
APA′ + BB′, can be factored asP = R2R

′
2 where:

R2 =




Hn 0 . . . 0
Hn−1 Hn . . . 0

...
...

.. .
...

H1 H2 . . . Hn




EquivalentlyP can be block-partitioned as:

(Pij)
j=1,2,...n
i=1,2,...n where Pij =

min(i,j)∑

k=1

Hn−i+kH ′
n−j+k

andσ2
i (ΓH̃) = λi(P ) for eachi.

Proof: Straightforward and hence omitted. ¤

Theorem 2: Let H̃(z) be the matrix FIR filter defined in The-
orem 1. Letγ satisfyσk+1(ΓH̃) ≤ γ < σk(ΓH̃). Then all
X(z) ∈ H−,k

∞ (∂D) such that‖H̃(z) + X(z)‖∞ ≤ γ are gen-
erated via the lower linear fractional transformation:

X = {Fl(Sa, U) : γU ∈ BH−∞(∂D)}

where:
Sa = DS + CS(zES −AS)−1BS

with

ES =
(

Inp 0
0 0

)
, AS =

( −Inp γ2Inp − P
X A0

)

BS =
(

0 0
B B0

)
, CS =

(
0 CX−1P
0 C0

)

and

Ds =
(

CX−1B γIp

γIl 0

)

whereA, B, C andP are defined in Theorem 1, andX =
Inp + A, A0 = P − γ2XA′X−′, B0 = γXX−′C ′ andC0 =
γB′X−′.

Proof: Minor adaptation of result in [1], [2]. ¤

The proof of Theorem 2 follows readily by specialising the re-
sults of [1] and [2] to our case, using the state-space descrip-
tion in Theorem 1. Note that the generator of all Hankel norm
approximationsSa(z) is given in descriptor form; this can be
converted into a state-space form, if required, using a standard
procedure. In particular, it is always possible to obtain a state-
space realisation ofSa(z) of order2np − Rank(A0); if A0 is
non-singular, we obtain a state-space description of ordernp.
Note also, that although Theorem 2 is still valid in the optimal
caseγ = σk+1(ΓH), the resulting realisation is non-minimal.
In this case, a minimal realisation can be obtained in closed
form via a singular perturbation argument (see [2] for details).



It is clear from Theorem 2 that the solution of Lyapunov equa-
tions is completely avoided in our framework; in fact the gen-
eratorSa(z) is completely defined by the Markov parameters
of H̃(z) (andγ), although we have not made this dependence
explicit. Due to the special structure of the state-space model
describingH̃(z) in this case, it is possible to give a closed-
form expression of the state-space realisation ofSa(z) directly
in terms of the Markov parameters. Due to space limitations,
we do not pursue this direction here.

In the remaining part of this section we specialise Theorem 1 to
the scalar case and obtain bounds on the phase of the approxi-
mation error. Note first, that in the scalar case, the solution to
the Hankel-norm approximation problem is, in general, unique
only in the optimal case. The so-called “central solution” is
obtained by settingU = 0. Having obtained a state-space real-
isation of an approximation, one next needs to remove its anti-
stable component; this extraction of the stable projection can
be performed efficiently by transforming the system to block-
Schur form using an appropriate orthogonal state-space trans-
formation and ordering the eigenvalues of the “A” matrix in
ascending order of magnitude; decoupling of the stable and
anti-stable parts then requires the solution of a matrix Sylvester
equation.

Reference [4] shows that having solved thek-th order Hankel-
norm approximation problem, it is always possible to choose
a constant termx0 so that the approximation error satisfies the
bound:

‖h(z) + (x(z) + x0)‖∞ ≤
n∑

i=k+1

σi(Γh) (4)

Since this bound applies uniformly in frequency, it can be used
to give an immediate bound on the approximation phase error:

Theorem 3: Let x̂(z) = x(z) + x0 be ak-th order optimal
Hankel norm approximation of the scalar FIR filterh(z) such
that (4) holds. Then, ifφ(ω) = arg(h(ejω)) + arg(x̂(ejω)),
we have that:

| sin(φ(ω))| ≤
∑n

i=k+1 σi(Γh)
|h(ejω)| (5)

for everyω ∈ [0, π). In particular, if the frequency interval
[ω1 ω2] lies in the filter’s passband in which1−δ ≤ |h(ejω)| ≤
1 + δ, then

| sin(φ(ω))| ≤
∑n

i=k+1 σi(Γh)
1− δ

(6)

for everyω ∈ [ω1 ω2].

Proof: Straightforward and hence omitted. ¤

The phase error bound given in Theorem 3 can be used to se-
lect the minimum order of approximationk consistent with a
worst-case phase-error specification; Ifh(z) is a linear-phase
FIR filter, then the RHS of (5) or (6) quantifies the deviation in
the phase of the IIR approximation ofh(z) from linearity.

5 Example

In this section some of the results presented in the paper are
illustrated by means of a computer example. First, a linear
phase FIR filter of ordern = 21 was designed using the lin-
ear programming procedure outlined in section 3. The design
specifications were defined as:ωp = 1 rad/sample,ωs = 1.5
rads/sample and the frequency intervals[0, ωp] and[ωs, π] were
each discretised using50 equally-spaced frequencies. The lin-
ear programme was then set up and solved using Matlab’s func-
tion lp.m. The minimum ripple was obtained asδ = 0.0232;
the first11 optimal impulse response coefficients of the result-
ing filter h(z) are tabulated below (the last10 coefficients are
symmetric and are not included):

i h(i) i h(i) i h(i)
0 0.0017 4 0.0358 8 0.0919
1 -0.0212 5 -0.0015 9 0.2995
2 -0.0123 6 -0.0662 10 0.3980
3 0.0178 7 -0.0561

Table 1: Impulse response coefficients

The magnitude frequency response of the filter is shown in Fig-
ure 1 below. Note that the response in the passband and the
stopband lies within the desired bounds1± δ.
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Figure 1:Magnitude frequency response

Next the Hankel-norm approximation method outlined in The-
orem 2 was applied to the FIR filterh(z). The Hankel singular
values ofh(z) are shown in Table 2. Parameterγ was chosen as
γ = 0.03 resulting in a 7-th order (sub-optimal) Hankel-norm
approximation. The seven stable poles of the approximant were
obtained as:0.7467, 0.2841± 0.8152j, 0.4977± 0.6347j and
0.6886± 0.3363j.



i σi i σi i σi i σi

1 1.0000 6 0.1765 11 0.0117 16 0.0116
2 0.9973 7 0.0602 12 0.0117 17 0.0002
3 0.9563 8 0.0232 13 0.0117 18 0.0002
4 0.7791 9 0.0135 14 0.0116 19 0.0000
5 0.4344 10 0.0118 15 0.0116 20 0.0000

Table 2: Hankel singular values

The magnitude response ofh(z) and its IIR approximation is
shown in Figure 2. It can be seen that the IIR filter has a slightly
larger ripple in the pass-band. Figure 3 shows the impulse re-
sponses of the two filters.
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Figure 2:FIR/IIR magnitude frequency response
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Figure 3:FIR/IIR impulse response

Finally, Figure 4 shows the phase error in the passband0 ≤
ω ≤ 1 rad/sample arising from the approximation (i.e. the

deviation of the phase of the IIR filter from linearity), while
Figure 5 shows the pole/zero pattern of the IIR filter (there is
an additional zero atz = −15.6521 not shown in the figure).
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Figure 4:Phase error in passband (deg)
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Figure 5:Pole/zero pattern of IIR filter

6 Conclusions

In this work we have presented a systematic way for designing
low-order IIR filters with approximately linear phase response
characteristics. The method relies on two steps: (a) First a
linear-phase FIR filter is designed using linear programming
or an alternative optimisation technique; (b) In step 2, the FIR
filter is approximated by a low-order IIR filter using Hankel-



norm approximation methods. The method is computationally
efficient and relies on recent results for approximating discrete-
time descriptor systems. A-priori bounds are obtained for the
magnitude and phase approximation error which can assist the
designer to choose an approximation order consistent with the
design specifications. A low-order example has illustrated the
effectiveness of the method.

There are a number of issues related to the proposed technique
that we intend to pursue in the future. These include:

• Derivation of closed-form expressions for the IIR approx-
imation filter, directly from the Markov parameters of the
FIR filter.

• Derivation of tighter error bounds than those applying in
general for the Hankel-norm approach. This seems possi-
ble given the special structure of FIR filters (all poles lie
at the origin).

• Investigation of the sensitivity properties of the proposed
design under finite-precision implementation.

• Generalisation of the method to other types of approxima-
tion, e.g. relative-error and general frequency weighted
approximations.

• Extension of the method to more general application do-
mains.
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