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Abstract

In the present paper we propose a method to use capture into
resonance to control the behavior of a certain class of dynami-
cal systems. In many dynamical systems the coupling between
the unperturbed system and weak periodic perturbations (wave)
can be reduced to a purely resonant interaction occurring in the
vicinity of a certain surface in the phase space. While reso-
nance interaction can change invariants of the unperturbed sys-
tem (e.g. energy), it is random in nature, and, consequently,
is rather inefficient as a mechanism of regular transport. We
propose a method to structure the resonance interaction with
little additional cost. When the nominal dynamics brings the
system close to a resonance surface we apply a short control
pulse to force the capture of a phase point into the resonance
with the wave. A captured point is transported by the wave
across the energy levels. We apply the second pulse to release
a phase point from the resonance when the desired energy level
is achieved. As a model problem we consider dynamics of a
charged particle in an electromagnetic field. We compare the
cost of the proposed control with other methods and discuss
possible applications of this technique.

1 Introduction

In a variety of near-integrable Hamiltonian dynamical systems
significant simplification can be achieved by reducing the cou-
pling between the unperturbed system and weak periodic per-
turbations (waves) to purely resonant interactions occurring in
the vicinity of a certain surface in the phase space. A wide
range of applications of this technique includes energy ex-
change between coupled oscillators, [2], mixing in fluids [9],
celestial mechanics, [1], billiards, [4], Josephson junctions,
[12], dynamics of charged particles in electromagnetic fields
[3, 11]. Mathematically accurate theory of the most prominent
resonance phenomena, scattering on resonance and capture in-
to resonance was developed in [7, 8]

Recently lot of attention was paid to near-integrable Hamil-
tonian systems where small “perturbations” (like the presence
of additional planets) can be used to reduce the cost of con-
trol, [5, 1, 6], see also [10] for general discussion of control
of Hamiltonian systems. One of classical control objectives

for near-integrable systems is to move a phase point from one
invariant manifold of underlying integrable system to another,
for example, to change the energy of a particle. By itself, reso-
nance interaction can change the energy, but, as it is random in
nature, is rather inefficient as an acceleration mechanism.

We propose a method to structure the resonance interaction
with little additional cost. When the internal dynamics brings
the system close to that surface we apply a short control pulse
to force the capture of a phase point into the resonance with
the wave. A captured point is transported by the wave across
the energy levels. We apply the second pulse to release a
phase point from the resonance when the desired energy lev-
el is achieved.

As a model problem we consider dynamics of a charged parti-
cle in a uniform magnetic field and a weak electrostatic wave.
We compare the cost of the proposed control with other meth-
ods and discuss possible applications of this technique. The
obtained results may be interesting not just for wave-particle
interactions, but for a variety of problems, where resonant in-
teraction is important.

The structure of the paper is as follows. In Sects. 2 – 4 we
describe the nominal dynamics. In Sect. 2 we discuss the ba-
sic equations and approximations that govern dynamics of a
charged particle in electromagnetic fields. In Sect. 3 we con-
sider the averaged system and show in what parts of the phase
space the method of averaging does and does not work. The
nominal dynamics in the vicinity of a resonance is discussed in
Sect. 4, in particular scattering on a resonance (Subsect. 4.1)
and capture into a resonance (Subsect. 4.2). In Sects. 5 and 6
we discuss the control algorithm itself.

2 Charged particles in electromagnetic field.

Let a charged particle move in a uniform magnetic field, B, di-
rected along the z-axis in the presence of an electrostatic wave,
that generates electric field, E, propagating along the y-axis:

B = Bez, E = −E cos(ky − ωt)ey,

where k and ω are the wave vector and the frequency of the
wave, respectively, t is the time. The Hamiltonian of a charged
particle has the form

H =
1

2m

{
P 2

x + P 2
z +

(
Py − e

c
Bx

)2
}

+
eE

k
sin(ky − ωt),



where P = (Px, Py, Pz), m and e are the generalized momen-
tum, the mass and the charge of a particle, respectively. As H
does not depend on z explicitly, Pz is an integral of motion and
it can be set to 0. Introduce a phase of the wave ϕ:

ϕ = ky − ωt, Pϕ = Py

Dimensionless Hamiltonian of a charged particle is

h =
1
2
P 2

x − ωPϕ +
1
2

(−Pϕ + κx)2 + κε sinϕ. (1)

In (1), ε = cE/vB, κ = 1/kρ, where ρ = cmv/(eB) is
characteristic Larmor radius, v is typical velocity, and

h = H/(mv2) − ωPϕ. (2)

We are interested in the following range of parameters:

κ � 1, ω, ε ∼ 1.

Note, that the characteristic value of x is of order 1/κ.

3 The averaged system and the structure of a
resonance.

Hamiltonian (1) possesses two degrees of freedom. The vari-
able ϕ is fast and the variables x, Px, Pϕ are slow. The new
“energy”, h (that differs from the usual energy by a quantity
ωPϕ), is an integral of motion.

As the phase ϕ changes much faster than x, in the first approxi-
mation we can average the motion over fast ϕ-oscillations. This
approximation is valid everywhere except for a small part of
the phase space where ϕ̇ ≈ 0. The averaging corresponds to
omitting the wave term in (1) and reduces the Hamiltonian h to

hav =
1
2
P 2

x − ωPϕ +
1
2

(−Pϕ + κx)2 .

In averaged system Pϕ and the energy H are integrals of mo-
tion and the problem becomes integrable.

The equation ϕ̇ = 0 defines a parallel to the Px-axis plane in
the (κx, Px, Pϕ) space, that we call the resonant surface, or the
resonance, and denote by R:

ϕ̇ =
∂hav

∂Pϕ
= −ω + Pϕ − κx = 0. (3)

On R the projection of the averaged velocity of a particle on the
direction of the wave vector is equal to the phase speed of the
wave. This phenomena is similar to the classical Cherenkov-
type resonance ω = (k, v̂).

Motion of particles near the resonance and far from it is dras-
tically different. Near a resonance ϕ is not fast compared with
x. Hence, the value of the integral of the averaged system, Pϕ,
may change in the process of a passing through the vicinity of
the resonance. As a result, we can not expect the averaged sys-
tem to approximate the exact system adequately. The change in
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Figure 1: The phase portrait of the system with the Hamiltonian
hav on the (ζ, Px) plane (see (1)). On the whole phase plane
Pϕ = Pϕ,0. The vertical solid line is the intersection of Pϕ =
Pϕ,0 plane and the resonant surface.

Pϕ leads to the corresponding change in the energy of a particle
(see (2)). In terms of a new variable,

ζ = −Pϕ + κx,

Hamiltonian (1) and resonance condition (3) have the form

h =
1
2
P 2

x − ωPϕ +
1
2
ζ2 − κε sin ϕ, ζres = −ω.

Figure 1 presents the phase portrait of the system with the
Hamiltonian hav on the (ζ, Px) plane defined by Pϕ = Pϕ,0 =
const. The vertical straight line is the intersection of the reso-
nant surface and the plane Pϕ = Pϕ,0.

4 Dynamics in the vicinity of the resonance.

A vicinity of the resonant surface, where |ϕ̇| < const
√

κε, is
called a resonant zone. In resonant zone

h = hx + κhϕ, (4)

where

hx =
1
2
P̄ 2

x − ωκx − 1
2
ω2, (5)

hϕ = bϕ +
1
2

1
κ

P̄ 2
ϕ + ε sinϕ. (6)

In ((4) - (6)), we used a notation

Px = P̄x + κϕ, Pϕ = P̄ϕ + Pϕ,res, b = Px,res,

where Px,res and Pϕ,res are the values of Px and Pϕ, respec-
tively, on R. Equations ((4) - (6)) describe the motion of a
particle inside the resonant zone.

A characteristic trajectory of exact system looks as follows. A
particle approaches the resonant zone with the value of Pϕ os-
cillating with a small amplitude, ∼ (κε), near some value P −

ϕ .
When in the process of the motion it arrives to the resonant
zone is either captured into the resonance, or crosses the res-
onant zone without being captured. After the passage through
the resonant zone (and far from the resonance) the value of P ϕ
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Figure 2: Several consecutive scatterings and the following
capture and release in nominal dynamics: (a) Projection on the
(ζ, Px) plane; Pϕ as a function of time. Small jumps and a big
drop correspond to scatterings and the capture, respectively.

oscillates near some other value, P +
ϕ , again with a small am-

plitude ∼ (κε) (see Figure 2 below).

In the case of capture into resonance, upon the arrival to the
resonant zone a phase point drifts for a long time (of order ∼
1/(κε)) along the resonant surface. As a result, Pϕ changes by
a value of order 1. Among all the particles only a small part, of
order ∼ √

κε, is captured. Initial conditions for particles that
are or are not captured are mixed. Therefore, it is reasonable to
consider capture as probabilistic phenomenon. For a particular
particle the probability to be captured is small, of order∼ √

κε.

The particles that cross the resonant zone without being cap-
tured typically pass through this zone in time of order ∼
1/

√
κε (see [7, 8]). The major resonant phenomenon for such

particles is the scattering on resonance. The magnitude of the
jump in Pϕ, ∆Pϕ = P+

ϕ − P−
ϕ , is typically of order ∼ √

κε,
and is referred to as the amplitude of the scattering. This val-
ue is very sensitive to small changes of the initial conditions.
Hence, it is reasonable to consider the scattering as a random
process.

Figure 2 shows a single trajectory of the exact system. Fig-
ure 2a presents the projection of a characteristic phase curve
onto the (ζ, Px) plane. Near-circular part is the motion far
from the resonance, a wavy near-vertical line is the captured
motion. Figure 2b illustrates the time evolution of Pϕ. Small
jumps and a big drop correspond to scatterings and the cap-
ture, respectively. Note, that the capture into the resonance is
a probabilistic process: the capture occurs only once in several
consecutive crossings of R.

Properties of the dynamics in the vicinity of a resonance de-
pend on the shape of the phase portrait in the (ϕ, P̄ϕ) plane. A
phase portrait can be of one of two types: with or without the
oscillatory domain. If

|ε| ≥ |Px,res|, (7)

the phase portrait looks like the one shown in Fig. 3a. If (7)
does not hold, the phase portrait looks like the one shown in
Fig. 3b.
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Figure 3: The schematic phase portrait on the (ϕ, P ϕ) plane:
(a) |ε| ≥ |b|, (b) |ε| < |b|

4.1 Scattering on resonance.

In general case, every crossing of the resonant zone leads to a
jump in Pϕ (see [7, 8]):

∆Pϕ = −2sε

√
κ√|b|

∫ ϕ∗

−s∞

cosϕ dϕ√
2

∣∣∣2πξ − ε

b
sin ϕ − ϕ

∣∣∣ ,
where ϕ∗ is the value of ϕ on R (i.e. at the resonance crossing)
and s = sign(b). The quantity ξ, that characterizes the crossing
and is given by 2πξ = ϕ∗ + (ε/b) sinϕ∗, is very sensitive to
the initial conditions and can be treated as a random variable,
uniformly distributed on the (0, 1) interval (see [8]).

4.2 Capture into resonance.

The other phenomenon that affects the dynamics of a particle
in the vicinity of a resonance is capture into resonance. Capture
is possible only if the phase portrait in the (ϕ, P̄ϕ) plane looks
like the one shown in Fig. 3a, in other words, if (7) is satisfied
and there is a separatrix on (ϕ, P̄ϕ) phase plane.

Capture into resonance can be described as follows. The area
under the separatrix loop in the (ϕ, P̄ϕ) plane, SR, changes
while a particle moves along a phase trajectory. Suppose the
area under the separatrix loop increases. Then a particle that
comes very close to the separatrix may cross it and, as a result,
be caught in the oscillatory domain within the separatrix loop.
The capture happens in the upper half-plane if ω < 0 and in the
lower half-plane if ω > 0. A captured particle starts moving in
the vicinity of the resonant surface ζ = −ω and its dynamics
is regular and governed by the Hamiltonian hx (see (5)):

κẋ = ˙̄Pϕ = κP̄x, ˙̄Px = κω. (8)

One can see that regardless of the sign of ω captured motion is
directed “into” the orbit of the averaged system (see Fig. 2a).

Introduce an action variable of (ϕ, P̄ϕ) motion as normalized
by 2π area under a phase trajectory in the (ϕ, P̄ϕ) plane:

J =
1
2π

∮
P̄ϕ dϕ. (9)

J is conserved during the captured motion:

J = J0 = S0/2π = const, (10)



where S0 is the value of SR(Pϕ) when the particular particle
was caught. The value of Pϕ changes in the process of the
captured motion and the minimum value is achieved when the
trajectory crosses the axis Px = 0.

The fate of a captured particle depends on the behaviour of S R

as a function of Px. As the particle moves, SR(Pϕ) changes
along the trajectory and, if it returns to S0, the particle is re-
leased from the resonance. In contrast to that, if SR(Pϕ) keeps
increasing, the captured particle accelerates unboundedly un-
til it exits the system. In the particular model discussed in the
present paper, the section of R by a plane Pϕ = const is a
straight line that is parallel to the Px-axis. Hence, it follows
from the symmetry of the phase portrait of x-motion with re-
spect to the axis of abscissas that a capture into the resonance
and the consequent release from the resonance occur at approx-
imately the same value of Px.

5 Controlling the capture

In this section we discuss how the capture into the resonance
can be used to control the motion of particles. Suppose we need
to move a particle from some initial state with the “real” ener-
gy Hi to some final state with the energy Hf . Note, that we
consider both constant magnetic field and the electromagnetic
wave as parts of the nominal system. Therefore, the energy of
the wave is not included in the cost of control. Standard meth-
ods require either applying an energy of order of the difference
between Hf and Hi or waiting for a very long time to let the
diffusion of Pϕ take the system to Hf (recall, that Pϕ is related
to H , see (2)). While the second method has the advantage of
being cost-free, there are a couple of setbacks: one must wait
for a very long time and meanwhile the whole dynamics of the
particles becomes chaotic.

A natural way to overcome the problems stated above is to use
capture into the resonance. But, as the capture is a probabilistic
phenomena one must wait for a long time before it happens and
also a captured particle is transported to some new energy level,
defined by SR(Pϕ), that might not (and probably will not) be
near the target one. Therefore, we need to implement control
both at the entry and exit moments to enforce a quick capture
and to secure a timely release.

Let us start with capturing. When a particle comes close to
the separatrix we apply a short pulse pushing a particle into
the oscillatory domain inside the separatrix loop (see Fig. 4
below). A possible example of such a pulse is a short impulse
in y-direction. As Pϕ = Py , we have ∆Pϕ = F∆t, where
F and ∆t are the amplitude and the duration of the impulse,
respectively.

The captured dynamics was described in Subsect. 4.2. After the
capture a particle oscillates near the resonance. It’s dynamics
is regular and is governed by equations of motion (8) and con-
servation law (10). The capturing impulse puts a particle on a
certain level of J : J = Jc (see (9)). Clearly, the deeper is a tra-
jectory into the oscillatory domain, the smaller is the value of

J . The values J = 0 and J = S0/2π correspond to the elliptic
stationary point and the separatrix, respectively. If no addition-
al impulses that either push a particle deeper into the oscillatory
domain or kick it out from the oscillatory domain are applied a
particle will stay captured as long as SR(Pϕ) ≥ 2πJc.

When a particle reaches the target value of Pϕ we apply another
impulse to push the particle from the resonance.

The new “energy”, h, is the integral of the nominal system
and is related to the “real” energy H as H ∝ (h + ωPϕ), see
(2). Pulses change h, but these changes are very small, as it
is shown by numerical simulations below. Therefore, in what
follows we consider h to be constant throughout the evolution.

5.1 Controllability and reachable domain

The minimum value of Pϕ that is reachable by this method,
Pϕ,min, corresponds to the curve that touches R:

h + ωPϕ,min = ω2/2.

The trajectories with smaller values of Pϕ do not cross R. The
maximum reachable value of Pϕ corresponds to |Px,res| = ε as
for larger values of |Px,res| there is no separatrix on the (ϕ, Pϕ)
phase plane, see (7):

h + ωPϕ,max = ε2/2 + ω2/2.

In terms of Pϕ, reachable set cover the entire interval between
Pϕ,min and Pϕ,max. For every pair of Pϕ and h all the trajec-
tories of the averaged system are circles:

h + ωPϕ = P 2
x/2 + (−Pϕ + κx)2 /2.

Therefore, the total reachable set is a cut oblique cone in the
(Pϕ, Px, κx) space.

In principle, one pulse is sufficient to move a particle from any
initial value of Pϕ,in to any final value Pϕ,final > Pϕ,in within
the reachable interval. To achieve this the pulse must put a
particle on the level set Jc = SR(Pϕ,final)/2π. In this case
the “nominal” release happens at Pϕ = Pϕ,final. The larger is
the value of Pϕ,final the closer captured trajectory must be to
the elliptic fixed point on the (ϕ, P̄ϕ) phase plane. In the case
Pϕ,final < Pϕ,in there are no requirements on the magnitude
of the initial pulse, provided it puts a particle in the oscillatory
domain. To release a particle from the capture the second pulse
must be applied.

One can apply a sequence of pulses to put a particle on the
proper level of J . This control method is robust in a sense that
there is no need for extreme accuracy of the magnitude of ei-
ther capturing or releasing pulses. The first, capturing, pulse
must be just strong enough to put a particle inside the oscilla-
tory domain and not too strong in order not to overshoot over
the separatrix loop. If the resulting value of Jc is smaller than
Jf = Sf/2π (where Sf is the value of S that corresponds to
Pϕ,final) no adjustments before the second pulse are necessary.
Otherwise, additional pulse(s) are required to push a trajecto-
ry deeper into the oscillatory domain. The exiting pulse must
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Figure 4: Projection of the phase curve onto the (ϕ, Pϕ) plane:
forced capture and release.

be just strong enough to kick the particle away from the loop.
Characteristic controlled captured dynamics is shown in Fig-
ure 4. The dashed lines to the right and to the left correspond
to nominal motion before and after the capture, respectively.
The thin solid line is captured motion. Vertical thick solid lines
are control impulses. The first pulse (the vertical line in the
middle) is the original pulse that forced a capture. It follows
from the shape of the first loop of the captured curve in Fig. 4,
that it is close to the separatrix. The second pulse (the right
line) was be applied to put a particle deeper into the oscillato-
ry domain and the last pulse (the left line) released a particle
from the resonance when a target value of Pϕ is reached. Note,
that although the second pulse put a particle relatively deep in-
side the separatrix loop, by the release time the area under S
decreased and quite a weak pulse was sufficient for release.

6 Numerical simulations

It was stated before that resonance phenomena is probabilis-
tic in nature: tiny changes in initial conditions may result
quite different behaviour of trajectories near resonance. Al-
though the forced capture designed to somewhat straighten
things out, in controlled system there is a certain residual de-
gree of stochastisity inherited from the nominal dynamics.

All the problems come from the fact that we want not to follow
individual particles but to propose “one size fits all”-type of
control algorithm. In the former case we could use the method
described in the previous section to apply capturing and releas-
ing pulses at exactly prescribed moments for a given particle.
On the other hand, in the latter case we must settle for an “ap-
proximate” method with kicks being localized in a certain place
in the real (physical) space.

To analyze the properties of the proposed control mechanism,
we performed a set of numerical simulations. Initial conditions
were chosen to be κx0 ∈ (3.9, 4.1), y0 ∈ (−0.1, 0.1), Pϕ,0 =
2. The values of other parameters are: ω = 1, ε = 12, κ =
0.0001. Our objective was to change the value of Pϕ from 2.0
to 0.65. Total time of the evolution was Tf = 50000. In this
case R is a vertical line κx = 1 (or, in terms of ζ, ζ = −1).
For a kick we implemented a rectangular pulse that gives an
additional term in equation for Ṗϕ:

Ṗϕ = −κε cosϕ + pjfp(κx),
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Figure 5: Forced capture and release: (a) projection of the
phase curve onto the (ζ, Px) plane; (b) projection of the phase
curve onto the (κx, Px) plane. The points C and Re denote
locations of the capture and release, respectively. The initial
conditions are κx0 = 3.97, y0 = 0.04, Pϕ,0 = 2.

where fp(κx) = 1 for κx ∈ (κxk,j − δk,j , κxk,j + δk,j) and
fp(κx) = 0 otherwise and j = {c, r} correspond to captur-
ing and releasing pulses, respectively. We call κxk, δk and p
location, duration and magnitude of the kick, respectively. A
limitation on δk is that time a particle spends in a “pulse” zone
is much smaller than time it takes a particle to travel around the
separatrix loop. A characteristic captured trajectory is shown
in Fig. 5. The points C and Re denote locations of the capture
and release, respectively. The total applied energy in this sim-
ulation is approximately equal to 0.015, which is nearly nearly
two orders of magnitude less then the difference between the
final and initial values of Pϕ, 0.665 and 2.0, respectively.

The simulations show that the percentage of captured particles
is rather sensitive to the location of the capturing kick. In our
simulations particles approach R from below on (ϕ, P̄ϕ) phase
plane. A natural moment to apply the kick is when a particle
is right above the separatrix loop on (ϕ, P̄ϕ) phase plane (point
K in Fig. 3a). For different initial conditions particle arrive to
the respective points K at different values of κx. Therefore,
the kick is most effective (in terms of the percentage) when it
is applied in the middle of a range of κxK for a given set of
initial conditions. In terms of the values of the parameters used
in simulations, the best results were achieved with κxk ≈ 1.02.
For κxk = 1.02, 87% of trajectories were captured (see below
for a detailed description of the simulations). For κxk = 1.01
and κxk = 1.03, the percentage of captured trajectories was
53% and 38%, respectively.

The effectiveness of a kick is somewhat less sensitive to the
duration and the magnitude of the kick, δk,c and pc. The val-
ue of P̄ϕ at the moment of the kick is different for different
initial conditions. Hence, the pulse must nether overshoot nor
undershoot for most of initial conditions. So, (δk × p) should
be approximately equal to the height of the separatrix loop in
Fig. 3a, which, in turn, is of order of

√
κε (see Sect. 4).

Note, that as the values of state variables right before the kick
are different (most importantly in ϕ and P̄ϕ), kicks put particles
on different trajectories of captured motion (in other words, the
values of Jc, see Sect. 5, are different). Consequently, although
the captured motion is always regular, exact properties, like the
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Figure 6: Distribution of the final values of Pϕ for captured and
released trajectories.

time it takes a particle to arrive to the “release” zone and the
final value of Pϕ, may (slightly) vary.

Mechanism of release is more robust – if the pulse is large
enough the release definitely occur. On the other hand, the
value of Pϕ after the pulse does depend on the value of the res-
onant phase at the moment of release. A characteristic value of
(δk,r × pr) should again be of order of

√
κε.

After the release particles proceed along an averaged trajectory.
Before the time of simulations runs out, they undergo an addi-
tional scattering on resonance. In that region the area under the
separatrix decreases and the natural capture is impossible.

We performed 441 runs with κxk,c = 1.02, δk,c = 0.001 and
pc = −0.003 for capture and κxk,r = −0.4, δk,r = 0.001 and
pr = 0.001 for release. Of these 441 runs, 87% of trajectories
were captured. All the captured trajectories (for which the re-
leasing kick was applied) were released. Captured trajectories
are distributed quite uniformly over the box of initial condi-
tions. Figure 6 shows a distribution of the final values of Pϕ

for captured and released trajectories. All the factors (capture,
release and later scattering) contribute to a certain dispersion
of Pϕ, but all the values are way away from the initial value.

6.1 Separation of particles.

One of the possible applications of the control via capture is
to separate particles of two different types (for example, iso-
topes). Let isotopes differ by mass only: m1 and m2 with
β = m2/m1. Typically isotopes come from an accelerating
device with the same energies. We performed a set of simu-
lations with β = 1.05. For the type “2” of the particles the
resonance is located at ζ = 1/β2. As a result, the pulse, that is
synchronized with isotope 1, is applied at a “wrong” moment.
Consequently, only a tiny bit of particles are captured due not
to a control pulse, but a natural dynamics discussed in Sub-
sect. 4.2. Distribution of the final values of Pϕ in this case has
a single narrow peak localized near the original value of 2.

Conclusions

In the present paper we proposed a method to use capture into
resonance as an efficient tool to control the behavior of near-

integrable dynamical systems where interaction between an un-
perturbed system and a weak periodic perturbation can be re-
duced to a purely resonant interaction. We showed that weak
control pulses can structurize resonance interaction allowing it
to be used for regular transport across invariant manifolds of
the unperturbed system.
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